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Abstract— In a large category of embedded systems, com-
puting resources are limited. Consequently, they need to be
exploited as efficiently as possible. Recently, many research
works have demonstrated that considering jointly the problems
of control and scheduling leads to a better control performance,
given the same computing resources. In this paper, the problem
of the optimal integrated control and non-preemptive off-line
scheduling of control tasks in the sense of theH2 performance
criterion is addressed. It is shown that this problem can
be decomposed into two sub-problems which can be solved
separately. The first sub-problem aims at finding the optimal
non-preemptive off-line schedule, and is solved using efficient
Branch and Bound algorithms. The second sub-problem uses
the lifting technique to determine the optimal control gains,
based on the solution of the first sub-problem. Finally, in order
to improve the control performance by dynamically allocating
the computational resources, an efficient on-line scheduling
heuristic is proposed.

I. I NTRODUCTION

Embedded micro-computers are increasingly being used
in modern control applications in order to perform the
computations of the control laws. The development cycle of
these applications often involves two different steps, which
are usually performed in isolation. The first step is the control
design, which is performed by the control engineer, assuming
an ideal implementation. The following step is the software
design. In this step, the functionalities of the application,
specified by the control engineer, are decomposed into tasks.
Usually, hard real-time constraints are associated to the tasks.
This separation of concerns simplifies the design, especially
when the applications are complex. However, for small
applications, with a reduced number of tasks, and designated
to a small footprint hardware target, the integration of control
design and real-time scheduling design leads to a better
control performance, using the same hardware resources.

The problem of the co-design of the control and the real-
time scheduling was first introduced in [1]. In [2], the elastic
task model [3] was applied to the scheduling of control
tasks with variable execution times. In [4], the optimal off-
line scheduling of control tasks in the sense of LQG was
considered, assuming that all the control tasks have the
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same execution time. The resolution of this problem was
performed using the exhaustive search method, which limits
the application of this approach to applications with a limited
number of tasks. The idea of the dynamical allocation of
processor resources as a function of the plant state was pro-
posed in [5]. The problem of the optimal integrated control
and scheduling was investigated in [6]. It was demonstrated
that the optimal scheduling policy in the sense of an LQ
performance index is very dependant from the plant state.
A significant improvement in the control performance can
be obtained by rapidly reacting to the disturbances [7]. This
rapid reaction can be performed by plant state based on-
line scheduling algorithms. The problem of the optimal on-
line sampling period assignment was studied in [8]. A sub-
optimal periodic sampling period assignment heuristic was
proposed. In apposition to this approach, the on-line schedul-
ing heuristic proposed in this paper, and called Reactive
Pointer Placement (RPP) scheduling, changes the sampling
period in reaction to the disturbances, and not according to
a periodic triggering.

In this paper, a solution of the optimal control and non-
preemptive off-line scheduling according to theH2 perfor-
mance criterion is proposed. Instead of using exhaustive
search as in [4], a decomposition of the problem into
two independent sub-problems is performed. The first sub-
problem aims at the finding of the optimal static cycle
schedule and is solved using the Branch and Bound method.
The second sub-problem uses the result of the first sub-
problem to determine the optimal control gains, applying
the well known lifting technique. Finally, an efficient on-
line scheduling heuristic, based on the pre-calculated off-line
schedule is proposed, in order to improve the responsiveness
to unpredictable disturbances that can occur at runtime.

II. OPTIMAL OFF-LINE SCHEDULING

A. Problem formulation

Consider a collection ofN continuous-time LTI systems
(S( j))1≤ j≤N . Assume that each systemS( j) is controlled by
a task τ( j), characterized by its execution timed ( j). The
execution timesd(1), . . . ,d(N) of the tasks are assumed to be
integers and expressed as multiples of an elementary time
unit Tp. Task scheduling can be described by associating
scheduling functionsy( j) to control tasksτ ( j) such that

y( j)(k) =

{
1 if task τ ( j) finishes at instantkTp

0 otherwise
(1)



y( j)(k) is called theexecution end indicator of the jobs of task
τ( j). Due to the use of a non-preemptive scheduling, thed ( j)

slots preceding the end of a job of taskτ ( j) are allocated to
its execution. Using this observation, the processor utilization
can be described by

e( j)(k) =
k+d( j)−1

∑
l=k

y( j)(l) (2)

e( j)(k) is the task execution indicator corresponding to the
jobs of taskτ ( j) and verifies

e( j)(k) = 1⇐⇒ the processor is allocated to taskτ ( j)

during interval[(k−1)Tp,kTp)
(3)

During interval [(k − 1)Tp,kTp), the processor can only
execute one task. This constraint can be modeled by the
following inequality

N

∑
j=1

e( j)(k) ≤ 1 (4)

Each systemS( j) is characterized by its discrete-time
model, derived at the sampling periodTp, and described by

x( j)(k +1) = A( j)x( j)(k)+ B( j)
1 w( j)(k)+ B( j)

2 u( j)(k) (5a)

z( j)(k) = C( j)
1 x( j)(k)+ D( j)

12 u( j)(k) (5b)

wherex( j)(k) ∈ R
n j is the state vector,w( j)(k) ∈ R

p j is the
disturbance input,u( j)(k) ∈ R

mj is the control input and
z( j)(k) ∈ R

q j is the controlled output. We assume that

1) The pair(A( j),B( j)
2 ) is controllable

2) R =

[
C( j)

1

D( j)
12

][
(C( j)

1 )T (D( j)
12 )T

]
=
[

R( j)
xx R( j)

xu

(R( j)
xu )T R( j)

uu

]
≥ 0

with R( j)
uu > 0

Using straightforward algebraic manipulations, systems
(S( j))1≤ j≤N can be described using an extended state model
representing a global systemS described by

x(k +1) = Ax(k)+ B1w(k)+ B2u(k) (6a)

z(k) = C1x(k)+ D12u(k) (6b)

In the considered modeling, when a control task finishes
its execution, then it immediately updates the plant, which
means that

u( j)(k) is updated at instantkTp ⇐⇒ y( j)(k) = 1 (7)

The digital-to-analog converters, use zero-order-holders to
maintain the last received control inputs constant until new
control values are updated. This assertion can be modeled
by

y( j)(k) = 0 =⇒ u( j)(k) = u( j)(k−1) (8)

In order to formulate the joint problem of optimal control
and scheduling, in addition to the modeling of the tasks and
the representation of the system’s dynamics, it is necessary
to chose an adequate criterion of performance. The previous
studies which were carried out on the joint problem of

the optimal control and scheduling, starting from a given
initial condition, have shown that the optimal schedule is
extremely dependant from the chosen initial conditions [6].
This dependence can be exploited by the on-line scheduling
algorithms in order to improve the control performance.
But when only a fixed schedule is desired, it is necessary
to use performance criteria which depend on the intrinsic
characteristics of the system, not on a particular evolution
or initial state. The use of the well knownH2 performance
criterion provides an interesting solution to this problem.
In fact, using this performance index, the obtained off-line
schedules will be independent from any initial condition.
Moreover, the results can be easily transposed to an LQG
context [9].

Let T be the period of the static schedule, then scheduling
functionsy( j)(k) ande( j)(k) will be periodic with periodT .
In order to determine theH2 norm of the system, we adopt
a definition of this norm which is based on the impulsive
response of a linear discrete-time periodic system [10]. This
definition generalizes the well known definition of theH2

norm for the discrete LTI systems. Let(ei)1≤i≤p be the

canonical basis vectors inRp (p =
N
∑
j=1

p j) andδk the Dirac

impulse applied at instantk. Using these notations,δkei is a
Dirac impulse applied to theith disturbance input at instant
k. Let gik be the resulting controlled output of the system
assuming zero initial conditions. TheH2 norm of the periodic
systemS is defined as

‖S ‖2 =

√√√√ 1
T

T−1

∑
k=0

p

∑
i=1

‖gik‖2
2 (9)

Using this definition to calculate theH2 norm involves the
calculation of‖gik‖2, which requires the observation of the
system’s response over an infinite time horizon. In this work,
a very close approximation of‖gik‖2 is obtained through
a finite horizonH from the instant where the impulse is
applied. It is necessary to chooseH greater than the response
time of the slowest system.

B. Solving of the optimal scheduling sub-problem

In this section, the translation of the optimal scheduling
sub-problem in the sense ofH2 into the Mixed Integer
Quadratic Formulation is described. This translation requires
the transformation of all the involved constraints into linear
equalities and/or inequalities. Constraints (8) can be trans-
lated into equivalent linear inequalities and equalities if extra
variables are introduced, as illustrated in [11]. Remarking
that (8) is equivalent to

u( j)(k)−u( j)(k−1) = y( j)(k)u( j)(k)− y( j)(k)u( j)(k−1)
(10)

and introducing the extra variables

v( j)(k) = y( j)(k)u( j)(k) (11)



then (8) can be rewritten in the equivalent form

v( j)(k) ≤U ( j)y( j)(k)
v( j)(k) ≥ L( j)y( j)(k)
v( j)(k) ≤ u( j)(k)−L( j)(1− y( j)(k))
v( j)(k) ≥ u( j)(k)−U ( j)(1− y( j)(k))

(12)

whereU ( j) andL( j) are respectively the upper and the lower
bounds of the control commandsu ( j) of systemS( j). The
product w( j)(k) = y( j)(k)u( j)(k − 1) can also be translated
using the same procedure.

The constraints involved in this problem can be classified
into two groups. The first group is related to the scheduling
constraints (2) and (4). Let

Ȳ ( j) =


 y( j)(0)

...
y( j)(H −1)


 andȲ =


 Ȳ (1)

...
Ȳ (N)




then the constraints belonging to this group can be described
by

AsȲ ≤ Bs (13)

The second group is related to the calculation of the impul-
sive responsesgik, for 0≤ k ≤ T − 1 and 1≤ i ≤ p, over
the horizonH. Let uik, xik, zik, vik and wik be respectively
the values of the control, the state, the controlled output
and the auxiliary variables corresponding to a Dirac impulse
applied at instantk to the ith disturbance input of the global
system. LetSik be the set of the involved constraints, for
a given responsegik. Sik includes the state model (6), the
Dirac impulse verifyingwik

i (k) = 1 andwik
r (l) = 0 for r �= i

andl �= k, in addition to the constraints that must be added to
the problem to ensure the causality of the response (u ik(l) = 0
for l < k).

Let Ū ik =


 uik(0)

...
uik(H −1)


, X̄ ik =


 xik(0)

...
xik(H −1)


, Z̄ik =


 zik(0)

...
zik(H −1)


, V̄ ik =


 vik(0)

...
vik(H −1)


, W̄ ik =


 wik(0)

...
wik(H −1)




and V ik =




Ū ik

X̄ ik

Z̄ik

V̄ ik

W̄ ik


, then the set of constraintsSik can be

described by

A ik
[

Ȳ
V ik

]
≤ Bik (14)

Consequently, the optimal scheduling problem in the sense
of the H2 norm can be written in the form

(POH2)




min
Ȳ ,(V ik)1≤i≤p,0≤k≤T−1

T−1
∑

k=0

p
∑

i=1
(V ik)T H V ik

AsȲ ≤ Bs

A ik

[
Ȳ

V ik

]
≤ Bik, for 1≤ i ≤ p,0≤ k ≤ T −1

Problem (POH2) is a Mixed Integer Quadratic Problem
(MIQP). The resolution of this problem gives the optimal
off-line scheduleȲ ∗.

C. Solving of the optimal control sub-problem

Knowing the optimal off-line schedulēY ∗, which is a
solution of the optimization problem (POH2), it is then
possible to derive the optimal control gains, according to the
H2 performance criterion. In opposition to problem (POH 2),
the determination of the control gains can be performed on
each system separately.

It is easy to see that knowing(Ȳ ( j))∗, the time-varying
model of systemS( j) is given by

x̃( j)(k +1) = Ã( j)(k)x̃( j)(k)+ B̃( j)
1 w( j)(k)+ B̃( j)

2 (k)ũ( j)(k)
z̃( j)(k) = C̃( j)

1 (k)x̃( j)(k)+ D̃( j)
12 (k)ũ( j)(k)

(16)

where ˜x( j)(k) =
[

x( j)(k)
u( j)(k−1)

]
, z̃( j)(k) = z( j)(k)

Ã( j)(k) =

[
A( j) B( j)

2 (1− y( j)(k))
0 (1− y( j)(k))

]

B̃( j)
1 =

[
B( j)

1
0

]
, B̃( j)

2 (k) =

[
B( j)

2 y( j)(k)
y( j)(k)

]

C̃( j)
1 (k) =

[
C( j)

1

D( j)
12 (1− y( j)(k))

]
and D̃( j)

12 (k) = D( j)
12 y( j)(k).

The control signal ˜u( j)(k) can be seen as the command
that could be fed-back to the plant at each sampling period,
if the implementation was ideal (i.ey( j)(k) = 1 for all k).
However, due to the resource limitations, only the control
u( j)(k) is effectively applied, where

u( j)(k) = y( j)(k)ũ( j)(k)+ (1− y( j)(k))u( j)(k−1)

The binary functiony( j)(k) is T-periodic. Consequently,
matricesÃ( j)(k), B̃( j)

2 (k), C̃( j)
1 (k) andD̃( j)

12 (k) are T-periodic.
An equivalent time-invariant representation of system (16)
can be established using the lifting technique [12]. Then,
using the method in [13], the optimalH2 controller of the
lifted LTI system may be obtained. Consequently, the optimal
H2 controller of system (16) can be deduced.

D. A numerical example

Consider the collection of 2 open-loop unstable sampled-
data LTI systems defined by

A1 =
( 0.9967 0.0266
−0.2500 0.9987

)
B1

1 =
(

0.0133
0.9999

)

C1
1 =

(
89.4427 0

0 3.1623
0 0

)
D1

11 =

(
0
0
1

)

B1
2 = B1

2 D1
12 = 0



A2 =




1.1180 0 0.0025 0.5531
0 1 0.2129 0
0 0 0.7613 0

0.4518 0 0.0093 1.1180


 B2

1 = 10−4




28
11
88
106




C2
1 =




10 0 0 0
0 31.62 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 D2

11 = 10−4




0
0
0
0
1




B2
2 = B2

2 D2
12 = 0

The optimal solutions (forT ranging from 3 to 12) are
illustrated in the table below. The relative optimality gap of
the used Branch and Bound algorithm is equal to 10−5. The
execution times of the corresponding tasks are equal to 1.
The elementary time unit isTp = 0.001 s. The computations
were performed on a PC equipped with a 2.2 GHz Intel
Celeron processor and 256 MB of RAM. In this particular
implementation of the optimization algorithm,H must be a
multiple of T . It is sufficient to chooseH bigger than 25.

TABLE I

OPTIMAL H2 NORM AS A FUNCTION OF THE PERIODT

PeriodT H H2 norm Optimal Schedule CPU Time (s)

3 30 3.7257 112... 12

4 32 4.4154 2121... 25

5 30 3.9725 21121... 35

6 30 3.7257 112112... 44

7 35 4.0556 1211211... 61

8 32 3.8813 21121211... 163

9 27 3.7257 112112112... 124

10 30 3.9590 1121112112... 292

11 33 3.8395 11212112112... 395

12 36 3.7257 112112112112... 787

The results for this particular example are given in table I.
They indicate that the minimal optimal schedule is of length
T = 3. The length of the optimal schedules which gives the
bestH2 norm (H2 = 3.7257) is a multiple of 3. The resource
allocation depends on the rapidity of the systems and on their
sensitivity to the disturbances.

III. O N-LINE SCHEDULING HEURISTIC

Using an on-line scheduling algorithm, which takes into
account the state of the plant, significant improvements
in the control performance can be achieved, as illustrated
in [6], [8]. In order to be “implementable”, the execution
overhead of an on-line scheduling algorithm must be small
compared to the execution load of the other control tasks.
The proposed heuristic, called Reactive Pointer Placement
(RPP) scheduling, is inspired from the Optimal Pointer
Placement (OPP) scheduling algorithm proposed in [6], and
aims to adapt this heuristic to the context of monoprocessor
scheduling by reducing its computational requirements.

A. Algorithm description

Given the optimal off-line schedule, the ordered execution
of the control tasks during the period[0,T × Tp) can be
described by the sequence(s(0), . . . ,s(T −1)), whereT is
the number of tasks which are executed during the period
[0,T ×Tp). For example, the sequence(1,2,2,3) indicates
that during this period, the processor begins by executing
task τ(1), followed by two consecutive executions of task
τ(2), which are followed by the execution of taskτ (3). At
runtime, the execution of the periodic off-line schedule can
be described using the notion ofpointer. The pointer can
be seen as a variablep which contains the index of the
control task to execute. The pointer is incremented after each
execution. If it reaches the end of the sequence, its position
is reset. After each task execution, the position of the pointer
is updated according to

p := (p+1) modT (17)

Let x̃(k) =
[
x̃(1)(k)T . . . x̃(N)(k)T

]T
. If the pointer is placed

at positionp at instantk, then the cost function corresponding
to an evolution of systemS( j) (resp. the global system
S ) over an infinite horizon starting from the state ˜x ( j)(k)
(resp. ˜x(k)) at instant k and using the static scheduling

algorithm is J( j)(k, p) =
∞
∑

i=0
(z( j))T (k + i)z( j)(k + i) (resp.

J(k, p) =
N
∑
j=1

J( j)(k, p)). Note that if M̃( j)(k) is the periodic

solution of the Riccati equation associated with the optimal
control problem (in the sense of LQR) of system (16), then
J( j)(k, p) = x̃( j)(k)T M̃( j)(p)x̃( j)(k).

The RPP algorithm relies on two basic key points
1) A quicker detection of the disturbances affecting a

given system: In order to improve the control performance
with respect to the off-line scheduling algorithm, this de-
tection have to be quicker than that allowed by the static
algorithm. To this end, when the scheduling pointer is
at position p (0 ≤ p < T ) the scheduling algorithm first
reads the outputs of systemSs(p), and also the outputs of
another systemSo(p), given by thedetection sequence o.
The detection sequence is calculated in order to maximize
the responsiveness of the RPP algorithm, according to a well
defined optimization problem which will be described below.

Let Π be the set of all the permutations of theT -uplet
(0,1, . . . ,T −1). Let π ∈ Π andoπ the sequence defined by

oπ = (s(π(0)),s(π(1)), . . . ,s(π(T −1))) (19)

The binary detection indicators associated to each system
S( j) are defined by{

D( j)
π (p) = 1 if oπ(p) = j or s(p) = j

D( j)
π (p) = 0 otherwise

(20)

The binary detection indicators indicate whether or not the
outputs of systemS( j) are read, for a given positionp of
the sequence pointer. Let̄D( j)

π (k) = D( j)
π (k modT ). The

detection sequenceo = oπ∗ is determined by the solution
π∗ of the following optimization problem (POS).



π∗ = min
π∈Π

N

∑
j=1

max
k1,k2,k1≤k2

{
k2− k1, such that:D̄( j)

π (k1) = 1, D̄( j)
π (k2) = 1 and for allk1 < k < k2, D̄( j)

π (k) = 0
}

(POS)

This optimization problems aims at minimizing the sum
over j of the “maximal distances” between two successive
output reading of systemS( j).

2) A plant state based feedback scheduling policy: In
order to describe the dynamical state of each systemS ( j), and
how much it is close to the equilibrium, positive constants
ε( j)

x are introduced.ε ( j)
x have to be chosen small enough

to consider that when
∥∥∥x( j)(k)

∥∥∥
∞
≤ ε( j)

x , then systemS( j) is
considered at the equilibrium. The RPP uses a data structure
E ∈ {0,1}N to memorize the dynamical states of all the
controlled systems, according to the relation


E j = 1 if at the last execution ofτ ( j), at instantkl ,

the state verifies
∥∥∥x( j)(kl)

∥∥∥
∞
≤ ε( j)

x

E j = 0 otherwise
(21)

Each taskτ ( j) is responsible of updating the variableE j

when it is executed. The RPP scheduling algorithm operates
like the static scheduling algorithm (i.e. updating the pointer
according to (17)), except when the three conditions listed
below are fulfilled. In this case, areactive pointer change
(i.e. the pointer is placed at positionπ ∗(p) instead ofp) is
performed. The conditions are

1) All the systems were considered at the equilibrium at
the last execution of their control tasks (i.e.‖E‖2

2 = N).
2) Placing the pointer at positionπ ∗(p) gives a better

predicted cost function than the use of the static
scheduling (i.e.J(k,π ∗(p)) < J(k, p)).

3) An entire cycle is performed since the last reactive
pointer change.

Condition 3) was added in order to guarantee a maximum
time interval between two plant output readings. In fact,
as indicated previously, RPP is responsible of plant output
readings (of systemsSs(p) and So(p)). Conditions 1) and 3)
were included in order to reduce the overhead of the feedback
scheduler. These assumptions can be disregarded (i.e. RPP is
triggered at each sampling period without any restriction) if
the resulting overhead of the algorithm remains negligible. In
some situations, in order to ensure reduced computational re-
quirements of the RPP scheduling algorithm, a less complex
test than 2) is required. In fact, condition 2) is based on the
knowledge the plant states of theN systems. In the following,
we propose a sufficient condition to guarantee condition 2),
which is based on the reading of the outputs of only two
systems. LetR(i) the equilibrium region of a given systemS (i)

(i.e. R(i) =
{

x̃(i)(k)/
∥∥∥x̃(i)(k)

∥∥∥
∞

≤ ε(i)
x

}
). For a given system

S( j), let

J̄( j)
min(p) = min

x̃(i)(k)∈R(i), i�= j

(
∑
i�= j

J(i)(k, p)

)

J̄( j)
max(π∗(p)) = max

x̃(i)(k)∈R(i), i�= j

(
∑
i�= j

J(i)(k,π∗(p))

)
.

The following proposition states a sufficient condition which
guarantees that the reactive pointer change improves the
control performance. This sufficient condition considerably
reduces the computations compared to the necessary and
sufficient condition described in 2).

Proposition 1: For a given systemS( j) and pointer po-
sition p, if ∀i, 1 ≤ i ≤ N and i �= j,

∥∥∥x̃(i)(k)
∥∥∥

∞
≤ ε(i)

x

and J( j)(k, p) + J̄( j)
min(p) > J( j)(k,π∗(p)) + J̄( j)

max(π∗(p)) then
J(k,π∗(p)) < J(k, p)

Proof: This result directly follows from the fact that
J(k, p) = J( j)(k, p)+ ∑

i�= j
J(i)(k, p) ≥ J( j)(k, p)+ J̄( j)

min(p) and

J(k,π∗(p)) = J( j)(k,π∗(p))+ ∑
i�= j

J(i)(k,π∗(p))

≤ J( j)(k,π∗(p))+ J̄( j)
max(π∗(p)).

Constants J̄( j)
min(p) and J̄( j)

max(π∗(p)) can be easily pre-
computed off-line using a QP solver. Note thatJ ( j)(k, p) can
be replaced by an upper bound andJ ( j)(k,π∗(p)) by a lower
bound, for control laws where the exact calculation of the
cost may be impracticable or computationally complex.

Let Jrpp(x̃(i), i, f ) be the cost function corresponding to
an evolution from instantk = i to instantk = f starting from
the extended state ˜x(i) where the RPP scheduling algorithm
is applied. The performance improvements of RPP are stated
in the following theorem

Theorem 1: Let x̃(0) be a given initial extended state of
the global systemS (composed of systems(S ( j))1≤ j≤N)
and p0 an initial pointer position of the static scheduling
algorithm. Then

Jrpp(x̃(0),0,∞) ≤ Jss(x̃(0),0,∞, p0)
Proof: Let x̃rpp be the extended state trajectory of

systemS when scheduled using the RPP algorithm,p(l) the
pointer position at thelth execution of the RPP algorithm and
kl the instant corresponding to the end of thisl th execution.
According to the RPP strategy, if the pointer position at
the lth execution is set top(l) = π ∗ ((p(l −1)+1) modT )
instead of(p(l −1)+1) modT then necessarily

Jss(x̃(kl),kl,+∞,π∗ ((p(l −1)+1) modT ))
≤ Jss(x̃(kl),kl,+∞,(p(l −1)+1) modT )

Consequently, at instantkl , the relationJrpp(x̃(0),0,kl−1)+
Jss(x̃rpp(kl),kl,+∞, p(l)) ≤ Jss(x̃(0),0,+∞, p0) holds. When
l → +∞, the last relation reduces to

Jrpp(x̃(0),0,+∞) ≤ Jss(x̃(0),0,+∞, p0) (23)
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Theorem 1 demonstrates that the RPP strategy guarantees
the performance improvements with respect to the static
scheduling algorithm. The stability of the RPP scheduling
algorithm directly follows fromTheorem 1 and is given the
following corollary

Corollary 1: If R is positive definite and if the asymptotic
stability of the global systemS (composed of systems
(S( j))1≤ j≤N) is guarantied by the static scheduling algorithm,
then it is also ensured by the RPP scheduling algorithm.

Proof: When R is positive definite, then
Jss(x̃(0),0,+∞, p0) (respectively Jrpp(x̃(0),0,+∞)) is
finite if and only if systemS is asymptotically stable.
Knowing the asymptotic stability of the system scheduled
using the static scheduling algorithm and using relation (23),
the corollary is proved.

B. A numerical example

In order to illustrate the effectiveness of the RPP schedul-
ing algorithm, the preceding example is considered. The
constantsε (1)

x = 0.001 andε (2)
x = 0.01 were chosen. The ex-

ecution order sequence iss = (s(0),s(1),s(2)) = (1,1,2), the
optimal permutation isπ ∗ = (π∗(0),π∗(1),π∗(2)) = (2,0,1)
ando = oπ∗ = (s(π∗(0)),s(π∗(1)),s(π∗(2))) = (2,1,1).

The global system responses corresponding statesx1, x3

andx5 are respectively depicted in figures 1 and 2. The global
system is started form the initial state[0.05 0 1 0 0 0]T .
The two systemsS(1) and S(2) “reach the equilibrium”
respectively att = 0.012 s and t = 0.034 s. Consequently,
the equilibrium indicators are set to 1. Att = 0.419 s,
systemS(1) is severely disturbed. The conditions listed in
line 2 of the listing of the RPP scheduling algorithm are
fulfilled. The RPP algorithm reacts then to execute taskτ (1)

instead of taskτ (2) at t = 0.42 s, allowing to react better
to this disturbance and to improve the control quality (as
illustrated in figure 3). The same reactive pointer placement
is performed att = 0.060s, when the systemS (2) is disturbed.

IV. CONCLUSIONS

In this paper, a new formulation of the problem of the
optimal off-line scheduling of control tasks is proposed.
This formulation is based on theH2 performance criterion
to statically allocate the computing resources according the
intrinsic characteristics of the controlled systems. Using this

approach, the “sampling period” of each control task is au-
tomatically chosen. A plant state based feedback scheduling
mechanism is proposed, enabling to enhance the control
performance with respect to the optimal off-line scheduling
algorithm.
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