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1. INTRODUCTION

Man has reached to the moon but ...
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control
actions

demands exit flows

TRAFFIC
NETWORK

%

(independent of
control actions)

Minimization of Total Time Spent
&
Maximization of (Early) Exit Flows




Simple Queuing Systems

. Demand > Capacity = Queuing
. Capacity # f (Queuing)

= Delay depends on D—-C only!

Water Systems

More Inflow = Higher Pressure = Higher Outflow




Traffic Networks

. Congestion degrades the infrastructure (capacity)
Local link demand exceeds local capacity

= |Local congestion degrades local capacity

//\

Accelerated increase of Further capacity
congestion degradation

\/

... until generalized network congestion
although
Demand << Nominal network capacity




Ile-de-France Expressway Network

12 January 2011, 8:14 am




Conclusion: Generalized traffic congestion is not
only due to high demand.

Congested Traffic Networks: Expensive
infrastructure capacity not fully available at
the only time it is actually needed, i.e. the
peak periods!

Goal: Operate traffic networks optimally

(as a controllable system)
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Strategy ' Processing
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Basic elements of an automatic control system




2. RAMP METERING




Why Ramp Metering?
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2nd Answer
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Note: On-ramp queue should not interfere with
surface street traffic.
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Local Control Issues
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Demand-Capacity . ALINEA
@ (Feedforward) 0 (I-Regulator)

Note: o is less sensitive than q,,
(e.g. under adverse weather conditions).
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Occupancy versus Time
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HERO Feedback Coordination

DA

ALINEA ALINEA ... ALINEA

' 1 ‘1 v |

HERO Feedback Coordination

ALINEA Activation? — Master Ramp
HERO hires gradually (upstream) Slave Ramps
Cluster: Master + Slaves

HERO MIMO Feedback: Balance relative ramp queues in
Cluster (create 1 super-ramp)

Cluster de-activation logic
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HERO Implementation at the Monash
Freeway, Melbourne, Australia

m Test pilot: 6 consecutive ramps

m Significant improvements in all PI: Productivity,
Speed Variation, Reliability

m 11 days payback period!
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AM PEAK Typical day (Fixed Time)
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AM PEAK Typical day (ALINEA/HERO)
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PM PEAK Typical day (No RM)

OB OB OB OB E R B HEEREE RS
w

21 #

*

1 Min Data EY| 112 13 14 15 16 17 18
«

laformation
Services
Department

¥ SPRINGVALE z

¥ FERNTREEG 3
¥ FORSTERRC 3
WARRIGAL

¥ BLACKBURN 4
4

[N
[
¥ BURKERD

¥ HIGH ST

w d w AR e s s e

|7 JACKSONS
| 7 WELLINGTOR

Bottleneck created
due to merge at
Forster ramp

THRU LANE SPEED RANGES in KMIHR
Low g

1
21
31
41
51
61
il
81
10 9
i 10
12 i

o
woo-qo)ul-hww..i

18




PM PEAK Typical day (ALINEA/HERO)
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Currently: HERO extension to 65 ramps, i.e.
whole freeway, 75 km, both directions
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3. VARIABLE SPEED LIMITS

— LONG DELAYS
L ] ® 0"
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m Many application stretches in many counties

m Impact: “homogenisation” of traffic flow
— Traffic safety: —20-30% accidents

— Travel times: questionable impact of existing
systems

m Simplistic control strategies
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Parameter estimation at one particular location

A=10.42
E=3.16

leading to capacity
increase by 8%
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Other location
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Feedback MTFC
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4. ROUTE INFORMATION AND
GUIDANCE

m Multi-origin, multi-destination, multi-route per O-D pair

m Fixed direction signs: shortest path in absence of
congestion

m Rush hours

s Changing demands, weather conditions, exceptional
events, incidents
— underutilisation of infrastructure

— congestion, delays, reduced safety, increased fuel consumption,
environmental pollution
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VMS (Variable Message Signs) or two-way
communication with equipped vehicles

m Real-time information:
— Drivers’ knowledge
— Message length
— Decision efficiency
— System controllability

— Travel time or queue length: drivers’ stress (e.g. BP
in Paris) but also basis for route choice

— Instantaneous (estimation) or predicted information

m Route guidance
— Control strategy
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Issues

s Modelling: micro, meso, macro

m Integrated Optimal Control: AMOC

m User vs. System Optimum

m Instantaneous vs. Experienced travel times

m Algorithms: feedback vs. predictive feedback
vS. Iterative
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Automatic Control of VMS in Aalborg,
Denmark

% LOKKEN
VMS 12 Clmmm

HIGRRING S
iy

Aalborg network with VMS
- positions indicated.
Bold black lines represent

detector equipped segments.

(a) (b)

VMS control modes:
Delay information (a) and

route guidance (b).
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Automatic Control of VMS in the
Interurban Scottish Highway Network




5. TRAFFIC SIGNAL CONTROL

m Original reason for traffic lights: safe crossing of
antagonistic streams of vehicles and pedestrians

m Once they exist, they can be set in different ways.
Which is best? — Optimisation problem

m Difficulties:
— Binary variables
— Large dimensions
— Many disturbances
— Difficult measurements
— Real-time constraints

m Many control strategies, both heuristic and systematic
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“2-D Fundamental Diagram” for urban networks
(PhD-Thesis by Geroliminis, 2007; Fahri, 2008)

total network flow or
flow of exiting vehicles
(veh/h)

veh in network

@ undersaturated; minimise delays!

@ saturated: maximize capacity!

® oversaturated: queue management, gating!
@ blocked: call the police or walk home!

Caution: Different underlying phenomena than 34
on link = FD




Real-time Signal Control Strategies/Systems

m [solated
— Traffic actuation, MOVA

m Network-wide

— Plan selection
— SCOOQT, SCATS, UTOPIA, MOTION, OPAC, ...
(partially strong communication requirements)

m Saturated traffic conditions
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m Store-and-forward based strategies
— TUC and variations
— Cycle-to-cycle changes
— Low communication requirements

m Perimeter gating control
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6. PUBLIC TRANSPORT PRIORITY

m Refers to all types of public transport vehicles (buses,
trams, trains, etc. and even emergency vehicles)

m Technological implications
— special detection technologies
— programmable controllers
— sec-by-sec communication with the controllers

s Implications for the road traffic

— Frequent disturbances of signal control may lead to significant
negative implications to road traffic

— Recovery methods may not be sufficient to avoid negative
implications
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Multiple approaches: Included in signal control
strategies

Easier: one PT vehicle at a time
More challenging: multiple PT vehicles!

Good improvements reported

39



/. MERGING TRAFFIC CONTROL

Merging traffic infrastructures (M — p lanes)
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Simulation Example: Toll plaza
San Francisco-Oakland Bay Bridge
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Work Zone Control

Traffic lights Occupancy H = 1; qcap — 2,300V6h/ h
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Different layout (now using PI-ALINEA)
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WZ Control video 44




8. Conclusions

m Traffic flow can be substantially improved (in
some cases -50% travel times) via traffic
control

m[eC
m Met
m Not

nnological giants with a baby brain
nodological zombies
ning is more practical than a good theory

m As simple as possible as complex as necessary
m General applicability, high efficiency
m Field applications needed
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