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Abstract— We study the well–known linear consensus
algorithm by means of a LQ-type performance cost. We
want to understand how the communication topology
influences this algorithm. In order to do this, we recall
the analogy between Markov Chains and electrical resistive
networks. By exploiting this analogy, we are able to rewrite
the performance cost as the average effective resistance on
a suitable network. We use this result to show that if the
communication graph fulfills some local properties, then
its behavior can be approximated with that of a suitable
grid, over which the behavior of the cost is known.

I. INTRODUCTION

In the last two decades a great attention has been
devoted to multi-agent systems, where a large number
of simple agents exchange information locally and dis-
tributedly coordinates the achievement of a global task.
The local nature of the communication can be modeled
as a graph G (the communication graph), with an edge
among agents capable of exchanging information. A
basic example of common task is to asymptotically reach
the same value; a simple algorithm to this purpose is
the linear consensus, described as follows. Denoting
by a vector x(t) ∈ RN the states of the agents at
time t, the evolution is: x(t + 1) = P x(t), where
P is consistent with G, i.e. has zero entries whenever
(j, i) is not an edge. In this simple scenario the graph
G and the matrix P are assumed to be time-invariant.
Under the assumption that P is stochastic, aperiodic and
irreducible, it is well–known that xi(t)

t→∞−→ πTx(0) for
each agent i, where πT is such that πTP = πT , and
x(0) is the vector of the initial values. We underline
the fact that a stochastic matrix P is associated to a
Markov Chain with transition probabilities given by the
entries of P itself. In this paper we assume the matrix
P to be symmetric, which yields πT = 1

N 1T (by 1
we denote a vector with all entries equal to 1). The
classical theory also gives the speed of convergence of
the linear consensus algorithm, which is exponential,
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with speed given by the essential spectral radius (second
largest singular value) of P . However, the convergence
speed is not the only index for performance evaluation.
When consensus is not an objective per se, but is used to
solve an estimation or control problem, it is important to
consider also other performance measures, more tightly
related to the actual objective pursued. Different costs
arise from different problems, and it can be shown
by examples that considering a different performance
measure can indeed lead to preferring different graph
topologies. In this paper, we consider an LQ cost famil-
iar to control theorists. We consider the case when the
initial condition is a random variable with zero-mean and
covariance matrix E

[
x(0)Tx(0)

]
= I , and we study

the expectation of the H2-norm of the trajectory of the
states:

J(P ) =
1

N

∑
t≥0

E
[
‖x(t)− x(∞)‖2

]
=

1

N
trace

∑
t≥0

(
P 2t − 1

N 11T
)
. (1)

Proposition 1.1: Assume P is a row–stochastic sym-
metric matrix, irreducible and aperiodic. Then the cost
defined in Eq. 1 can be rewritten as

J(P ) =
1

N
trace

∑
t≥0

(
P 2t − 1

N 11T
)
. (2)

�
The same cost arises also in quite different frameworks,
e.g. from consensus algorithm in the presence of noise
[1], or from a formation-control problem [2].

Clearly, for any given matrix the cost J(P ) can
be computed, so that it is easy to compare different
choices for P . However, it is interesting to unveil the
fundamental role played by the graph topology, and
moreover it is useful to establish -for all graphs within
some family- the asymptotic behaviour when N grows,
so as to give design guidelines. The behaviour of J(P ) is
known for particular families of highly structured graphs
and of matrices respecting the graph’s symmetries. For
example, for a d-dimensional grid of N vertices, under
some symmetry assumption on the entries of P , it is
known [1], [2] that J(P ) grows linearly in N if d = 1,
logarithmically if d = 2, and is constant if d ≥ 3. The



goal of this paper is to extend such results to a more
general class of graphs and matrices.

II. MAIN RESULTS

The tool used in order to deal with asymmetries and
irregularities of P is the well–known analogy [3] be-
tween Markov Chains and resistive electrical networks.
The electrical network associated with a symmetric
stochastic matrix P has the same graph G associated
with P , and on any edge (i, j) it has a conductance of
value cij = Pij . We will denote an electric network as
the couple (G, R), where G = (V, E) is an undirected
graph, and where R is a function E → R+ which
associates to each edge its resistance.

First, some notation. We call graphical distance be-
tween two node in G, and we denote it with the symbol
dG(u, v), the length of the shortest path between u and
v in G. We assume all our graphs to be connected, so
this distance is always finite.

We denote with G(h) the h-fuzz of the graph G: it has
the same set of nodes, and an edge between u and v if
the graphical distance between such nodes is less then
h. For example, the graph associated to P 2 is the 2-fuzz
of the graph G associated to P , so we will call it G(2).

Proposition 2.1: Let P be a row–stochastic symmet-
ric matrix, irreducible and aperiodic. Build the electric
network associated to P 2, (G(2), R), and assume in
this network the effective resistance between two nodes,
u and v, is Ruv(G, R). Then the cost Eq. 2 can be
rewritten as

J(P ) =
1

N2

∑
u, v

Ruv(G, R)
4
= R(G, R), (3)

which is the average effective resistance in the network.
�

The interest of this result is that we can exploit the
monotonicity properties of the effective resistances. It
holds in fact the following result.

Theorem 2.1 (Rayleigh’s monotonicity law): Given
an electric network, if, in any edge, the resistance is
increased (resp. decreased), then the effective resistance
increases (resp. decreases). �

Moreover, it holds the following “scaling” property.
Lemma 2.1: Given, with a slight abuse of notation, a

network (G, r0) with all the resistances equal to r0, the
effective resistance between two generic nodes is exactly
r0 times the effective resistance among the same nodes,
in the same graph but having set all resistances equal to
1, (G, 1). �

These properties imply the following result.
Proposition 2.2: Given an electric network (G, R), in

which each resistance lies in an interval [rmin, rmax],
0 < rmin, rmax <∞, it holds true

rminRuv(G, 1) ≤ Ruv(G, R) ≤ rmaxRuv(G, 1).

�
Because of this proposition, we will often use the

short-hand notation Ruv(G) instead of Ruv(G, 1).
To conclude, we can state the following result, whose

proof can be found in [4], dealing with the h-fuzz of a
graph.

Lemma 2.2: Assume to have the electrical network G
(with all resistances equal to 1), and build its h-fuzz, h
finite. Then there exists a parameter c, dependent only
on h and on a geometric property of the graph, such that

cRuv(G) ≤ Ruv(G(h)) ≤ Ruv(G).

�
In this lemma, if h is bounded and the number of
neighbors of any agent is bounded, then the parameter
c is bounded away from zero: this turns out to be
important in all those cases in which the number of
agents N grows and we want to understand how our
cost scales with N .

The previous propositions allow us to state the fol-
lowing important result.

Theorem 2.2: Let P be a row–stochastic, symmetric,
irreducible and aperiodic matrix. Assume that each entry
of P satisfies 0 < pmin < pij < pmax, and that the
number of non-zero entries on each row is bounded1.
Then there exist two constants, t1 and t2, independent
from the number of agents N and from the graph
topology, such that

t1R(G) ≤ J(P ) ≤ t2R(G). (4)

�
The importance of this result is that the cost has been

strongly related to the graph topology only, regardless
of the actual values of the entries of the matrix P .

III. GEOMETRIC GRAPHS: AN APPLICATION

The interpretation of J(P ) as an average effective
resistance allows to give results for a quite general
class of graphs, which we will call “geometric graphs”
because they arise naturally when agents (e.g., sensors)
are deployed in a bounded region of the Euclidean space,
in a roughly uniform way but with possible irregularities,
and communicate with their geographic neighbors. The
intuition is that such graphs look like perturbed grids,
and so their performance should resemble that of grids.
This intuition is indeed correct, and our main result is
a formal proof, which we obtain following a procedure
inspired by [4]. We assume the components of P to
be constrained between a minimum and a maximum
fixed values, and G to satisfy the following assumptions:
vertices of G are points lying in an hypercube Q of

1This corresponds to assuming that the number of neighbors of any
node in the associated graph is bounded.



Rd; each vertex has a number of neighbors limited by
an upper bound independent of N ; the following local
properties hold true:
• the distance between two vertices is always larger

than a parameter s;
• if two vertices communicate, then their relative

distance is at most r;
• γ is the radius of the largest ball, centered in a point

inside Q, containing no vertex;
• for all pairs of vertices within a suitable threshold

distance, the ratio between their Euclidean and their
graphical distance is larger than a parameter ρ.

Such geometric graphs can be approximated with
grids, in the sense that we can build two grids L1 and
L2 in Rd, whose size only depend on the parameters s,
r, γ and ρ, and on N , and four constants, q1, k1, q2 and
k2, depending only on the four geometric parameters,
such that

k1 + q1R(L1) ≤ J(P ) ≤ k2 + q2R(L2), . (5)

To prove this result we show that the following
inequality holds true

k̄1 + q̄1R(L1) ≤ R(G) ≤ k̄2 + q̄2R(L2). (6)

for another set of constants. Then we use Prop. 2.1.
The technique to prove the last two inequalities is as

follows: we tessellate Q with hypercubes in two ways,
dependent on the parameters defined above. In the first
tessellation the hypercubes are large enough to contain
at least one node of G, and then we identify all the
nodes in the same hypercube. Then we consider the
lattice whose nodes are the hypercubes and which has
an edge between two nodes if the two corresponding
hypercubes touch (not diagonally). Building a suitable
h-fuzz of such lattice, we can embed it in G and use
Prop. 2.2 in order to obtain the upper bound. In the
second tessellation, instead, the hypercubes contain at
most one node of G, and the result follows identifying
an hypercube with the closest node of G and following
the same argument used for the upper bound.

More details will be given in a forthcoming paper.
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