
Average consensus on digital noisy
networks ⋆

Ruggero Carli ∗ Giacomo Como ∗∗ Paolo Frasca ∗∗∗
Federica Garin ∗∗∗∗

∗ University of California at Santa Barbara, Santa Barbara, CA 93106
USA (e-mail: carlirug@engineering.ucsb.edu).

∗∗ Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: giacomo@mit.edu).
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Abstract: We propose a class of distributed algorithms for computing arithmetic averages
(average consensus) over networks of agents connected through digital noisy broadcast channels.
Our algorithms do not require the agents to have knowledge of the network structure, nor do
they assume any noiseless feedback to be available. We prove convergence to consensus, with
both number of channel uses and computational complexity which are poly-logarithmic in the
desired precision.
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1. INTRODUCTION

As large-scale networks have emerged –characterized by
the lack of centralized access to information, and possibly
time-varying topologies–, the last few years have witnessed
an increasing research interest in problems of distributed
computation. In these scenarios, large collections of agents
–each having access to some partial information– aim at
computing an application-specific function of the global
information. The computation must be completely dis-
tributed, i.e. each agent can rely only on local observations,
while iteratively processing the available information and
communicating with the other agents. The main challenge
in the design of such distributed computation systems is
posed by the scarce energetic autonomy of the agents,
which severely constrains both their computational and
communication capabilities.

A special instance, which has been the object of recent
extensive work, is the average consensus problem, in which
a large number of agents aims at computing the arithmetic
average of initial scalar measurements, in a distributed
fashion While most of the literature has modeled commu-
nication constraints in the average consensus algorithm
by a communication graph in which a link between two
nodes is assumed to support the noise-free transmission of
a real value, there is a clear demand for more realistic
communication models. In fact, some recent work has
addressed the cases of quantized communication, Nedic
et al. (2007); Aysal et al. (2008); Kar and Moura (2007);
Frasca et al. (2009), packet losses Fagnani and Zampieri
(2009), or transmission affected by additive noise Huang
and Manton (2009); Rajagopal and Wainwright (2008).
However, at our knowledge, there is no contribution yet
toward the design of consensus algorithms on networks
in which the communication links are modeled as digital
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noisy channels. For such networks, information-theoretic
bounds on the performance of distributed computation
algorithms have been established in Ayaso et al. (2008);
Como and Dahleh (2009).

In the present paper, we shall present and analyze dis-
tributed algorithms for average consensus on networks
with digital noisy communication channels. The algo-
rithms we propose combine the classical iterative linear
consensus algorithm with coding schemes for the reliable
transmission of real numbers on noisy channels, recently
proposed in Como et al. (2008). Our algorithms are fully
distributed, in the sense that they do not require the
agents to have any knowledge of the network structure.
The main results consist in showing that such algorithms
drive the agents arbitrarily close to average consensus,
at the price of using a number of channel transmissions
and in-node computations at most poly-logarithmic in the
desired precision.

The poly-logarithmic growth in the desired precision of
both communication and computational complexity of the
consensus algorithms for networks with digital noisy chan-
nels has to be compared with the logarithmic growth char-
acterizing the algorithms proposed for quantized transmis-
sion channels Carli et al. (2009). It can be argued that such
a performance gap has mainly to be attributed to the dif-
ferent availability of feedback information in the two prob-
lems. Indeed, deterministic channels inherently include
perfect noiseless feedback, as the transmitter knows ex-
actly what the receiver is going to observe: such a feedback
information is critical in the design of consensus algorithms
for networks with quantized communication links, as the
agents use it to coordinate among themselves. In contrast,
when noiseless channel feedback is not available–as in the
problem addressed in the present paper–, coordination of
the different agents becomes a harder task.

General results on coding for interacting communication
Schulman (1996); Rajagopalan and Schulman (1994) may
suggest logarithmic times to possibly be achievable by



embedding an efficient quantized consensus algorithm in
a global error correcting coding scheme. However, as it
has also been argued in Giridhar and Kumar (2006), the
tree-code constructions proposed in Schulman (1996); Ra-
jagopalan and Schulman (1994) suffer from high compu-
tational complexity which likely prevents their practical
implementation. Moreover, their global design requires
each agent to have knowledge of the whole network topol-
ogy, an assumption which contrasts the reconfigurability
requirements. In contrast, the algorithms we shall propose
do not require the agents to have any knowledge of the
network topology, and their computational complexity can
also be kept tractable.

The rest of the paper is organized as follows. In Section 2
we formally state the problem and present our solution.
Section 3 we present the main convergence result and
the bounds on the convergence times. Simulations are
presented in Section 4, comparing our algorithm with a
decreasing gains heuristic.

2. PROBLEM STATEMENT AND PROPOSED
ALGORITHM

2.1 Problem statement

We shall consider a set V of N agents, possibly repre-
senting sensors in a wireless network, each having access
to some partial information consisting in the observation
of a scalar value, which for instance may represent the
measurement of some physical quantity. The observation
of agent v will be denoted by θv ∈ [0, 1], while θ = (θv)
will indicate the full vector of observations. The goal is
for the network to compute the arithmetic average of such
values, θave = 1

N

∑

v θv by exchanging information among
themselves and without a centralized computing system.

Communication among the agents takes place as follows.
At each time instant t = 1, 2, . . ., every agent v broadcasts
a bit av(t) ∈ {0, 1} to a subset of agents, to be denoted by
N+

v ⊂ V . Every agent w ∈ N+
v receives a possibly erased

version bv,w(t) ∈ {0, 1, ?} of av(t). The set of in-neighbors
of agent w will be denoted by N−

w = {v : w ∈ N+
v },

whereas bw(t) = (bv,w(t))v∈N−

w
will denote the vector of

signals received by agent w at time t. We shall assume
that, conditioned on the broadcasted bits (av(t))v, the
received signals bv,w(t) are mutually independent, with
bv,w(t) = av(t) with probability 1 − ε, and bv,w(t) =?
with probability ε, where ε > 0 is some erasure prob-
ability which -for the sake of simplicity- is assumed to
remain constant in t, v and w. Furthermore, erasures will
be assumed independent in time. Distributedness of the
computation/communication algorithm is then enforced
by requiring that the bit av(t) to be a function of the
local information available to agent v at time t, i.e. of its
initial observation θv, as well as the signals {bv(s)}1≤s<t
received by agent v up to time t− 1.

The communication setting outlined above can be con-
veniently described by a directed graph G = (V , E) (the
communication graph), whose vertices are the agents, and
such that an ordered pair (i, j) with i 6= j belongs to E
if and only if j ∈ N+

i (equivalently i ∈ N−
j ), i.e., if i

transmits to j with erasure probability ε < 1. Throughout
the paper, we shall assume that the graph G is strongly
connected, i.e. that any two nodes u, v are connected by
a directed path. We will also assume that G has self-loops
on each vertex; this represents the fact that each node

has access to its own information, which is equivalent to
assume a noiseless channel available from i to itself.

2.2 Proposed algorithm

Our idea is to use a traditional linear average-consensus
algorithm, combined with a technique for transmission of
real numbers over noisy digital broadcast channels, a joint
source and channel coding proposed in Como et al. (2008).

Consider the above-described scenario, specified by a set of
N vertices V , a strongly connected communication graph
G, and an erasure probability ε. The ingredients of our
algorithm are:

• a consensus matrix P , i.e., a doubly-stochastic prim-
itive matrix adapted to G, with non-zero diagonal
entries 1 ;

• an increasing sequence of positive integers {τ(k)}k∈N,
such that limk→∞ τ(k) = +∞; τ(k) represents the
number of bits that each node transmits at k-th
iteration of the algorithm;

• a sequence of encoders, i.e., maps

φ(k) : [0, 1] → {0, 1}τ(k) ;

• a sequence of decoders, i.e., maps

ψ(k) : {0, 1, ?}τ(k) → [0, 1] .

The usual linear average-consensus algorithm is:

x(0) = θ , x(k + 1) = Px(k)

i.e., at k-th iteration, node i receives from its in-neighbors
the numbers xj(k), j ∈ N−

i , and updates its state:

xi(k + 1) =
∑

j∈N−

i

Pijxj(k) .

It is well-known (Perron-Frobenius theory) that, for primi-
tive doubly-stochastic P , from any initial condition θ, each
entry of x(t) converges to the average θave.

We propose to adapt this algorithm, in a way that takes
into account the necessity to transmit the real values
xj(k) along digital noisy channels. The initialization of
the algorithm is unchanged: x(0) = θ. Between iterations
k and k+1 of our consensus-like algorithm, we allow each
node j to broadcast τ(k) bits to its neighbors:

• the bits transmitted by node j at iteration k are the
message aj(k) = φ(k)(xj(k)), i.e., a suitably encoded
version of the state xj(k);

• each i ∈ N+
j will receive a corrupted version of aj(k),

bij(k), and will use the decoder ψ(k) to recover an

estimate x̂ij(k) = ψ(k)(bij(k))

Then, the next consensus iteration will take place, where
node i will use x̂ij(k) to replace the exact state xj(k) which
he can not know exactly:

xi(k + 1) = Piixi(k) +
∑

j∈N−

i

Pij x̂ij(k)

Clearly, we can write x̂ij(k) = xj(k)+vij(k), and we might
think at vij(k) as a residual noise which could not be
removed by the error-correction performed by the decoder.
Notice that vij(k) in general does not have zero-mean, and
depends on xj(t) (and thus depends on all past noises). A
suitable choice of the encoder/decoder pairs and of the
transmission phases allows to obtain a noise deacreasing

1 A matrix P ∈ RN×N is doubly stochastic if it has non-negative
entries, and all its rows and columns sum to one. Its induced graph
GP has N vertices and an edge (i, j) if and only if Pij 6= 0. P is
adapted to G if GP ⊆ G. P is primitive if GP is strongly connected
and aperiodic (i.e., the greatest common divisor of cycle lengths is 1).



with respect to k, with a speed which will be discussed
in Section 3.2. To this effect, the assumption that the
transmission lengths τ(k) are increasing in k is essential,
because the coding gain is asymptotic in the length of
codewords. This remarks leads us to name our proposed
algorithm ‘Increasing Precision Algorithm’ (IPA).

We can summarize the evolution of the state x(k) in the
IPA algorithm in the following compact form: define V (k)
to be the matrix with entries V (k)ij = vij(k) if j ∈ N−

i ,
and 0 otherwise; then:

x(k + 1) = Px(k) + (V (k) ⊙ P (k))1 , (1)

where 1 denotes a vector with entries all equal to 1 and ⊙
denotes entry-wise product between two matrices.

Notice that k takes into account the number of consensus-
like updates. However, it is more reasonable to measure the
elapsed time in terms of the number of transmissions: state
x(k) is reached after t(k) =

∑

h≤k τ(h) transmissions.
Another way of analyzing our algorithm is to take into ac-
count also computation time. In fact, the decoding process
can be computationally relevant, in particular for codes
with best error-correction performance. For this reason we
introduce the two following definitions: the computation
time per channel use κ(τ), which depends on the choice
of the encoder/decoder pair and on the length τ used
for transmission, and the total transmission/computation
time T (k) =

∑

h≤k max(τ(h), κ(τ(h))). The choice of

transmission time t or total transmission/computation
time T as the relevant notion of time step depends if the
focus is on the number of channel uses (which are power-
expensive), or the actual time (particularly relevant in the
asymptotic regime).

3. PERFORMANCE ANALYSIS

3.1 Average quadratic error

To analyze the performance of our algorithm, we will study
the distance from the average of initial values θave, at k-th
iteration of (1):

e(k) = x(k) − 1
N

(

1T
x(0)

)

1 .

We have that e(k) can be decomposed as e(k) = z(k) +
ζ(k)1, where z(k) = x(k) −

(

1
N 1T

x(k)
)

1 represents the
distance from consensus (distance from average of current
states), whereas ζ(k) = 1

N 1T (x(k) − x(0)) accounts for
the distance between the current average and the average
of the initial conditions. Our aim is to give a bound on
1
N E[‖e(k)‖2] = E[‖ζ(k)‖2] + 1

N E[‖z(k)‖2].

We will use the following classical result (Perron-Frobenius
theorem): a primitive stochastic matrix P has the eigen-
value 1 with multiplicity 1 and eigenvector 1, and all
other eigenvalues with modulus strictly smaller than 1.
If P is a doubly-stochastic primitive matrix with positive
diagonal elements, then also PTP is doubly-stochastic and
primitive. Hence, P has largest singular value equal to 1
and all other singular values strictly smaller than 1. Define
ρ(P ) to be the second largest singular value of P , and
notice that for all vectors v ⊥ 1, ‖Pv‖ ≤ ρ(P )‖v‖, where
‖ · ‖ denotes Euclidean norm.

This fact is essential for our main result, which is the
following theorem.

Theorem 1. Consider the IPA algorithm, and let ρ = ρ(P ),
z(k) and ζ(k) be defined as above. Assume that the

sequence of matrices {V (k)}k∈N satisfies the property that
for all k ∈ N, E[Vn,m(k)2] ≤ α2k for some 0 < α < ρ. Then,
for all k ∈ N,

E[ζ2(k)] ≤ α2

(1 − α)2

and

1

N
E[‖z(k)‖2] ≤ ρ2k 1

(

1 − α
ρ

)2

�

Proof. Let us first consider ζ(k) = 1
N 1T (x(k) − x(0)).

Observe that it satisfies the recursion

ζ(0) = 0; ζ(k + 1) = ζ(k) + ξ(k + 1) ,

where ξ(k) = 1
N 1T (P⊙V (k))1 is some noise whose second

moment can be bounded by

E
[

ξ(k)2
]

=
1

N2
E





(

∑

n,m

Pn,mVn,m(k)

)2




=
1

N2

∑

h,l

∑

m,n

Ph,lPm,nE [Vh,l(k)Vm,n(k)]

≤ 1

N2

∑

h,l

∑

m,n

Ph,lPm,n

√

E
[

Vh,l(k)2
]

E
[

Vm,n(k)2
]

≤ 1

N2





∑

h,l

Ph,lα
k





2

= α2k .

It then follows that

E[ζ2(k)] =E

[(

∑

1≤s≤k

ξ(s)
)2]

=
∑

1≤s,r≤k

E [ξ(s)ξ(r)]

≤
∑

1≤s,r≤k

E
[

ξ(s)2
]1/2

E
[

ξ(r)2
]1/2

≤





∑

1≤s≤k

αs





2

≤ α2

(1 − α)2
. (2)

Now, let us focus on the orthogonal component z(k) of the
error. It satisfies the recursion

z(0) = w(0) , z(k + 1) = Pz(k) + w(k + 1)

where

w(0) = x(0)− 1

N
1T

x(0)1, w(k) = (P⊙V (k))1−ξ(k)1

is a noise vector sequence satisfying 1T
w(k) = 0, so that

‖Pw(k)‖ ≤ ρ‖w(k)‖, where ρ = ρ(P ). The noise w(k)
also satisfies the following bound:



E
[

‖w(k)‖2
]

=E
[

‖(P ⊙ V (k))1‖2
]

−NE
[

ξ(k)2
]

≤
∑

l

E





(

∑

n

Pl,nVl,n(k)

)2




=
∑

l

∑

m,n

Pl,mPl,nE [Vl,m(k)Vl,n(k)]

≤
∑

l

∑

m,n

Pl,mPl,n

√

E [Vl,m(k)2] E [Vl,n(k)2]

≤
∑

l

(

∑

m

Pl,mα
k

)2

≤Nα2k . (3)

Then, consider E[‖z(k)‖2] = E[‖
k
∑

s=0
P k−sw(s)‖2: by tri-

angle inequality and Cauchy-Schwarz inequality, we get

E[‖z(k)‖2] ≤
∑

0≤s,r≤k

√

E [‖P k−sw(s)‖2] E [‖P k−rw(r)‖2]

≤
(

∑

0≤s≤k

ρ(k−s)
√

E [‖w(s)‖2]

)2

≤





∑

0≤s≤k

ρ(k−s)
√
Nαs





2

≤





√
Nρk

∑

s≥0

(

α
ρ

)s





2

= Nρ2k
(

1 − α
ρ

)−2

�

The assumption α < ρ is not essential in Theorem 1:
Equation (2) is true for all α > 0, while Equation (3)
becomes 1

N E[‖z(k)‖2] ≤ (k + 1)2ρ2k if α = ρ, and
1
N E[‖z(k)‖2] ≤ α2k

(

1 − ρ
α

)−2
if ρ < α < 1.

An important consequence of Theorem 1 is that, as k →
∞, mean square consensus is asymptotically reached.
Moreover observe that the mean squared distance between
the asymptotic consensus point and the average of the

initial conditions, is upper bounded by α2

(1−α)2 ; since α

depends only on the coding transmission scheme, this
bound is, remarkably, independent of either the size of the
network or the consensus matrix P .

3.2 Achievable noise decay

Here, we shortly describe two families of codes which allow
(at the price of a different complexity) to obtain two levels
of decay speed of the error after decoding. More details
can be found in Como et al. (2008).

A first family, which we will call class-(a) encoder/decoder
pairs, is based on linear random-tree codes. Such coding
schemes are guaranteed to have error estimated by E[(x−
x̂)2] ≤ Cβ2τ , where τ is the transmission length, and
C > 0, β ∈ (0, 1), are constants depending on the
erasure probability ε only. The encoding complexity of
these schemes grows quadratically in τ , while the decoding
complexity scales like τ3.

A second family, which will be referred to as class-(b), has
both encoding and decoding complexity scaling linearly
in τ , and error which can be estimated by E[(x − x̂)2] ≤
Cβ2

√
τ , for some constants C > 0, β ∈ (0, 1).

Clearly, performance of the coding schemes is given with
respect to the transmission length τ . The speed of con-
vergence of the error to zero with respect to τ suggests
the correct choice of time phases τ(k) to use in the IPA
algorithm, in order to achieve exponential decay of the
error with respect to iteration number k:

(a) if the encoder belongs to class (a), choose τ(k) = Sk
for S > 0;

(b) if the encoder belongs to class (b), choose τ(k) = S2k2

for some S > 0.

With this choice, the assumptions of Theorem 1 are met
with α = βS . Notice that α can be made arbitrarily small
by increasing S, but at the same time large S corresponds
to longer transmission time; in Section 3.3 we will discuss
suitable choices of the parameter S.

We define the algorithm IPA-(a) and IPA-(b) respec-
tively to be the IPA algorithm with a sequence of en-
coder/decoder pairs chosen from class (a) or resp. (b),
and with the corresponding choice of τ(k) defined above.
We summarize here the scaling of t(k) and T (k) for such
algorithms, for further use in the next section.

IPA-(a) τ(k) = Sk implies that the total transmission
time is 1

2Sk
2 ≤ t(k) ≤ Sk2. The computational com-

plexity is κ(τ) = Kτ3, so that the total transmis-
sion/computation time is T (k) = Θ(k4)

IPA-(b) τ(k) = S2k2 implies that the total transmission
time is t(k) = Θ(k3). The computational complexity is
κ(τ) = Kτ , so that the total transmission/computation
time is T (k) = Θ(k3) .

3.3 Convergence times

First of all, we can re-write the result in Theorem 1 ex-
pressing the decay of the error with respect to transmission
time t and total transmission/computation time T . With
a slight abuse of notation, we will write z(t) for z(t(k))
and z(T ) for z(T (k)). The results are summarized in the
following corollary.

Corollary 2. (a) For the IPA-(a) algorithm there exists
constants C, C̄ > 0 and γ, γ̄ ∈ (0, 1) such that:

1
N E[‖z(t)‖2] ≤ Cγ

√
t

and
1
N E[‖z(T )‖2] ≤ C̄γ̄

4
√

T

(b) For the IPA-(b) algorithm there exists constants
C, C̄ > 0 and γ, γ̄ ∈ (0, 1) such that:

1
N E[‖z(t)‖2] ≤ Cγ

3
√

t

and
1
N E[‖z(T )‖2] ≤ C̄γ̄

3
√

T
�

Now we investigate how much time is necessary to achieve
a specified tolerance on the distance from average consen-
sus. A traditional index to evaluate the performance of the
standard consensus algorithm in terms of its speed, is de-
fined as follows. Given δ > 0, we define the δ-convergence
time as

kδ = inf{k ∈ N | 1
N ‖e(h)‖2 ≤ δ, ∀h ≥ k}.

With this definition, for standard linear average consensus
algorithm we have that, for δ small enough,

kδ ≤ log δ−1

log ρ−1
.



To understand the performance of the proposed digital
average consensus algorithm, we need to adapt the above
definition. Just considering the number of algorithm steps,
irrespective of the number of channel accesses which are
used at each step, would not be appropriate. We rather
want to consider as performance index the δ-transmission
time tδ, defined as

tδ = inf{t(k), k ∈ N | 1
N E[‖e(h)‖2] ≤ δ, ∀h ≥ k}.

If additionally one wants to keep into account the time
required by computations, a suitable convergence index is
the δ-computation/transmission time Tδ, defined as

Tδ = inf{T (k), k ∈ N | 1
N E[‖e(h)‖2] ≤ δ, ∀h ≥ k}.

These two indexes are the object of the next two results.

Corollary 3. Consider algorithm IPA and assume that the
assumptions of Theorem 1 are met with α = βS . Then, S
can be chosen in order to ensure that, for δ small enough,

• for algorithm IPA-(a),

tδ ≤ 1

8 log β−1

log3 δ−1

log2 ρ−1
;

• for algorithm IPA -(b)

tδ ≤ 1

32 log2 β−1

log5 δ−1

log3 ρ−1
.

�

Proof. A precision δ is obtained if the inequality

α2

(1 − α)2
+ ρ2k 1

(

1 − α
ρ

)2 ≤ δ (4)

is satisfied. Let u2 = δ/2, and recall that α = βS .

Then α2

(1−α)2 ≤ u2 is satisfied if S ≥ log u
1+u

log β , and then

if S ≥ log u−1

log β−1 . On the other hand, ρ2k 1

(1−α
ρ )

2 ≤ u2 if

k ≥ log u

log ρ
+

log
(

1 − α
ρ

)

log ρ
,

and then if k ≥ log u−1

log ρ−1 . We conclude that inequality (4)

is satisfied, for δ small enough, if both k ≥ 1
2

log δ−1

log ρ−1 and

S ≥ 1
2

log δ−1

log β−1 . To meet the assumptions of Theorem 1,

we have to assume that S ≥ log ρ
log β ; however, for δ small

enough, the latter condition can be disregarded. Hence,
for algorithm IPA-(a),

tδ =
S

2
kδ(kδ + 1) ≤ Sk2

δ ≤ 1

8 log β−1

log3 δ−1

log2 ρ−1
.

Instead, for algorithm IPA-(b),

tδ ≤ S2k3
δ ≤ 1

32 log2 β−1

log5 δ−1

log3 ρ−1
.

�

Reasoning similarly to the previous derivation, we can also
argue the following result, regarding the δ-computation/
transmission time.

Corollary 4. Consider algorithm IPA and assume that the
assumptions of Theorem 1 are met with α = βS . Then, S
can be chosen in order to ensure that, for δ small enough,

• for algorithm IPA-(a),

Tδ ≤ K

128 log2 β−1

log7 δ−1

log4 ρ−1
;

• for algorithm IPA-(b)

Tδ ≤ K

32 log2 β−1

log5 δ−1

log3 ρ−1
.

�

4. SIMULATION RESULTS AND COMPARISON
WITH DECREASING GAINS STRATEGY

For implementing our algorithm, we have chosen a very
low-complexity strategy: we have considered a particularly
simple instance of class-(b) coding scheme, which is a
generalization of repetition codes. The encoder ψ(k) :
[0, 1] → {0, 1}τ(k) is constructed as follows. Given x ∈
[0, 1], denote its diadic expansion by x =

∑

i≥1 ci2
−i,

ci ∈ {0, 1}. Then φ(k)(x) ∈ {0, 1}τ consists in transmitting
the bits ci’s and some repetitions of them which are more
frequent for most significant bits, as follows

φ(k)(x) = (c1, c1, c2, c1, c2, c3, c1, c2, c3, c4, . . .) .

The decoder ψ(k) sees a version of such vector where
some of the transmitted bits are erased, and constructs
a decoded x̂ =

∑

i≥1 di2
−i as follows. First, notice that

all ci’s with i > ν(k) were not transmitted at all, where
ν(k) is such that ν(k)(ν(k)+1)/2 = τ(k); the decoder will
put di = 0 for i > ν(k). For bits ci, i ≤ ν(k), the decoder
will put correctly di = ci if at least one of the repeated
occurrences of ci in the transmitted word has been received
un-erased, and otherwise will let di be 0 or 1 uniformly at
random.

To form an instance of IPA-(b) algorithm with such cod-
ing scheme, we have chosen transmission lengths τ(k) =
k(k+1)

2 ∼ k2

2 (in this case, ν(k) = k). Theorem 1 and its
corollaries apply and predict convergence to consensus.

With simulations, we want to compare our algorithm with
a different strategy which was used in previous literature
to compute approximate averages running a consensus
algorithm in the presence of noisy communications. We
will refer to such family of algorithms as to ‘decreasing
gain’ algorithms, because the key idea is to have time-
varying gains, which give decreasing weight to information
coming from neighbors, so as to avoid accumulating an
amount of error growing to infinity with time. Algorithms
exploiting this idea were presented independently by vari-
ous authors (see Huang and Manton (2009) and Rajagopal
and Wainwright (2008)). More precisely, the algorithm is
the following. After initializing x(0) = θ, iterate:

xi(k + 1) =
(

1 − µ(k)
)

Piixi(k) + µ(k)
∑

j∈N−

i

Pij x̃ij(k)

where x̃ij(k) = xj(k) + wij(k) is the version of xj(k)
received by i, affected by noise, while µ(k) ∈ (0, 1) are
chosen to satisfy

∑

k≥0 µ(k) = ∞ and
∑

k≥0 µ
2(k) < ∞.

Such algorithms were designed for channels were real num-
bers can be transmitted and are affected by an additive
noise with zero-mean, and independent from past history
as well as from other channels in the network. Under such
assumptions, Huang and Manton (2009) and Rajagopal
and Wainwright (2008) use techniques of stochastic ap-
proximation theory to prove convergence to consensus.

However, we might apply them also to our digital noisy
networks, if we replace x̃ij(k) with the value x̂ij(k) ob-
tained after the process of encoding – transmitting over



the channel from i to j – decoding, by some suitable
coding scheme. What we want to compare is the strategy
of increasing transmission lengths versus that of decreasing
gains, where we plug into the decreasing gain algorithm a
coding/encoding of fixed length τ̄ , not varying with k.

In the example of implementation that we propose, we
choose the same simple repetition-like coding scheme de-
scribed above, with a transmission length τ̄ = 15 and
we use gains µ(k) = 1

k . We consider N = 30 agents,
and a communication graph which is a strongly connected
realization of a two-dimensional random geometric graph,
where vertices are 30 points uniformly distributed in the
unit square, and there is a pair of edges (i, j) and (j, i)
whenever points i, j have a distance smaller than 0.4. The
erasure probability on the links is ε = 0.5. The initial
condition θ is randomly chosen inside [0, 1]N .

The communication graph is undirected, in the sense
that N−

i = N+
i for all i ∈ V . So we choose to use,

for both algorithms that we are comparing, a consensus
matrix built according to the Metropolis weights rules for
undirected graphs, illustrated in Xiao et al. (2005), which
can be constructed distributedly, using only information
on neighbors, as follows:

Pij =























1

1 + max {deg(i), deg(j)} if (i, j) ∈ E

1 −
∑

k∈N−

i

Pik if i = j

0 otherwise

where deg(i) is the number of neighbors of node i.

Figures 1 and 2 show the decay of 1
N E[‖z(t)‖2] and

1
N E[‖e(t)‖2] respectively, with respect to the number of
transmissions t. All our simulations show a similar be-
havior, where IPA algorithm significantly outperforms the
decreasing gain strategy.
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Fig. 1. 1
N E[‖z(t)‖2] vs. number of transmissions t.
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Fig. 2. 1
N E[‖e(t)‖2] vs. number of transmissions t.

5. CONCLUSION

The main contribution of the paper has consisted in
proposing a family of average consensus algorithms de-
signed for digital networks, based on encoding/decoding
schemes with precision increasing with time (IPA). Es-
timates of the effort required to achieve a prescribed
precision have been given, in terms of both the num-
ber of transmissions and of the number of computations.
We showed that the convergence time of (IPA) is poly-
logarithmic in the prescribed precision. The question is
open whether a logarithmic algorithm can be designed for
average consensus on digital networks.
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