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Abstract

In this chapter we present a popular class of distributed algorithms, known as
linear consensus algorithms, which have the ability to compute the global aver-
age of local quantities. These algorithms are particularly suitable in the context of
multi-agent systems and networked control systems, i.e. control systems that are
physically distributed and cooperate by exchanging information through a com-
munication network. We present the main results available in the literature about
the analysis and design of linear consensus algorithms,for both synchronous and
asynchronous implementations. We then show that many control, optimization and
estimation problems such as least squares, sensor calibration, vehicle coordination
and Kalman filtering can be cast as the computation of some sort of averages, there-
fore being suitable for consensus algorithms. We finally conclude by presenting
very recent studies about the performance of many of these control and estimation
problems, which give rise to novel metrics for the consensus algorithms. These
indexes of performance are rather different from more traditional metrics like the
rate of convergence and have fundamental consequences on the design of consen-
sus algorithms.

1 Introduction
In the past decades we have being witnessing the growth of engineering systems com-
posed by a large number of devices that can communicate and cooperate to achieve a
common goal. Although complex large-scale monitoring and control systems are not
new, as for example nuclear plants and air traffic control, a new architectural paradigm
is emerging, mainly due to the adoption of smart agents, i.e., devices that have the
ability to cooperate and to take autonomous decisions without any supervisory sys-
tem. In fact, traditional large-scale systems have a centralized or at best a hierarchical
architecture, which has the advantage to be relatively easy to be designed and has
safety guarantees. However, these systems require very reliable sensors and actuators,
are generally very expensive, and do not scale well due to communication and com-
putation limitations. The recent trend to avoid these problems is to substitute costly
sensors, actuators and communication systems with a larger number of devices that
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can autonomously compensate potential failures and computation limitations through
communication and cooperation. Although very promising, this new paradigm brings
new problems into the picture, mainly due to the lack of analysis and design tools for
such systems. In particular, there are only few tools for predicting the global behavior
of the system as a whole starting from the local sensing and control rules adopted by
the smart sensors and actuators. As a consequence, there has been a strong effort in
past years by many engineering areas to develop such tools.

One of the most promising tools are the linear consensus algorithms, which are
simple distributed algorithms which require only minimal computation, communica-
tion and synchronization to compute averages of local quantities that reside in each
device. These algorithms have their roots in the analysis of Markov chains [53] and
have been deeply studied within the computer science community for load balanc-
ing [61, 42] and within the linear algebra community for the asynchronous solution of
linear systems [30, 56]. More recently they have been rediscovered and applied by the
control and robotics communities for cooperative coordination of multi-agent systems,
as surveyed in [52, 51] and in the recent book [12].

The spirit of this chapter is mostly tutorial. We start in Section 2 by presenting a
coherent description of the linear consensus algorithms and by surveying the most im-
portant results. No prior knowledge is required except for standard linear algebra and
control systems theory. A special attention has been placed on the design of such algo-
rithms, which, in our opinion, is one of the most relevant aspects for a control engineer.
In Section 3 we illustrate through some examples how these algorithms can be applied
to relevant estimation and control problems such as least squares, sensor calibration,
and vehicle coordination, just to name a few. Section 4 presents some more recent
research directions. More precisely, starting from the analysis of control applications
of consensus algorithms, such as those described in Section 3, we show that the perfor-
mance indexes to be considered are different from the traditional index given by rate of
convergence, i.e. the essential spectral radius of the consensus matrix, and in general
this index depends on all the eigenvalues of the consensus matrix. This observation has
relevant consequences in terms of analysis and design of consensus algorithms, which
goes beyond the current results and opens up new research directions, which we believe
are particularly relevant for the control community.

2 Linear Consensus Algorithms: Definitions and Main
Results

In this section, we review some of the main results on the analysis and design of con-
sensus algorithms and we also provide references for more recent developments un-
der different scenarios and assumptions. In particular, we will concentrate on linear
discrete-time consensus algorithms. However we will give some references to con-
tinuous time and nonlinear consensus. We start by introducing some mathematical
preliminaries. Let us consider the following linear update equation:

x(t +1) = Q(t)x(t) (1)
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where x(t) = [x1(t) x2(t) · · · xN(t)]T ∈ RN and, for all t, Q(t) ∈ RN×N is a stochas-
tic matrix, i.e. [Q(t)]i j = qi j(t) ≥ 0 and ∑

N
j=1 qi j = 1, ∀i, i.e. each row sums to unity.

Equation (1) can be written as

xi(t +1) =
N

∑
j=1

qi j(t)xi(t), i = 1, . . . ,N (2)

= xi(t)+ ∑
j 6=i

qi j(t)(x j(t)− xi(t)) (3)

where the local updates of each component of the vector x is written explicitly.
A stochastic matrix Q is said doubly-stochastic if also ∑

N
i=1 qi j = 1, ∀ j, i.e. each

column sums to unity. Clearly if a stochastic matrix is symmetric, i.e. Q = QT , then it
is also doubly-stochastic. An important class of doubly-stochastic matrices is given by
the class of stochastic matrices which are also circulant. A matrix Q = circ(c1,c2, . . . ,cN)
is a circulant matrix if

Q =


c1 c2 c3 · · · cN
cN c1 c2 · · · cN−1
...

. . .
...

c2 c3 c4 · · · c1

 (4)

All eigenvalues λi of a stochastic matrix Q are included in the unit circle, i.e. |λi| ≤ 1,
and the vector 1 = [1 1 · · ·1]T ∈ RN is an eigenvector for Q and its eigenvalue is equal
to one, i.e Q1 = 1. The essential spectral radius esr(Q) of a stochastic matrix Q is
defined as the second largest eigenvalue in modulus of the matrix Q, i.e. if we consider
the ordered eigenvalues in modulus 1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λN |, then esr(Q) = |λ2|.

Many important results about convergence of consensus algorithms can be re-
framed as graph properties. Therefore we provide some useful preliminary definitions.
We define the (directed) graph associated with a stochastic matrix Q as GQ = (N ,EQ),
where the nodes are N = {1,2, . . . ,N} and the edges are EQ = {( j, i) |qi j > 0}, i.e.
( j, i) ∈ E implies that node i can receive information from node j. A graph is undi-
rected if (i, j) ∈ E implies that also ( j, i) ∈ E .

We also say that a matrix Q is compatible with the graph G = (N ,E ) if its as-
sociated graph GQ = (N ,EQ) is such that GQ ⊆ G , i.e., is a subgraph of G . We de-
note with Gsl the set of graphs which include all self-loops, i.e. G ∈ Gsl if and only
if (i, i) ∈ E ,∀i ∈N . The in-degree of a node i is defined as din(i) = |Vin(i)|, where
Vin(i) = { j |( j, i) ∈ E , i 6= j} is the set of neighbors that can send information to i and
| · | indicates the cardinality of a set. Similarly, the out-degree of a node i is defined
as dout(i) = |Vout(i)| and Vout(i) = { j |(i, j) ∈ E , i 6= j}. For an undirected graph, in-
neighbors and out-neighbors of a node i coincide and they are simply denoted by the
set V (i) whose degree is d(i) = |V (i)|.

The adjacency matrix A∈ {0,1}N×N of a graph G = (N ,E ) is defined as [A]i j = 1
if (i, j) ∈ E and i 6= j, and [A]i j = 0 otherwise. The Laplacian matrix L of a undirected
graph is defined as L = D−A, where D = diag{d(1),d(2), . . . ,d(N)} is diagonal and
d(i) is the degree of node i. The Laplacian L is positive semidefinite and L1 = 0.

A graph is rooted if there exists a node k ∈N such that for any other node j ∈N
there is a unique path from k to j. A graph is strongly connected if there is a path
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from any node to any other node in the graph. Clearly a strongly connected graph
implies that it is also rooted for any node. The diameter of a graph is defined as the
length of the longest among all shortest paths connecting any two nodes in a strongly
connected graph. A graph is complete if (i, j)∈ E ,∀i, j ∈N . The union of two graphs
G1 = (N ,E1) and G2 = (N ,E2) is defined as the graph G = (N ,E ) = G2∪G1 where
E = E1∪E1.

2.1 Analysis
In this section we describe three main frameworks for modeling consensus algorithms.
The first is related to static synchronous implementation, where updates at each node
are performed simultaneously, thus being well-represented by constant matrices. The
second and the third are both more suitable for modeling asynchronous implementa-
tions, where information exchanges and local variable updates are not necessarily coor-
dinated, thus being well-represented by time-varying matrices. The second framework
addresses the problem of finding the weakest sufficient conditions that guarantee con-
vergence to consensus from a worst-case point of view, thus being able to characterize
a wide class of consensus implementations. The drawback of this approach is that it is
very hard to estimate performance indexes such as the rate of convergence and, when
possible, the predictions are often over-pessimistic. The third framework considers
randomized asynchronous implementations which has three main advantages as com-
pared to the second approach. The first advantage is that randomized communication
and updates require almost no coordination among nodes and are easy to implement
in practice. The second advantage is that this approach naturally models stochastic
nature of the environment, such as communication losses, communication noise and
quantization. The third advantage is that the estimation of performance such as rate of
convergence is closer to the experimental performance observed through simulations
and experiments.

Let us consider the following consensus problem definitions:

Definition 1 Let us consider Eqn. (1). We say that Q(t) solves the consensus problem
if limt→∞ xi(t) = α, ∀i = 1, . . . ,N, where xi(t) is the i-th component of the vector x(t).
We say that Q(t) solves the average consensus problem if in addition to the previous
condition we have α = 1

N ∑
N
i=1 xi(0). If Q(t) is a random variable, then we say that Q

solves the probabilistic (average) consensus problem if the limit above exists almost
surely.

These definitions include a wide class of consensus strategies: strategies with a time–
invariant matrix Q(t) = Q, deterministic time-varying strategies Q(t), and randomized
strategies where Q(t) is drawn from a set of stochastic matrices Q according to a
probability distribution. The next theorem describes some sufficient conditions which
guarantee deterministic and probabilistic (average) consensus.
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Theorem 1 Let us consider the sequence of constant matrices Q(t) = Q. If the graph
GQ ∈Gsl and is rooted, then Q solves the consensus problem, and

lim
t→∞

Qt = 1η
T

where η ∈RN is the left eigenvector of Q for the eigenvalue one and has the properties
ηi ≥ 0 and 1T η = 1. If GQ is strongly connected, then ηi > 0,∀i. If in addition Q is
doubly-stochastic, then GQ is strongly connected and Q solves the average consensus
problem, i.e. η = 1

N 1. Moreover, in all cases the convergence is exponential and its
rate is given by the essential spectral radius esr(Q).

This theorem is well known and can be found in many textbooks on Markov chains
such as in [53]. The assumption that GQ ∈ Gsl is not necessary to achieve consensus;

for example consider Q =
[

1 0
1 0

]
, for which x(t) = x1(0)

[
1
1

]
for each t ≥ 1 and

x(0) = [x1(0) x2(0)]T . However, some additional assumption besides GQ being rooted

is actually needed in order to guarantee consensus: for example Q =
[

0 1
1 0

]
is such

that GQ is rooted, but it gives x(2t) =
[

x1(0)
x2(0)

]
and x(2t +1) =

[
x2(0)
x1(0)

]
for all t. In

this chapter, for the sake of simplicity, we will use the assumption that GQ ∈ Gsl, also
noting that this is a very mild requirement since it means that any agent can communi-
cate to itself; however in some cases, such as in the de Bruijn graphs [24], it is useful
to consider also graphs not in Gsl.

Besides the results on constant matrices Q, much research has been devoted to the
analysis of time-varying linear consensus which is addressed by the next theorem.

Theorem 2 Consider the deterministic sequence of stochastic matrices {Q(t)}+∞

t=0 and
the corresponding associated graphs G (t) = GQ(t). Suppose G (t) ∈ Gsl,∀t. Then the
sequence Q(t) solves the consensus problem if and only if there exists a finite positive
integer number T such that the graphs G (τ) obtained from the union of the graphs G (τ)
in the following way: G (τ) = G (τ)∪G (τ +1)∪ . . .∪G (τ +T −1) with τ = 0,1, . . .
are all rooted. If in addition the matrices Q(t) are all doubly-stochastic, then they solve
the average consensus problem.

A simple proof of the previous theorem can be found in [41], but its roots can be
tracked back at least to [61], and it has been rediscovered several times in the past
years [33, 50, 8, 13]. The previous theorem states that it is not necessary for graphs as-
sociated to the matrices Q(t) to be connected at all time, but only over a time window.
This assumption basically guarantees that information travels, possibly with some de-
lay, from at least one node to all other nodes infinitely many times. What is particularly
remarkable in this theorem and also in Theorem 1, is that convergence is completely
characterized by connectivity properties of the graphs GQ(t), regardless of the specific
values of the entries of the matrices Q(t). On the other hand, the negative side is that
the rate of convergence is hard to estimate since it is based on worst-case analysis.
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Therefore in general it is over-pessimistic and of little practical use. Recent work has
tried to address this problem by finding tighter bounds on the rate of convergence while
adding only general constraints on the topological properties of the graphs GQ(t) and
on the numerical values for the entries of Q(t) [2].

A more recent approach to consensus is to model time-varying consensus in term of
randomized strategies. The advantage of a randomized approach is to preserve simple
convergence conditions based on graph properties while obtaining good estimates for
the rate of convergence of typical realizations. The next theorem provides convergence
conditions for the randomized linear consensus.

Theorem 3 Consider a random i.i.d. sequence of stochastic matrices {Q(t)}+∞

t=0 drawn
according to some probability distribution from the set Q, and the stochastic matrix
Q = E[Q(t)]. If the graphs G (t) = GQ(t) ∈Gsl,∀t and if GQ is rooted, then the sequence
Q(t) solves the probabilistic consensus problem. The rate of convergence in mean
square sense defined as ρ = supx(0) limsupt→∞(E[||x(t)− x(∞)||2])1/t is bounded by

(esr(Q))2 ≤ ρ ≤ sr(E[QT (t)ΩQ(t)])

where Ω := I− 1
N 11T and sr(P) indicates the spectral radius of the matrix P, i.e. its

largest eigenvalue in absolute value. If in addition Q(t) are all doubly-stochastic, then
they solve the probabilistic average consensus problem.

The proof of this theorem can be found in [26]. Similarly to the previous two
theorems, even in a randomized scenario the convergence conditions are characterized
in terms of graphs connectivity properties. In particular, it states that convergence is
guaranteed if the graph is connected on average. However, differently from Theorem 2,
the randomized framework provides tighter bounds on the rate of convergence. Another
advantage of considering a randomized framework is the ability to model scenarios
subject to random communication links or nodes failure.

There is a rich literature on randomized consensus that extends the results of the
previous theorem. One direction is to find weaker convergence conditions, more specif-
ically by relaxing the hypothesis of i.i.d. sequences to ergodicity only [58]. Another
direction is to add additional hypotheses on the matrices Q(t) or on the set Q in order
to improve the convergence bounds. For example, in [11] it was shown that if Q(t) are
symmetric and idempotent. i.e. Q(t) = QT (t) and Q2(t) = Q(t), then the upper bound
is given by sr(E[QT (t)ΩQ(t)]) = esr(Q).

There is also a rich literature on the analysis of consensus under different scenarios.
For example, there is an equivalent version of the consensus problem in continuous
time given by

ẋ = A(t)x (5)

where A is a Metzler matrix, i.e. a matrix whose off-diagonal elements are nonnegative
and the row-sum is null, i.e. A1 = 0. This types of systems have been well characterized
by Moreau [40]. For example, the opposite of a Laplacian matrix is a Metzler matrix,
which implies that ẋ = −Lx achieves consensus under general connectivity properties
of the associated graph. The continuous time framework is particularly suitable for
modeling flocking and vehicle dynamics [28, 52, 59].
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Another research direction is concerned with convergence conditions for consensus
with delayed information, i.e. for consensus whose dynamics can be written as

xi(t +1) =
N

∑
j=1

qi jx j(t− τi(t)), i = 1, . . . ,N

where the delay τi(t) can be unknown and time-varying [46, 8, 7, 60, 54, 62]. The
main finding is that consensus is very robust to delay, which is particularly important
in networked systems where delay is unavoidable. This comes from the observation
that the convex hull of the points xi(t) can only shrink or remain constant, and delay
only marginally affects this property [41, 8].

Also much interest has been generated from consensus subject to quantization and
in particular to quantized communication. In this context the dynamics can be written
as

xi(t +1) =
N

∑
j=1

qi jqd(x j(t)), i = 1, . . . ,N

where qd(·) : R→ Qd and Qd is a finite or countable set. A typical example is qd(x) =
bxc, where bxc indicates the largest integer smaller than x. This problem is particularly
challenging due to the fact that quantization acts similarly to noise, thus being particu-
larly harmful since the consensus matrices Q(t) are not strictly stable but always have
an eigenvalue in one and convergence might not be guaranteed. Therefore, much effort
has been given in finding quantization strategies and quantization functions that still
guarantee consensus [37, 18, 29, 38, 36, 43].

Another interesting aspect is related to consensus subject to lossy communication
, i.e. a scenario where communication scheduled between two nodes fails due to ran-
dom interference or noise. This scenario naturally fits the randomized framework of
Theorem 3, however it also requires the design of a compensation mechanism when a
packet is lost. Different strategies have been proposed and studied [35, 27, 47]. For
example a natural scheme is to compensate for the lost packets by replacing the the
lost value x j from the transmitting node j with the self value xi of the receiving node i,
more formally:

xi(t +1) =
(

qii +
N

∑
j=1,i6= j

(
1− γi j(t)

)
qi j

)
xi +

N

∑
j=1,i6= j

γi j(t)qi jx j(t), i = 1, . . . ,N

where γi j(t) is a random variable such that γi j(t) = 1 if transmission at time t from node
j to node i was successful, and γi j(t) = 0 otherwise [27]. These works show that packet
loss in general does not affect convergence to consensus, but it can reduce convergence
rate and change the final consensus value as compared to ideal scenario with perfect
communication, i.e. γi j(t) = 1,∀i, j, t.

A different setting is studied in [64], where additive noise is included in the con-
sensus dynamics, i.e.

x(t +1) = Qx(t)+ v(t) .

Note that, in all cases described above, noise affects the speed of convergence and
the final value obtained (which is not the desired average), but does not prevent conver-
gence. Differently, in the case when there is noise in the transmissions among nodes
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(without feedback), so that the messages sent by an agent are received by its neighbors
corrupted by noises which might be different, and which are unknown to the sender,
then convergence itself is an issue. The difficulty is in the design of a modified con-
sensus algorithm capable of avoiding noise accumulation. Algorithms dealing with
variations on this setting have been designed and analyzed by various authors, e.g.
[49, 32, 34] (using time-varying weights in the consensus algorithm, to decrease the
effect of neighbors’ noise) and [16] (using error-correcting codes of increasing length
to decrease the communication noise).

2.2 Design
Up to now, we provided a short overview of the properties of consensus algorithms
under different scenarios and assumptions. However, in many engineering applications
it is also very important to be able to design such algorithms. From a consensus design
perspective, the design space is given by the communication graph G = {N ,E } of a
network of N = |N | agents, and the design problem consists in finding suitable Q(t)
compatible with G that achieve consensus or average consensus. We assume that the
graph G includes self-loops, i.e. G ∈Gsl, and that it is at least rooted.

There are two main approaches to design. The first focuses on local design methods
which require only local information, i.e. each node can design its communication and
consensus updates weights almost independently of the other nodes. Obviously, with
this approach optimality with respect to some performance index is not guaranteed. The
second approach focuses on methods which try to optimize some global performance
index. As a consequence, this often leads to a centralized optimization problem that
strongly depends on the topology and might be suitable if the network static and has
small size. We start by presenting these two approaches first within the context of static
consensus, i.e. Q(t) = Q and then in the context of time-varying consensus strategies.

2.2.1 Matrix Design – Static Consensus: Q

If only consensus is required then a simple local strategy to design the matrix Q is given
by:

qi j =
1

din(i)+1
, ( j, i) ∈ E

Clearly GQ = G , and Q is stochastic, thus satisfying hypotheses of Theorem 1.
Differently, if average consensus is required, various solutions are possible. If the

graph is undirected a possible solution is to choose :

qi j =
{

ε if ( j, i) ∈ E and i 6= j
1− εd(i) if i = j (6)

where ε < 1
maxi d(i) . This matrix is clearly symmetric since the non-zero off-diagonal

terms are all equal and positive qi j = q ji = ε,∀i, j. The condition on ε is necessary
to guarantee that all diagonal terms are positive. As a consequence, Q is a stochas-
tic symmetric matrix, therefore it is also doubly-stochastic. Moreover GQ = G and
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by hypothesis G is rooted1, thus satisfying hypotheses of Theorem 1. Note that this
matrix is strongly related to the Laplacian matrix L of the graph G . In fact, consider
the discretized dynamics of Eqn. (5) where A = −L with time step ε , i.e. x(t + 1) =
e−εLx(t) = Qdx(t), then the first order expansion of Qd , i.e. Qd = I− εL + O(ε), has
the same structure of the Q given by Eqn. (6).

Another possible strategy for undirected graphs is based on the Metropolis-Hastings
weights:

qi j =

{
1

max(d(i),d( j))+1 if ( j, i) ∈ E and i 6= j
1−∑

N
j=1,i 6= j qi j if i = j

(7)

Clearly the matrix Q is symmetric and the diagonal elements are strictly positive since
qii = 1−∑

N
j=1,i6= j qi j ≥ 1−∑

N
j=1,i 6= j,(i, j)∈E

1
d(i)+1 = 1− d(i)

d(i)+1 = 1
d(i)+1 > 0, therefore Q

is doubly-stochastic and GQ = G which are sufficient conditions to guarantee average
consensus. As compared to the strategy based on the Laplacian of Eqn. (6), the strategy
based on the Metropolis weights of Eqn. (7) is local, i.e. each node requires only the
knowledge of local information, namely the degrees of its neighbors, while the former
requires the knowledge of an upper bound on the degree of all nodes of the network.
Moreover, the Metropolis-based consensus matrix has in general faster convergence
rate than the Laplacian-based consensus matrix.

If the communication graph G is directed, then the design of a consistent doubly-
stochastic matrix is not trivial. A possible strategy is based on the design of a doubly-
stochastic matrix based on a convex combination of permutation matrices, where a
permutation matrix P is defined as P ∈ {0,1}N×N ,1T P = 1T ,P1 = 1. Note that a per-
mutation matrix is doubly-stochastic. This procedure is basically an application of
the Birkhoff’s Theorem [39]. We start from the assumption that the graph is strongly
connected. This implies that for each edge e = ( j, i) ∈ E there exists a path connect-
ing node i to node j, which in turns implies there exists at least one simple cycle C
in the graph including the edge e, i.e. there exists a sequence of non repeated ver-
tices `1, `2, . . . , `L ∈N such that `1 = i, `L = j, (`i, `i+1) ∈ E for i = 1, . . . ,L− 1 and
(`L, `1) ∈ E . Associated to this cycle it is possible to define a permutation matrix Pe as
follows:

[Pe]`r`r+1 = 1 for r = 1, . . . ,L−1
[Pe]`L`1 = 1
[Pe]kk = 1 for k 6= `r, r = 1, . . . ,L
[Pe]hk = 0 otherwise

Clearly GPe ⊆ G . According to this procedure it is always possible to find M cycles
in the graph G and permutation matrices Pi, i = 1, . . . ,M constructed as above, that
includes all edges of the graphs. Let us consider now the matrix Q = a0I + ∑

M
i=1 aiPi

where ai > 0,∀i = 0, . . . ,M and ∑
M
i=0 ai = 1, then Q is still doubly-stochastic since

it is a convex combination of doubly-stochastic matrices. Also since all edges of G
are included in Q, then GQ = G . These two facts guarantee that Q achieves average
consensus.

However, this procedure is rather tedious and requires global knowledge of the
graph topology. There is an elegant alternative solution to achieve average consensus

1If an undirected graph is rooted, then it is also strongly connected.
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[1], which requires only local knowledge of the graph topology. Let us consider the
matrix Q designed as follows:

qi j =
1

dout( j)+1
, ( j, i) ∈ E

This matrix is column-stochastic, i.e. its transpose is stochastic (QT 1 = 1), and GQ = G
is strongly connected. This implies by Theorem 1 that limt→∞ Qt = limt→∞((QT )t)T =
(1ρT )T = ρ1T where ρi > 0,∀i. Now let us consider z(t + 1) = Qz(t) and w(t + 1) =
Qw(t) where the initial condition are z(0) = x(0) and w(0) = 1, and the x(t) such that
xi(t) = zi(t)

wi(t)
. From limt→∞ Qt = ρ1T , it follows that limt→∞ z(t) =

(
∑

N
i=1 zi(0)

)
ρ =(

∑
N
i=1 xi(0)

)
ρ and limt→∞ w(t)=

(
∑

N
i=1 wi(0)

)
ρ = Nρ , therefore limt→∞ xi(t)=

ρi

(
∑

N
i=1 xi(0)

)
ρiN

=
1
N ∑

N
i=1 xi(0) as desired. Note that average consensus is achieved through a nonlinear

algorithm that uses two parallel linear iterative updates very similar to standard consen-
sus. The weak point of this approach is that perfect communication is required since
the algorithm can become unstable if lossy links are considered.

So far, we just considered design strategies to achieve consensus or average con-
sensus, but we did not discuss about their rate of convergence. Design of consensus
algorithms with fast rate of convergence is not a trivial task. If simple consensus is
required, there is a simple strategy that achieves in a finite number of steps. Given a
rooted graph, it is always possible to find a tree that connects one node, namely the
root, to all other nodes. Without loss of generality, assume that the root is node i = 1,
and let us consider only the set of directed edges associated with this tree, i.e. Etree ⊆ E .
Note that Etree does not contain self-loops. Let us consider the matrix Q designed as
follows:

q11 = 1, qi j = 1 ( j, i) ∈ Etree, j 6= 1

Clearly the matrix is stochastic and it is not difficult to see that Qt = 1[1 0 · · · 0] for
t ≥ `, i.e. xi(t) = x1(0) for t ≥ `, where ` is the maximum distance of all nodes from
the root. This implies that esr(Q) = 0. In other words, each node sets the value of its
variable xi(t) to the value received from its parents, therefore after a finite number of
steps all nodes will have a copy of the initial condition of the root. This gives very fast
convergence rate even for very large networks, as long as the diameter, i.e. the largest
path distance within any two nodes, is small.

If average consensus is required, then the previous strategy is obviously not suit-
able. Optimal design of Q in terms of fast rate of convergence is not trivial in directed
graph. If the graph is undirected, then it has been shown by Xiao et al. [63] that finding
a symmetric stochastic matrix consistent with the graph with smallest esr is a convex
problem. i.e.

min
Q

esr(Q)

s.t. Q = QT ,Q1 = 1, [Q]i j ≥ 0,GQ = G

Actually the non-negativeness constraint on the elements of Q is not necessary to have a
convex problem, and therefore can be removed, thus providing a matrix Q with possible
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negative entries which can lead to an even smaller esr. On the other hand, this is a
centralized optimization problem, and the whole topology of the network is needed to
find the optimal solution. Local optimization strategies to minimize the esr are still
an open area of research.

2.2.2 Matrix Design – Dynamic Consensus: Q(t)

Now, we address the problem of designing dynamic consensus strategies where the
consensus matrix is not constant but can change over time. The major drawback of
static consensus is that it requires some sort of synchronization among all nodes of the
network. In fact, between one iteration and the subsequent iteration, nodes need to ex-
change information and then update their local variables simultaneously. This can be
difficult to enforce or simply too costly. Therefore, there is much interest in designing
consensus strategies that require little coordination and synchronization among nodes.
These algorithms are also referred as asynchronous algorithms. Some of the most
popular asynchronous strategies are motivated by practical consideration based on the
communication schemes that can be implemented on networks. These include broad-
cast [3], asymmetric gossip [25] and symmetric gossip [11].

In the broadcast scheme , one node i transmits its information to all its neighbors
Vout(i), and each receiving node updates its local variable using consensus. More for-
mally, given a possibly directed graph G =(N ,E ), then Q(t)∈QB = {Q1,Q2, . . . ,QN},
where N = |N | and

Qi = I−w ∑
j∈Vout(i)

e j(e j− ei)T

where w ∈ (0,1), I is the identity matrix of dimension N, and ei ∈ RN is a vector of all
zeros except for the i-th entry which is set to one. Clearly all Qi are stochastic, have
self-loops, and GQi ⊆ G .

Differently, in the asymmetric gossip one node i selects only one of its possi-
ble neighbors Vout(i), which after receiving the message updates its local variable.
More formally, given a possibly directed graph G = (N ,E ), then Q(t) ∈ QAG =
{Qi j | (i, j) ∈ E , i 6= j}, where

Qi j = I−we j(e j− ei)T

where w ∈ (0,1) and ei are defined as above. Clearly all Qi j are stochastic, have self-
loops, and GQi j ⊆ G . Note that even if the graph G is undirected, than the matrices Qi j

are only stochastic and do not guarantee average consensus. The same consideration
applies to the broadcast matrices Qi defined above.

The symmetric gossip is applicable only to undirected graphs. In this scheme, one
node i transmits its information to only one of its neighbors j, which in turn transmits
back to the node i another message with its local value. Only after the completion of
this procedure the two nodes update their local values using a consensus scheme based
on the same weight w. More formally, given the undirected graph G = (N ,E ), then
Q(t) ∈QSG = {Qi j | (i, j) ∈ E , i 6= j}, where

Qi j = I−w(e j− ei)(e j− ei)T

11



Clearly all Qi j are doubly-stochastic, are idempotent (i.e., (Qi j)2 = Qi j), have self-
loops, and GQi j ⊆ G . Although symmetric gossip is somewhat more complex from
a communication point of view, differently from broadcast and asymmetric gossip, it
has the advantage to preserve the average at any time instant, therefore convergence to
consensus automatically guarantees convergence to average consensus.

At this point, the design problem is how to select a sequence of Q(t) from the sets
defined above for the broadcast, asymmetric gossip and symmetric gossip, and how to
choose the consensus weight w. In general the consensus weight is set to w = 1/2 and
more attention is paid on the drawing of matrices Q(t). One approach is to determin-
istically select these matrices according to some sequence, however this still requires
some sort of coordination and synchronization. A more natural approach is to select
these matrices randomly, possibly according to some i.i.d. distribution on the sets Q.
This distribution can be represented by a vector p ∈ RN , such that p ≥ 0 and 1T p = 1
for the broadcast model, where pi = P[Q(t) = Qi]. Similarly, the probability distribu-
tion in the symmetric and asymmetric gossip can be represented by a matrix P ∈RN×N

which is nonnegative, i.e. [P]i j ≥ 0, is consistent with the graph, i.e. GP ⊆ G , and sum
to unity, i.e. 1T P1 = 1, where [P]i j = P[Q(t) = Qi j]. In this case, the design space
corresponds to the probability distribution of these sets, i.e. the vector p or the matrix
P. The proper framework to analyze these strategies is given by Theorem 3. Many
results about exact rate of convergence and its optimal design are available for com-
munications graphs G that present special symmetries like complete graphs, circulant
graphs, hypercubes, and tori [17, 26]. Differently, for general undirected graphs, Boyd
et al. [11] showed that under the randomized symmetric gossip schemes with weight
w = 1/2, the rate of convergence can be bound by ρ ≤ esr(Q) thus suggesting the
following optimization criteria for maximizing the rate of convergence:

min
P

esr(Q)

s.t. Q =
N

∑
i=1

N

∑
j=1

[P]i jQi j, [P]i j ≥ 0,1T P1 = 1, GP ⊆ G

which turns out to be a convex problem. This optimization problem is a central-
ized problem, however the authors in [11] suggested also suboptimal decentralized
optimization schemes. Fagnani et al. [25] studied the asymmetric gossip for gen-
eral undirected graphs and showed that rate of convergence can be bound by ρ ≤
sr([QT (0)ΩQ(0)]) = 1− 2w

(
(1−w)−wN−1

)
µ , where µ is the smallest positive

eigenvalue of the positive semidefinite matrix S = diag(P1)−(P+PT )/2, where diag(x) :
Rn → Rn×n indicates a diagonal matrix whole diagonal entries are the entries of the
vector x. Therefore in this scenario a possible optimization criterium for minimizing
the rate of convergence is to minimize ρ which is minimized by setting w = 1

2
N+1

N ≈ 1
2

and by maximizing µ . If we restrict to symmetric probability matrices P = PT , maxi-
mizing µ is equivalent to the following convex optimization problem:

max
P,ε

ε

s.t. diag(P1)−P≥ εI, P = PT , [P]i j ≥ 0,1T P1 = 1, GP ⊆ G
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Similarly to [11] also this optimization problem is centralized and therefore might not
be suitable for fully distributed optimization.

2.2.3 Graph Design

In the previous sections, we focused on the issue of how to design the coefficients of the
matrix Q for a given communication graph G . However, there are scenarios for which
also the communication graph can be designed, therefore it is useful to understand
the effect of the graph topology on the performance and how it scales as the number
of nodes increases. Also, it is important to note that, in many cases, the effect of
the graph topology on performance is much more relevant than the actual choice of
the weights, i.e. of the non-zero entries of Q. In fact, for example, Xiao et al. [64]
studied consensus over random geometric graphs [48] and compared optimal design
with suboptimal decentralized strategies like the consensus based on the Metropolis
matrix, showing that performance difference was not so drammatically different and
seemed to scale similarly with the graph size.

In this context, let us consider the static consensus x(t + 1) = Qx(t). Asking what
graph allows for the fastest convergence, without any further constraint, is trivially
answered (the complete graph, i.e. every pair of nodes is connected by an edge) and is
not very meaningful: the complete graph corresponds to centralized computation. A
more interesting question is asked by Delvenne et al. [23, 24]: what is the best graph,
under the constraint that each agent receives at most ν messages at each iteration (i.e.,
GQ has bounded in-degree)? The answer is given by a family of graphs known as
de Bruijn graphs, well-known in the computer science literature for their expansion
properties, and capable of giving the exact average in finite time (not only limt→∞ x(t) =
1
N 1T x(0), but also x(t̄) = 1

N 1T x(0) for some t̄), and moreover the time t̄ is the smallest
possible with the constraint on the in-degree.

The very good performance of de Bruijn graphs is surprising if compared with a
family of graphs, Abelian Cayley graphs [17], which are grids on d-dimensional tori (a
circle for d = 1), and whose algebraic structure (a generalization of circulant matrices)
allows to compute the eigenvalues and to prove that esr(Q)≥ 1− cN

1
ν+1 , where ν is

the degree of the nodes and c is a positive scalar independent of the graph. This proves
that, when N → ∞, esr(Q)→ 1, i.e., convergence is considerably slowed down by
the size of the network. However, this is not always the case: in addition to de Bruijn
graphs, there are other significant classes of graphs, known as expander graphs, such
that esr(Q) is bounded away from 1 when N → ∞ (see [45] for the study of such
graphs in the context of consensus algorithms). A particular family of graphs which
allow fast information transfer (having a small diameter despite the small degree of
each node) are the so-called small-world graph, which are considered as a reasonable
model for many social interactions (e.g., the collaboration graph for scientific authors,
or the spread of some diseases) and for the world-wide web; they have been studied in
the consensus literature by Olfati-Saber [44] and Tahbaz-Salehi et al. [57].

All such graphs have good properties in terms of fast convergence, despite the small
(average) number of neighbors of each node, and as opposed to Abelian Cayley graphs
(roughly speaking: grids) where convergence is very slow for large networks. The key
fact that makes this difference is that in grids not only the number of neighbors is little,
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but also their position is forced to be local, in a somehow geometrical sense. In many
practical deployments of sensor networks, geometrical constraints are indeed present,
and thus the very structured and symmetrical Abelian Cayley graphs can be thought as
an idealized version of realistic settings, and are important in that they underline the
strong limitations that such locality constraint has on performance and gives guidelines
for the design of the number of nodes in the network, in the case when the topology is
bound to have such a given structure and the size only is the objective of design. A step
towards a more realistic, less structured family of graphs where geometrical bounds
are enforced is the study of random geometric graphs [48]. Random geometric graphs
are undirected graphs which are widely used to model wireless sensor networks, and
they are obtained by randomly generating points in the Euclidean space (usually, in
the plane) according to a Poisson point process (the number of points in any bounded
region is a Poisson random variable with average proportional to the area, and the
position of points is uniformly distributed in the region) and then drawing an edge
between two nodes if and only if their relative distance is smaller than a predefined
communication radius r.

The analysis of the effect of the graph topology on performance has been con-
sidered also for time-varying consensus algorithms, and particularly for randomized
algorithms (as opposed to the previously-mentioned results, where families of random
graphs were considered in the sense that the one time-invariant graph is randomly se-
lected before starting the algorithm). An early work by Hatano et al. [31] studies the
case where, at each time step, the graph is chosen randomly according to the Erdős-
Rényi model, i.e., the presence or absence of edges between any pair of nodes are given
by i.i.d. Bernoulli random variables. A more recent research line has studied conver-
gence of various randomized gossip algorithms, when the random activation of a node
or of an edge is restricted to an underlying graph smaller than the complete graph. In
this context, a relevant result by Fagnani et al. [26] concerns the rate of convergence of
various algorithms (including symmetric, asymmetric and broadcast gossip) when the
underlying graph is an Abelian Cayley graph. Another very interesting result can be
found in [11], where the rate of convergence of symmetric gossip is found for random
geometric graphs and compared to the faster convergence in the preferential connec-
tivity model (a popular model for the graph of the world wide web, and an example of
small-world graph).

3 Estimation and Control Problems as Average Con-
sensus

In this section we illustrate with few examples that some estimation and control prob-
lems can be reframed as the computation of the average of some quantities, which
therefore can be efficiently computed in a distributed fashion using average consensus
algorithms.
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3.1 Parameter Estimation with Heterogeneous Sensors
Let us consider N sensors that measure a noisy version of the true parameter θ ∈ R as
follows:

yi = θ + vi, vi ∼N (0,σ2
i ), i = 1, . . . ,N

where vi are independent zero-mean random variable with covariance σ2
i , i.e. sensors

have different accuracy. The minimum-variance estimate of the parameter θ , given all
the measurements, is given by:

θ̂MV =
N

∑
i=1

αiyi, αi =
1

σ2
i

∑
N
j=1

1
σ2

j

i.e. it is a convex combination of the measurements. It is easy to see that the previous
estimator can be written as:

θ̂MV =
1
N ∑

N
i=1

1
σ2

i
yi

1
N ∑

N
j=1

1
σ2

j

i.e. it is the ratio of two averages. Therefore, it can be asymptotically computed in
a distributed fashion using two average consensus algorithms in parallel whose initial
condition are set to xy

i (0) = 1
σ2

i
yi and xσ

i (0) = 1
σ2

i
, so that

lim
t→+∞

θ̂i(t) :=
xy

i (t)
xσ

i (t)
= θ̂MV, ∀i .

3.2 Node Counting in a Network
In many applications it is important to know how many nodes there are in a network.
This can be easily computed via an average consensus algorithm, by setting all the
initial conditions to zero except for one node, i.e. x1(0) = 1 and xi(0) = 0, i = 2, . . . ,N.
Since average consensus guarantees converge to the average of initial conditions, an
asymptotically correct estimator of the total number of node N is given by:

N̂i(t) :=
1

xi(t)
,

because
lim

t→+∞
N̂i(t) = lim

t→∞

1
xi(t)

=
1

1
N ∑

N
j=1 xi(0)

= N, ∀i .

3.3 Generalized Averages
Besides the common arithmetic average it is also possible to compute other types of
averages such as

zα = α

√
1
N

N

∑
i=1

yα
i
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where α = 1 gives rise to the usual arithmetic average, α = 2 the mean square, α =
−1 the harmonic mean. Also note that z∞ := limα→+∞ zα = maxi yi [6, 21]. These
generalized averages can be computed using average consensus by setting the initial
condition xi(0) = yα

i and computing an estimate of the desired average as follows:

lim
t→+∞

ẑi(t) := α
√

xi(t) = zα , ∀i

Another important average is the geometric mean defined as:

zg = N

√
N

∏
i=1

yi

The geometric mean can be written as zg = exp(logzg) = exp
(
∑

N
i=1 logyi

)
, therefore it

can be computed using average consensus by setting the initial conditions to xi(0) =
logyi and the following estimator:

lim
t→+∞

ẑi(t) := exp(Nxi(t)) = zg, ∀i

Note, however, that in this case the number of nodes N needs to be known in advance.

3.4 Vehicle Rendezvous
An important example of vehicle formation control is the rendezvous problem (see e.g.
[12]), where all vehicles are required to meet at a common location using only relative
position information for all initial conditions. In its simplest formulation, the vehicle
dynamics is given by

xi(t +1) = xi(t)+ui(t)

and the goal is to find a linear control strategy which uses only relative distance infor-
mation, i.e.

ui(t) =
N

∑
j=1

qi j(t)(x j(t)− xi(t))

such that limt→+∞ xi(t) = x̄ for some x̄. This is indeed a consensus problem that can be
solved by choosing the weights qi j(t) that guarantees convergence2. Besides conver-
gence, it is also relevant to compute performance of the rendezvous strategy. A natural
approach is to consider a linear quadratic (LQ) measure given by:

JLQ = Jx + εJu =
∞

∑
t=0
||x(t)− x(∞)||2 + ε

∞

∑
t=0
||u(t)||2

where x = [x1 x2 · · · xN ]T , u = [u1 u2 · · · uN ]T , and ε is a positive scalar that trades off
the integral square error of all vehicles from the rendezvous location x(∞) = x̄1, namely
Jx, versus the integral energy of all vehicles required to achieve consensus, namely Ju.

2In realistic scenarios the gains qi j are a function of vehicle location, i.e. qi j = qi j(x). A typical model
is to consider limited communication range r > 0, i.e. qi j = 0 if |xi− x j| > r. This gives rise to nonlinear
dynamics which is not captured by the model presented in Section 2. The analysis of these systems is beyond
the scope of this work and we refer the interested reader to [22] an references therein.
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3.5 Least Squares Data Regression
Least squares are one of the most popular estimation techniques in data regression,
where the objective is to estimate a function y = f (x), from a noisy data set D =
{(xi,yi)}N

i=1. A standard approach is to propose a parametrized function fθ (x) :=
∑

M
j=1 θigi(x), where gi(x) are known functions, often called basis functions, and θi, i =

1 . . . ,M are unknown parameters to be determined based on the data set D . The least
squares estimate of the parameter vector θ = [θ1 θ2 · · · θM]T is defined as

θ̂LS = arg minθ

N

∑
i=1

(yi− fθ (xi))2

If we define the vectors gi = [g1(xi) g2(xi) · · · gM(xi)]T ∈RM, i = 1, . . . ,N, y = [y1 y2 · · · yM]T ∈
RN , and the matrix G = [g1 g2 · · · gM]T ∈ RN×M , then we have

θ̂LS = arg minθ ‖y−Gθ‖2 = (GT G)−1GT y =
( N

∑
i=1

gigT
i

)−1( N

∑
i=1

giyi

)
=

(
1
N

N

∑
i=1

gigT
i

)−1( 1
N

N

∑
i=1

giyi

)
under the implicit assumption that (GT G)−1 exists. From last equation it is clear that
the estimate can be computed as a nonlinear combination of two averages, therefore
a consensus based strategy is to run two average consensus algorithms with initial
conditions xgg

i (0) = gigT
i ∈ RM×M and xgy

i (0) = giyi ∈ RM , and then asymptotically
computing the least square estimate as:

lim
t→+∞

θ̂i(t) :=
(
xgg

i (t)
)−1 xgy

i (t) = θ̂LS, ∀i

Note that in this scenario xgg
i are matrices and xgy

i are vectors, therefore they are not
scalar as usually considered in Eqn. (1), however all results of Section 2 still apply by
considering the local updates rules of Eqn. (2) or Eqn. (3) [65, 9].

3.6 Sensor Calibration
Often inexpensive sensors might be affected by unknown offsets due to fabrication
imperfections or aging. A common example is given by the sensor that measures the
signal strength, the RSSI, in the radio chip of commercial wireless sensor nodes [9].
The RSSI is often used to estimate the relative distance between two of these wireless
nodes for localization and tracking applications. More precisely the signal strength yi j
measured by node i from node j can be modeled as:

yi j = f (ξi,ξ j)+oi

where ξi and ξ j are the locations of the receiving node i and the transmitter node j,
respectively, and oi is the offset of the receiving node. Typically, f (ξi,ξ j) is a function
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of the distance ‖ξi − ξ j‖ only, but in indoor environments this cannot be the case.
However, it still holds that

f (ξi,ξ j) = f (ξ j,ξi) ,

i.e. the function f is symmetric in terms of nodes locations. The objective of calibration
is to estimate the offset oi for each node in order to remove it from the measurements.
This is clearly impossible, unless at least one node is calibrated or if the function f
and the node locations ξ are known. A less demanding requirement is to find offset
estimates ôi such that oi− ôi = ō for all i, i.e. to be able to have all nodes with the
same offset ō. This can be interpreted as a consensus problem on the variable xi(t) =
oi− ôi(t). However, this is still an undetermined problem since ō is arbitrary. One
solution to remove this ambiguity is to choose one node as a reference, for example
node i = 1, i.e. ō = o1. A less arbitrary choice is to find ō such that

arg minō

N

∑
i=1

ô2
i = arg minō

N

∑
i=1

(oi− ō)2 =
1
N

N

∑
i=1

oi =
1
N

N

∑
i=1

xi(0)

where the last equality is obtained by setting ôi(0) = 0. This strategy, which aims
at minimizing the magnitude of offset compensation terms ôi, implies that average
consensus is to be sought. By substituting xi(t) = oi− ôi(t) into Eqn. (3) we get:

oi− ôi(t +1) = oi− ôi(t)+
N

∑
j=1

qi j(t)
(
o j− ô j(t)− (oi− ôi(t))

)
ôi(t +1) = ôi(t)−

N

∑
j=1

qi j(t)
(

f ji +o j− ô j(t)− ( fi j +oi− ôi(t))
)

= ôi(t)+
N

∑
j=1

qi j(t)
(
ô j(t)− ôi(t)+ yi j− y ji

)
where we used the notation f (ξi,ξ j) = fi j and the assumption that fi j = f ji. From
average consensus we have that:

lim
t→+∞

ôi(t) = oi−
1
N

N

∑
j=1

oi

From this expression, it is clear that if the offset are normally distributed, i.e. oi ∼
N (0,σ2), then limN→+∞ |ôi(∞)−oi| = 0 almost surely, i.e. if the number of nodes is
large, then the offset estimate is very close to the true offset.

3.7 Kalman Filtering
Estimation of dynamical systems is another important area. Let us consider the follow-
ing dynamical systems observed by N sensors:

ξ (t +1) = Aξ (t)+w(t)
yi(t) = Ciξ (t)+ vi(t), i = 1, . . . ,N
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where w(t)∼N (0,Q) and vi(t)∼N (0,Ri) are uncorrelated white Gaussian noises. If
we define the new vectors y(t)= [y1(t) y2(t) · · · yN(t)]T and v(t)= [v1(t) v2(t) · · · vN(t)]T .
The minimum error covariance estimate is given by ξ̂ (h|t) := E[ξ (h) |y(t),y(t−1) . . .y(1)]
and its error variance is P(h|t) := Var(ξ (h)− ξ̂ (h|t)). The optimal estimator is known
as the Kalman Filter, whose equations are given by:

ξ̂ (t|t−1) = Aξ̂ (t−1|t−1)
P(t|t−1) = AP(t−1|t−1)AT +Q

ξ̂ (t|t) = ξ̂ (t|t−1)+P(t|t−1)CT (CP(t|t−1)CT +R)−1(y(t)−Cξ̂ (t|t−1))
P(t|t) = P(t|t−1)−P(t|t−1)CT (CP(t|t−1)CT +R)−1CP(t|t−1)

The first two equations are known as the prediction step, while the last two equations
are known as the correction step. Using the matrix inversion lemma, the correction step
can be written as

ξ̂ (t|t) = P(t|t)(P(t|t−1)ξ̂ (t|t−1)+CT R−1y(t))

= P(t|t)(P(t|t−1)ξ̂ (t|t−1)+
N

∑
i=1

CT
i R−1

i yi(t))

= P(t|t)(P(t|t−1)ξ̂ (t|t−1)+ z(t))

P(t|t) = (P(t|t−1)+CT R−1C)−1 = (P(t|t−1)+
N

∑
i=1

CT
i R−1

i Ci)−1

= (P(t|t−1)+Z)−1

which are also known as the inverse covariance filter. From these equations it is evident
that the sufficient statistics necessary to recover the centralized Kalman filter are the
quantities z(t) = N( 1

N ∑
N
i=1 CT

i R−1
i yi(t)) and Z = N( 1

N ∑
N
i=1 CT

i R−1
i Ci) which are aver-

ages of local quantities. Therefore, a possible strategy to run a local filter on each local
node, which, between two measurements y(t − 1) and y(t), runs m iterations of the
average consensus algorithm to recover z(t) and Z, and then updates its estimate using
the centralized Kalman gain. If m is sufficiently large and if the total number of nodes
N is known to each sensor, then each local filter coincides with the centralized Kalman
filter [55]. If m is not sufficiently large to guarantee that the consensus has converged,
then performance of the local filters needs to evaluated and also the consensus algo-
rithms design should be designed accordingly to improve it. In this context [14], if
scalar dynamics is considered, i.e. ξ ∈ R where A = Ci = 1,∀i, Q = q, and R = r, then
the equations for the consensus-based Kalman filter can be written as{

x̂(t|t−1) = Qm x̂(t−1|t−1)
x̂(t|t) = (1− `) x̂(t|t−1)+ `y(t)

(8)

where x̂ = [x̂1(t) x̂2(t) · · · x̂N(t)]T ∈ RN is the vector of the local estimators of the true
state ξ at each node and ` ∈ (0,1) is the Kalman gain.
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4 Control-based Performance Metrics for Consensus Al-
gorithms

The performance analysis of consensus algorithms presented in Sect. 2, which exploits
results from Markov chains literature, is focused on predicting the speed of conver-
gence to the average. This is very useful, but however it is not the whole story. In fact,
when convergence to the average is not an objective per se, but is used to solve an esti-
mation or control problem, it is important to consider different performance measures,
more tightly related to the actual objective pursued. Also, the introduction of other
performance indices allows a better understanding of large-scale networks, because for
some very relevant families of communication graphs, e.g., for grids (lattices), the es-
sential spectral radius goes to one when the number of agents N grows, so that it is not
clear whether esr(Q)t will go to zero or not, if both N and t tend to infinity. In this
section, we will present examples of some alternative performance indices, and refer-
ences to the relevant literature; however, this research topic is very recent and presently
active, so that very likely new papers will appear in the next years.

For the sake of simplicity, we restrict our attention to constant Q, instead of study-
ing all the (randomly)-time-varying schemes introduced in the previous sections. More-
over, we will always assume that GQ is rooted and has all self-loops, so that Thm. 1
holds true. Additional assumptions that we will often use are that Q is doubly-stochastic,
so that η = 1

N 1, and that Q is normal, i.e., QT Q = QQT ; under these assumptions, all
the costs we consider can be re-written as simple functions of the eigenvalues of Q.

4.1 Performance Indices
In this sections we give some examples of performance metrics arising in the use of
consensus algorithm for estimation or control tasks. This is not a comprehensive list
of all indices presented in the recent literature on distributed estimation and networked
control; for example, we do not present here the interesting results related to estimation
from relative measurements [5], to the costs arising from vehicle formation control [4],
and clock synchronization [15].

4.1.1 LQ Cost

As discussed in Sect. 3.4, an interesting performance metric is the LQ cost JLQ =
Jx + εJu, where Jx = 1

N ∑t≥0 E
(
‖x(t)− x(∞)‖2

)
is related to the speed of convergence,

while a second term Ju = 1
N ∑t≥0 E

(
‖x(t +1)− x(t)‖2

)
takes into account the energy

of the input sequence.
Let us see how to obtain easier expressions for Jx and Ju [23, 20]. Let us focus on

the case when Q is doubly-stochastic, so that x(∞) = 1
N 1T x(0). Under this assumption,
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the following equalities hold true3:

Jx = 1
N ∑

t≥0

∥∥Qt − 1
N 11T∥∥2

F and Ju = 1
N ∑

t≥0

∥∥Qt+1−Qt∥∥2
F , (9)

where ‖ · ‖F the Frobenius norm of a square matrix, i.e., ‖A‖F =
√

trAT A.
If in addition Q is normal, then the expression furtherly simplifies to:

Jx = 1
N ∑

λ∈Λ(Q)
λ 6=1

1
1−|λ |2

and Ju = 1
N ∑

λ∈Λ(Q)
λ 6=1

|1−λ |2

1−|λ |2
(10)

where Λ(Q) denotes the set of all eigenvalues of Q (with their multiplicity).

The proof —as all proofs in this section— repeatedly uses linearity of expectation
and of trace, plus the observation that for any scalar a ∈ R we have a = tra, and the
property tr(ABC) = tr(CAB) where A,B,C are matrices of suitable size.

The first expression in Eqn. (9) is obtained as follows:

Jx =
1
N ∑

t≥0
E
[
x(0)T (Qt − 1

N 11T )T (Qt − 1
N 11T )x(0))

]
=

1
N ∑

t≥0
E
[
tr
(
x(0)T (Qt − 1

N 11T )T (Qt − 1
N 11T )x(0)

)]
=

1
N ∑

t≥0
tr
(
(Qt − 1

N 11T )T (Qt − 1
N 11T )E

[
x(0)x(0)T ]) .

where we assume uniform distribution of initial conditions, i.e. E[x(0)x(0)T ] = I. The
second expression is easily obtained by the same techniques.

In order to prove Eqn. (10), we recall that normality of Q implies that all pow-
ers of Q, as well as QT and QT Q are diagonalized with the same change of basis.
Moreover, by stochasticity and primitivity of Q, also Q− 1

N 11T (and all its pow-
ers, and its transpose) are diagonalized in that same basis and, denoting the eigen-
values of Q by λ1 = 1,λ2, . . . ,λN , we have that the eigenvalues of Qt − 1

N 11t are
λ1− 1 = 0,λ2− 0 = λ2, . . . ,λN − 0 = λN , so that ‖Qt − 1

N 11t‖2
F = ∑

N
h=2 ‖λh‖2t , and

finally Jx = 1
N ∑

N
h=2 ∑t≥0(‖λh‖2)t = 1

N ∑
N
h=2

1
1−‖λh‖2

.

For the second part of Eqn. (10), note Qt+1−Qt is normal and has eigenvalues
λ t

h(λh−1) for h = 1, . . . ,N, and then conclude with the same technique as above.

3Jx and Ju might be infinite for some choices of Q. A sufficient condition for convergence of both
costs is that Q is doubly-stochastic, GQ is rooted and GQ ∈ Gsl. This is easily proved from Eqn. (9) using

the following property of Frobenius norm: ‖AB‖F ≤ ‖A‖F ‖B‖F. Thus, Jx ≤ 1
N ∑

∞
t=0
∥∥(Q− 1

N 11T )∥∥2t
F =

1
N tr∑

∞
t=0
(
QT Q− 1

N 11T )t
, where the convergence of the last series is ensured by the fact that QT Q is

stochastic (Q being doubly-stochastic) and GQT Q is a subgraph of GQ (thanks to the self-loops in GQ) and thus
inherits its properties. A similar proof can be given also for Ju, after noting that Ju = ∑t≥0 ‖(Q− 1

N 11T )t(Q−
I)‖2

F.
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4.1.2 Steady-state Performance for Noisy or Quantized Consensus

For the consensus algorithm of Eqn. (1), Thm. 1 tells everything about steady-state
performance: when t → ∞, x(t)→ x(∞) := ηT x(0)1, and if Q is doubly-stochastic,
then η = 1

N 1. However this is no longer true if there is noise in the consensus process,
or quantization in the exchanged messages.

In the presence of noise within the successive iterations of the consensus algorithm,
the steady state can be different from the average of the initial values, despite Q being
doubly-stochastic. Here we present a case analyzed in [64], where the noise is additive.

Consider the following consensus algorithm affected by noise:

x(t +1) = Qx(t)+ v(t) ,

where {vi(t)} are noises uncorrelated w.r.t. both i and t, with zero mean and unit vari-
ance. Consider the case when Q is doubly-stochastic, so that, for any initial condition
x(0), 1T E[x(t)] = 1T x(0) for all t, and E[x(t)]→ 1

N 1T x(0). However, it is clear that
the average-preserving property, and the convergence to 1

N 1T x(0) are true only in ex-
pectation, and not for all realizations of the noise process. Thus, it is more reasonable
to define the error as the distance from current average δ (t) = x(t)− 1

N 11T x(t)) rather
than distance from average consensus, which might not even exist. Hence, the relevant
average quadratic cost is here defined as

Jnoisy := lim
t→∞

1
N

E
[
‖x(t)− 1

N 11T x(t)‖2]
Notice that Jnoisy turns out to be the same as the cost Jx introduced when studying

the LQ-cost. In fact, note that

x(t) = Qtx(0)+
t−1

∑
s=0

Qsv(t−1− s) ,

so that δ (t) = (Qt − 1
N 11T )x(0)+

t−1

∑
s=0

(Qs− 1
N 11T )v(t−1− s) . Thus, by the statistical

assumptions on the noises (zero-mean, uncorrelated, unit variance):

E
[
‖δ (t)‖2]= ‖(Qt − 1

N 11T )x(0)‖2

+2
t−1

∑
s=0

x(0)T (Qt − 1
N 11T )T (Qs− 1

N 11T )E[v(t−1− s)]

+
t−1

∑
r,s=0

tr
{
(Qr− 1

N 11T )T (Qs− 1
N 11T )E[v(t−1− r)v(t−1− s)]

}
= ‖(Qt − 1

N 11T )x(0)‖2 +
t−1

∑
s=0

tr(Qs− 1
N 11T )T (Qs− 1

N 11T )

When t → ∞, the first term goes to zero, while the sum becomes an infinite sum, thus
ending the proof.
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A similar cost has been considered in [29], where however the noise was used as a
model for quantization error, and thus noise appears in the equation in a different way,
as follows:

x(t +1) = Q[(x(t)+ v(t)]− v(t)

The fact that noise is multiplied by Q takes into account that the quantization error is
within all messages passed to neighbors, while the substraction −v(t) is possible, as
every agent knows its own quantization error, and is useful for avoiding accumulation
of errors over time: in this way, the average 1

N 1T x(t) is kept constant.
As in the previous case, the assumption is that vi(t)’s are uncorrelated with respect

to both i and t, and have zero-mean and unit variance, and Q is doubly-stochastic, so
that Ex(t)→ 1

N 1T x(0). Again the relevant cost is the variance of the distance from
consensus δ (t) = x(t)− 1

N 11T x(t), in the limit of infinite number of iterations:

Jquantiz := lim
t→∞

1
N

E
(
‖x(t)− 1

N 11T x(t)‖2)
Clearly, due to the different update equation for x(t), this will result in an expression
for Jquantiz different from the one for Jnoisy; it turns out that Jquantiz is equal to the cost
Ju defined when dealing with the LQ-cost.

To prove this, notice that

x(t +1) = Qtx(0)+
t−1

∑
s=0

Qs(Q− I)v(t−1− s)

so that δ (t +1) = (Qt − 1
N 11T )x(0)+

t−1

∑
s=0

(Qs+1−Qs)v(t−1− s).

By exploiting linearity of expectation and of trace, and the fact that arguments of
the trace can be cyclically permuted, together with the assumptions on the noise, we
get

E
(
‖δ (t)‖2)= ‖(Qt − 1

N 11T )x(0)‖2 +
t−1

∑
s=0

tr
{
(Qs+1−Qs)T (Qs+1−Qs)

}
By taking the limit for t→∞, the first term goes to zero, while the summation becomes
an infinite sum, giving Jquantiz = 1

N ∑t≥0 ‖Qt+1−Qt‖F and thus ending the proof.

4.1.3 Performance of Static Estimation Algorithm

Consider the static estimation problem described in Sect. 3.1, but in the simplest case,
when all sensors have the same variance σ2 = 1. In this case, the best estimate is
the average, θ̂MV = 1

N 1T x(0) and the sensors can compute it in a distributed way by
simply using a consensus algorithm x(t + 1) = Qx(t), for some stochastic matrix Q.
What is peculiar to this setting, is that the focus is not on how precisely the average is
computed, but on how good the estimate of θ is. In fact, knowing that x(t) converges to
x(∞) = ηT x(0)1 does not answer the questions on how well is θ estimated by x(∞) if
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the matrix Q is not doubly-stochastic and on how well is θ estimated after t iterations
of the algorithm.

To address these questions, we consider the estimation error e(t) := x(t)−θ1. To
answer the first question, let us first notice that, if Q is doubly-stochastic, then x(∞)
is the average of the measurements, i.e., x(∞) = θ̂MV1, and θ̂MV has zero-mean and
variance 1

N . If Q is not doubly-stochastic, then it is interesting to study the error; it is
easy to see that e(∞) = 1ηT v, and so E[e(∞)] = 0, while its covariance matrix is

E
[
e(∞)e(∞)T ]= 1η

T E
[
vvT ]

η1T = 1‖η‖21T = ‖η‖211T ,

i.e., each sensor’s final estimate has variance ‖η‖2. Notice that 1/N ≤ ‖η‖2 ≤ 1, since
‖η‖1 = 1.

Now let us turn our attention to the more interesting problem of understanding how
well θ is estimated after a finite number of iterations, t, studying e(t). More precisely,
the relevant performance measure is the average quadratic error, defined as

Jestim(t) := 1
N E
[
‖x(t)−θ1‖2]

This cost can be re-written as:

Jestim(t) = 1
N tr[(QT )tQt ]

and, if Q is normal, the expression simplifies as follows:

Jestim(t) = 1
N ∑

λ∈Λ(Q)
|λ |2t . (11)

To prove the first claim, note that

Jestim(t) = 1
N E
[
‖Qtx(0)−θ1‖2]= 1

N E
[
‖(Qt − I)θ1+Qtv‖2]= 1

N E
[
vT (Qt)T Qtv

]
from which the claim follows by taking the trace and cyclically permuting its argu-
ments, recalling that E[vvT ] = I. Then the simplified expression for normal Q is imme-
diate.

4.1.4 Distributed Kalman Filter

Consider the distributed Kalman filter presented in Sect. 3.7, and in particular its scalar
version described in Eqn. (8). There are different ways of analyzing performance of
such algorithm. One interesting performance index is the asymptotic quadratic estima-
tion error, defined as:

JK,est := 1
N lim

t→∞
E
[
‖x̂(t|t)− x(t)1‖2]

This cost can be re-formulated as follows:

JK,est =
q(1− `)2

1− (1− `)2 + 1
N

∞

∑
s=0
‖(1− `)sQsm‖2

F
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and, in the case when Q is normal, the following easier characterization holds true:

JK,est =
q(1− `)2

1− (1− `)2 +
r`2

N ∑
λ∈Λ(Q)

1
1− (1− `)2|λ |2m .

Another relevant performance metric is the asymptotic quadratic prediction error

JK,pred := 1
N lim

t→∞
E
[
‖x̂(t|t−1)− x(t)1‖2] ,

which can be re-written as

JK,pred =
q

1− (1− `)2 +
r`2

N

∞

∑
s=0

∥∥∥(1− `)sQ(s+1)m
∥∥∥2

F

and, for normal Q, is also equal to

JK,pred =
q

1− (1− `)2 +
r`2

N ∑
λ∈Λ(Q)

|λ |2m

1− (1− `)2|λ |2m .

The techniques used for obtaining the simplified expressions are similar to those
shown for the costs previously presented and details can be found in [14].

4.2 Evaluation and Optimization of Performance Indices
Clearly any performance index can be numerically computed for a given matrix Q, and
gives a way of comparing the quality of different choices for Q. However, there are
two research lines which lead to interesting results using some performance index. A
first line concerns optimization of a chosen cost among all matrices Q consistent with a
given communication graph. A second interesting direction is the study of the different
costs for some relevant families of graphs and matrices, in particular for large-scale
graphs. The more classical results in this two directions when the performance index
is the essential spectral radius are discussed in Section 2.2.

Providing a comprehensive summary of the results is beyond the scope of this chap-
ter: we give here some examples, so as to illustrate some curious or unexpected results
and motivate the need for different performance metrics, and then we give pointers to
some relevant literature, with the disclaimer that —this being a very recent and still
active research area— our reference list will surely turn out to be incomplete.

An interesting work on design of the entries of Q for a given graph by optimization
of a cost different from esr(Q) is Xiao et al. [64]. Here noisy consensus is analyzed,
so that the relevant metric is Jnoisy = Jx. The authors show that the problem of finding,
for a given graph and among all symmetric choices of weights, the weights minimizing
Jnoisy, is a convex optimization problem, and they provide efficient (although central-
ized) algorithms for its solution. They also compare numerically, for various graphs
topologies, the three costs Jnoisy obtained with the optimal Q, with the Q minimizing
esrQ and the simple Metropolis rule; for some topologies the difference is significant,
while for other graphs the three results are very similar.
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Another example is Carli et al. [14], where the problem of optimizing JK,pred for
a given graph among normal matrices is examined. The first interesting result is that
symmetric matrices are indeed optimal, and then, the authors prove that, for fixed `,
the optimization problem among symmetric matrices is convex in Q; however, despite
the problem being also convex in `, it is not jointly convex in Q and `. Then simplified
problems (under the limit for infinite communication or for small measuerement noise)
are studied more in detail.

The optimality of de Bruijn graphs with respect to convergence speed, among all
graphs with bounded in-degree, is confirmed, at least asymptotically in N and for small
ε , also when the LQ cost is considered [23].

Another approach which is receiving much attention is the study of asymptotic per-
formance in large-scale graphs. The idea is to consider families of graphs of increasing
size, sharing the same common properties (in some sense that will be specified in the
examples, having the same shape), and to analyze how the cost scales with the number
of nodes. This is more an analysis than a design problem, but it gives useful hints on
the number of nodes. Here we present a simple example.

Example 1 (Circle) Consider a graph GN consisting of a circle o N nodes, where each
node has a self-loop and an outgoing edge towards its neighbor on the right. Consider a
coefficient 1/2 on each edge, so that QN = circ(1/2,1/2,0, . . . ,0) is a circulant matrix.
Because GN is circulant, we know that it is normal, and we can easily compute its
eigenvalues: Λ(QN) = { 1

2 + 1
2 ei 2π

N h, h = 0, . . . ,N−1} [17]. Thus, the essential spectral
radius is

esr(QN) = |λ 2
1 |=

√
1
2 (1+ cos( 2π

N )) = 1− π2

N2 +O( 1
N4 ) for N→ ∞ .

Now we can plug the expression for the eigenvalues in Equations (10) and (11). Then,
an explicit computation (see e.g. [19]) gives that

Ju = 1− 1
N

while some careful upper and lower bounds (see e.g. [20]) show that

c1N ≤ Jx(QN)≤ c2N and c3 max
{

1
N , 1√

t

}
≤ Jestim(QN , t)≤ c4 max

{
1
N , 1√

t

}
,

where c1,c2,c3,c4 are positive numbers independent of N.
It is interesting to compare the performance of the circle with that of a complete

graph, i.e., with the case Q′N = 1
N 11T , where in one step the exact average is computed.

It is easy to see that the eigenvalues of Q′ are 1 with multiplicity 1 and 0 with multi-
plicity N− 1, so that esr(Q′N) = 0, Jx(Q′N) = 1− 1

N , Jestim(Q′N , t) = 1
N for all t ≥ 1).

Intuitively, performance of the circle is much worse, because of the slow flow of infor-
mation, as opposed to the complete exchange of messages in one single iteration for the
complete graph. This intuition is confirmed for most performance indices; however, it
is interesting to note that Jx(QN) = Jx(Q′N) is actually the same as for the circle and
for the complete graph, thus showing that a different choice of performance metric can
lead to significantly different results.
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The key point that allows to study the example of the circle is the fact that an
expression for the eigenvalues is easily found, thanks to the algebraic structure of Q,
which is circulant. The same can be done more in general, for the case of circles
with more edges towards neighbors (giving rise to different circulant matrices) and for
higher dimension, where the underlying algebraic structure is that of Cayley graphs,
Cayley matrices and discrete Fourier transform over Abelian groups (see e.g. [17]).
The result presented in [20] concerns grids on d-dimensional torus, or grids on d-
dimensional cubes with some assumptions of symmetry of the coefficients and suitable
border conditions, and in both cases with local neighborhoods (bounded difference
among labels of nodes connected by an edge). It states that

c1 fd(N)≤ Jx ≤ c2 fd(N) and c3 max
{

1
N , 1

(
√

t)d

}
≤ Jestim(t)≤ c4 max

{
1
N , 1

(
√

t)d

}
,

where f1(N) = N, f2(N) = logN and fd(N) = 1 for all d ≥ 3, and where c1,c2,c3,c4
are positive numbers independent of N.

The study of Cayley graphs, although motivated by the algebraic structure that al-
lows to tackle the analysis, is interesting, because they are a simplified and idealized
version of communication scenarios of practical interest. In particular, they capture
the effects on performance of the strong constraint that communication is local, not
only in the sense of a little number of neighbors, but also with a bound on the distance
among connected agents. The study of more irregular and realistic scenarios of com-
munication with geometric constraints is the subject of on-going research, where two
main directions are being explored. On the one side, there is an interest in the ran-
dom geometric graph model (points thrown uniformly at random in a portion of space
and edges among all pairs of vertices within a given distance r), for which simulations
show a behavior very similar to that of a grid (see e.g. [20]), but a rigorous theory is
still missing: most of known results concern only the essential spectral radius and not
all the spectrum. On the other side, there is the idea to study perturbations of known
graphs; this is completely different from traditional theory of perturbation of matrices,
because here perturbations are not continuous, and are little in the sense that only few
edges (with respect to the graph size) are removed or added or receive different weight.
In this direction, a useful tool (because of its monotonicity properties with respect to
edge insertion) is the analogy between reversible Markov chains and resistive electrical
networks, exploited e.g. in [5].

We conclude this section by presenting in detail an example that clarifies how com-
paring two families of graphs by two different performance measures can indeed sig-
nificantly change the result, leading to a different definition of the ‘best’ graph. This is
a toy example, not very sensible in practice, but easily highlighting which issues can
arise.

Example 2 Let N be an even number, and consider GN a graph consisting of two dis-
connected complete graphs, each on N/2 nodes; Figure 1 (a) depicts G10 as an example.
Associate to each edge a coefficient 2/N, so that QN has the following form:

QN =
[ 2

N 11T 0
0 2

N 11T

]
.
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We would like to compare performance of this QN with the circle presented as Exam-
ple 1, by looking at the essential spectral radius, and then by looking at the estimation
error Jestim. The eigenvalues of QN are simply 1 with multiplicity 2 and the eigenvalue
0 with multiplicity N−2, so that esr(QN) = 1, which is worse than the circle. How-
ever, for all t ≥ 1, Jestim(QN) = 2

N , which is almost as good as the best possible error
(the error variance in the case of centralized estimation, 1

N ), as opposed to the circle
which, for large N, has a very slow convergence.

Behind computation of the eigenvalues, there is an intuitive explanation of what
happens. In the graphs GN , the essential spectral radius 1 describes the fact that the
graph is disconnected, and thus no convergence is possible to the average of all initial
values: simply no information can transit from one group to another; nevertheless, the
estimation error is very good for large N, because it is the average of N/2 measure-
ments, and it is computed very fast, in one iteration, thanks to the complete graph
which gives centralized computation within the group of N/2 agents. Conversely,
in the circle average consensus can be reached asymptotically, as described by the
essential spectral radius smaller than one, but convergence is very slow for large N
(esr= 1− π2

N2 +O( 1
N2 )), and a reasonably good estimation error is achieved only after

a long time.
The readers concerned with the fact that GN is disconnected (and thus violates the

assumptions made throughout this chapter) may consider a slightly modified graph G̃N ,
as shown in Figure 1(b), still associating a coefficient 2/N with each edge; Let us de-
note by Q̃N the matrix so modified. This graph is studied in [10] under the name KN/2−
KN/2 and [10, Prop. 5.1] gives the exact computation of all eigenvalues of Q̃N : Λ(Q̃N)

has 1 with multiplicity 1, 0 with multiplicity N− 3 and then 1
2 −

2
N ±

1
2

√
1+ 8

N −
16
N2

with multiplicity 1 each. Here the single edge connecting the two subgroups of agents
allows only a quite slow convergence (esr(Q̃N) = 1− 8

N2 + O( 1
N2 ), very similar to

that of the circle), while the estimation error becomes very good after few iterations
(Jestim(Q̃N)≤ 3

N for all t ≥ 1).

5 Conclusion
In this chapter we have tried to present a comprehensive view of the linear consensus
algorithms from a control and estimation perspective, by reviewing the most impor-

(a) Graph G10 in Example 2 (b) Graph G̃10 in Example 2

Figure 1: Communication graphs considered in Example 2
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tant results available in the literature, by showing some of the possible applications in
control and estimation, and by presenting which are suitable control-based indices of
performance for the consensus algorithm design.

We believe that much has still to be done in this area, in particular in two directions.
The first direction points to finding which traditional control and estimation problems
can be cast as consensus problems. In fact, although not all problems can be cast
as averages of local quantities, if they can be approximated as so, we could exploit
the effectiveness and strong robustness of consensus algorithms. The second direction
addresses the implications of the new control-based performance metrics for the design
of the consensus algorithms. In fact, as we illustrated with few toy examples, they give
rise to design criteria that can be quite different from the traditional ones.
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