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Abstract—
We study the well known linear consensus algorithm

by means of a LQ-type performance cost. We want to
understand how the communication topology influences
this algorithm. In order to do this, we recall the analogy
between Markov Chains and electrical resistive networks.
By exploiting this analogy, we are able to rewrite the
performance cost as the average effective resistance on a
suitable network. We use this result to show that if the
communication graph fulfills some local properties, then
its behavior can be approximated with that of a suitable
grid, over which the behavior of the cost is known.

I. INTRODUCTION

The last two decades have witnessed a great effort
spent by several scientific communities in the devel-
opment and in the analysis of multi-agents systems.
The large number of simple intercommunicating and
interacting entities can be profitably used in order to
model a number of rather different applications: just to
recall some of them, coordinated control [1], distributed
estimation [2], load balancing [3], sensor calibration for
sensor networks [4].

One of the most studied distributed averaging algo-
rithms is discrete-time linear consensus. In this protocol,
we assume to have N simple agents each of them mem-
orizing a real value xu(t), u = 1, . . . , N at time t ≥ 0.
Moreover, we assume there exists a graph G = (V, E),
in which the set of nodes V can be put in bijective
correspondence with the set of agents (so we can identify
them), and in which there is a directed edge (u, v) if
and only if the agent u can communicate its value xu to
agent v. We call this graph the communication graph.

The goal of linear consensus is to drive each agent to
asymptotically reach the same value. Let Nu to be the
set of neighbors of agent u (not containing u itself), and
stack all the xu(t)’s in a vector x(t) ∈ RN . We let this
vector evolve as follows

x(t+ 1) = Px(t) (1)

where P is consistent1 with the graph G, and it is
stochastic, namely with non-negative entries and such
that P1 = 1 (1 is a column vector with all entries
equal to 1 and of suitable dimension), aperiodic and
irreducible2. In words, each sensor receives the values
from all its neighbors, and then updates its value with a
convex combination of them and its previous one. It is
well known that, under the given assumptions, we have

xu(t)
t→∞−→ α, ∀u = 1, . . . , N

with α = πTx(0), where πT is the left invariant
normalized eigenvalue of P , namely πTP = πT and
πT1 = 1.

In this paper we put several constraints on P and G.
First of all, we assume G to be undirected. Concern-
ing P , we shall assume it is symmetric. In this case,
π = N−11 and the algorithm is called average linear
consensus, because the asymptotic value is the average
of the initial conditions.

As recent papers have underlined, the classical perfor-
mance index of P , the convergence speed, is not the only
index for the performance evaluation. Different costs
arise from different problems, and it can be shown by
examples that considering a different performance index
can indeed lead to different optimal graph topologies. In
this paper, we consider an LQ cost which is familiar
to control theorists. We consider the case when the
initial condition is a random variable with zero-mean and
covariance matrix E

[
x(0)x(0)T

]
= I , and we study the

expectation of the norm of the trajectory of the states:

J(P ) :=
1

N

∑
t≥0

E
[
‖x(t)− x(∞)‖2

]
. (2)

1We define the graph GP associated with P as GP = (V, E), with
(u, v) ∈ E if and only if Puv 6= 0. We say that P is consistent with
a graph G is GP is a subgraph of G.

2P is aperiodic if the greatest common divisor of the lengths of all
cycles in its associated graph GP is one. E.g., the presence of a self-
loop implies aperiodicity. P is irreducible if GP is strongly connected,
namely, for all u, v ∈ V , there exists a path connecting u to v.



The same cost arises also in quite different frame-
works, e.g. from consensus algorithm in the presence of
noise [5], or from a formation-control problem [6], and
this relevance in such different scenarios makes it worth
to be studied.

Finding J(P ) for a generical P is obviously just a
matter of computation, so we would prefer to have other
tools to estimate its value. The first goal of this paper
is to unveil the role played by the graph topology by
showing how the computation of J(P ) is equivalent to
the computation of the average effective resistance in a
suitable electric network. The second main goal is to use
this result in order to estimate J(P ) for an entire family
of graphs, which we call geometric graphs. Intuitively,
these graphs are “perturbed grids”, and in fact we will
show in Sect. V that J(P ) in such a graph is, up to
multiplicative constants, the same as in a grid.

II. LINEAR ALGEBRA PRELIMINARIES

In this section we are going to present some basic
linear algebra facts which will be useful throughout the
paper.

We call a matrix L ∈ RN×N a Laplacian matrix ifLij < 0 i 6= j

L1 = 0
. (3)

Under the assumption that the graph associated with
L is strongly connected, it is well-known [7] that
dim kerL = 1. This implies that also the left kernel
of L has dimension 1: let πT the unique vector such
that πTL = 0 and πT1 = 1.

It is easy to see that the matrix

L̄ :=

[
L 1

πT 0

]
is invertible. To solve the problem of finding the inverse,
we use the notion of Green matrix of the Laplacian L.

Definition 2.1: Let L be a Laplacian matrix such that
L1 = 0 and πTL = 0, where πT1 = 1. Then, the
Green matrix of L is the unique matrix X such thatXL = I − 1πT

X1 = 0
. (4)

The following proposition is just a matter of compu-
tation.

Proposition 2.1: The inverse of L̄ is

L̄−1 =

[
X 1

πT 0

]
, (5)

where the matrix X is the Green matrix of L.
These notions are particularly useful in the case when

L is the Laplacian matrix associated with a Markov
chain. Let P be a stochastic matrix (and thus it can
be interpreted as the transition probability matrix of a
Markov chain), and define LP := I−P . It is immediate
to check that LP is indeed a Laplacian matrix as defined
above. It is also easy to verify that the Green matrix of
LP , which without confusion we will call the Green
matrix of P , is given by the following expression.

Lemma 2.1: The Green matrix of P is

X =
∑
t≥0

(
P t − 1πT

)
, (6)

where π is the left normalized eigenvector of P relative
to the eigenvalue 1.

In the particular case when P is symmetric (and hence
the same holds for L), we have the following expression
for X:

X =
∑
t≥0

(
P t − 1

N
11T

)
. (7)

In the next two sections we are going to show

• How X is related to the effective resistances of an
electrical network defined in a suitable way.

• How X is related to the performance cost for the
consensus algorithm we want to study.

III. ELECTRICAL ANALOGY

In this section, we present an analogy between resis-
tive electrical networks and reversible Markov chains,
i.e., Markov chains such that the invariant measure πT

and the transition matrix P satisfy the relation

πuPuv = πvPvu ∀u, v .

This analogy, first noticed by Doyle and Snell in [8],
allows simpler proofs for some properties of the Markov
chain, and a physical intuition. Here, we will focus our
attention on Markov chains with symmetric P , which
are clearly a particular case of reversible chains.

We define a resistive electrical network as a pair
(G, C), or equivalently (G, R), where:

• G is an undirected graph (without self-loops), with
N vertices, and M edges;

• C and R are two functions associating to each
edge of the graph a strictly positive number, called
respectively the conductance and the resistance of
the edge, one the inverse of the other.

Actually, we can consider any non-existing edge to be
given zero conductance or infinite resistance.



We will use the notational convention to see G as
a directed graph G = (V, E), where each undirected
edge is replaced by two directed edges, one for each
direction, so that |E| = 2M . With this notation, the
conductance is a function C : E → [0,+∞) such that
C((u, v)) = C((v, u)) for any edge (u, v). We will use
two functions h : E → V and t : E → V to denote
the head (starting vertex) and the tail (ending vertex) of
each directed edge, respectively. We define the incidence
matrix A ∈ {0,±1}2M×N as follows

Aeu =


−1 if u = t(e)

1 if u = h(e)

0 otherwise

Finally, we define the matrix C ∈ R2M×2M as a diagonal
matrix, where the diagonal entries are the conductances,
namely Cee = C(e) for all e ∈ E . It is now immediate
to obtain

[ATCA]uv =


2cu if u = v

−2C(e) if (u, v) = e ∈ E

0 if (u, v) /∈ E

,

where cu :=
∑
e|u=t(e) C(e) is the sum of all the

conductances of the edges incoming in u.
From the matrices A and C is it possible to construct

reversible Markov chains with any prescribed invariant
measure π. We will focus here on the construction of
symmetric matrices, i.e., with π = 1

N 1. To this aim,
simply define L := 1

2A
TCA, and notice that this is

indeed a symmetric Laplacian; its associated Markov
chain is clearly given by P = I −L. In order to assure
P to have all non-negative components, we should write
P = I − 1

cL, with c =
∑
u, v C(u, v): for simplicity

and without loss of generality, we consider c = 1. Vice-
versa, from any reversible Markov chain it is possible to
construct a corresponding electrical network (unique, up
to normalization of the total sum of conductances in the
network); for symmetric P , the construction is simply
to re-use the same graph associated with P (except self-
loops), and to let C((u, v, )) = Puv for any non-zero
entry of P .

We define, as usual, the effective resistance between
to nodes u and v in the electric network (G, C) the
quantity

Ruv(G, C) =
vu − vv

I
,

where vu and vv are the potentials at nodes respectively
u and v when we inject a current of value I in u and we

extract the same from v. We are now going to show how
to obtain the effective resistances between any two nodes
from the Green matrix X of the Laplacian L = 1

2A
TCA,

following a line which is very close to the arguments
used in [9].

Under full generality, suppose i ∈ RN is such that
iT1 = 0: the entries of i represent the current which is
injected (or extracted if negative in sign) in each node
of the network. For example, if we inject I ampere in
node u and extract I ampere from node v, we have
i = I(ev − eu), where ek denotes the element of the
canonical base of RN having a one in position k.

Let now j ∈ RM be a vector such that

AT j = i : (8)

we call j a flow through the network satisfying i, in
the sense that, if j is seen as an edge-valued function,
it respects Kirchhoff’s law in each node. Moreover, we
say j is a current if there exists v ∈ RN such that

CAv = j (9)

and we call v the potential on the network. Using Eq. (8)
and Eq. (9) we obtain

ATCAv = i =⇒ Lv =
1

2
i. (10)

We say we can solve the electrical network if we are
able to find out a suitable v and consequently a suitable
j which respect Eq. (8) and Eq. (9). In order to obtain
an unique solution for Eq. (10), let’s consider the vector
π = 1

N 1, and assume for the potential the following
constraint

πTv = 0. (11)

Because π is not orthogonal to 1, this allows v to be
uniquely determined. Observe now that, using Eq. (10)
and Eq. (11), we obtain the following equation which
solves the electric network:[

L 1
1
N 1T 0

][
v

0

]
=

[
1
2i

0

]
. (12)

Recall now from Sect. II that from Eq. (5) we immedi-
ately obtain

v = X
1

2
i.

Now, set i = eu − ev , so that

vu − vv = iTv = 1
2i
TXi.

Because the value of injected current is I = 1, this yields
to

Ruv(G, R) = 1
2 (eu − ev)TX(eu − ev). (13)



A. The properties of effective resistance

As we will show in the next section, the effective
resistances in the electric network defined above can
be used in order to compute the performance cost for
the consensus algorithm. This seems actually extremely
appealing because effective resistances show both a
monotonicity law and a substantial invariance for h-
fuzzing and re-scaling, as stated in the following lem-
mas.

The following first theorem is called Rayleigh’s
monotonicity law, and it basically says that if in an elec-
tric network we add edges or we reduce the resistance in
any edge, the effective resistance cannot increase, while
if we cut edges or increase the resistance of any edge,
the effective resistance cannot decrease. The statement
is essentially taken from [10], where the authors referred
to a more general case.

Theorem 3.1 (Rayleigh’s monotonicity law): Let
(G, R) and (G̃, R̃) be two electric networks such that
G has the same nodes and a subset of the edges of G̃,
and R(e) ≥ R̃(e) for every common edge of the two
graphs.

Then, the effective resistances between any two nodes
in the two networks are such that

Ruv(G, R) ≥ Ruv(G̃, R̃). (14)
Remark 3.1: It is intuitive and not difficult to show

that in a network with all the resistances equal to r0,
the effective resistance between two generic nodes is
exactly r0 times the effective resistance among the same
nodes, in the same graph but having set all resistances
equal to 1. This, together with Rayleigh’s monotonicity
law, implies that the effective resistance in an effective
network is essentially due to the graph topology. This
justify the notation Ru, v(G) which we will use to
denote the effective resistance on the graph G, when
all the resistances are set to 1 Omh, while we denote by
Ruv(G, C) the effective resistance between two nodes
in a network with general conductances C. If C is such
that all the resistances 1/C(e) belong to an interval
[rmin, rmax], then we will have that

rminR(G)u, v ≤ Ruv(G, C) ≤ rmaxRuv(G) .

Let’s restrict, now, to the case of unitary resistances.
The following lemma deals with h-fuzzing. Given an
integer h ≥ 1, we say that a graph G(h) = (V (h), E(h))
is the h-fuzz of another graph G = (V, E) if V (h) = V ,
namely they share the same set of nodes, and there is

an edge from u to v in G(h) as soon as the graphical
distance3 from u to v in G is less than or equal to h.
The extreme cases are h = 1, for which the 1-fuzz is
simply the original graph, and h ≥ D, D diameter of
the original graph, for which the h-fuzz is the complete
graph.

Lemma 3.1: Let h ∈ Z, h ≥ 1, and G = (V, E)

be a graph, and assume G(h) = (V, E(h)) to be its h-
fuzz. Then, given e ∈ E , define µ(e) as the number of
paths of length at most h passing through e in G, and
µ = maxe µ(e). We have

1

hµ
Ruv(G) ≤ Ruv(G(h)) ≤ Ruv(G).

Remark 3.2: Observe that if in the graph G each node
has at most δ neighbors, then µ ≤ δh.

IV. PERFORMANCE OF CONSENSUS ALGORITHM IN

TERMS OF EFFECTIVE RESISTANCES

In this section, we are going to show how to rewrite
the LQ cost J(P ), which evaluates the performance of
the consensus algorithm, in terms of effective resistances
of a suitable electrical network.

We recall that, given the consensus protocol

x(t+ 1) = Px(t)

the performance measure we want to evaluate is

J(P ) :=
1

N

∑
t≥0

E
[
‖x(t)− x(∞)1‖2

]
,

where the expectation is with respect to the random
initial condition. Under the assumption that the ini-
tial condition has zero-mean and covariance matrix
E
[
x(0)x(0)T

]
= I , it is easy to show (see [11]) that,

for symmetric P ,

J(P ) =
1

N
Tr
∑
t≥0

[
P 2t(I − 11T )

]
. (15)

Now construct an electrical network associated with the
matrix P 2 in the following way. As a graph, consider
the graph associated with P 2; notice that, thanks to the
assumption that P has all self-loops, this graph is exactly
the 2-fuzz of the graph GP associated with P . Then set
the conductances to be C ((u, v)) = [P 2]u,v for all edge
(u, v).

Theorem 4.1: Given a stochastic, symmetric, aperi-
odic and irreducible matrix P , the associated LQ cost

3The graphical distance between two nodes in a graph is the length
(number of edges) of the shortest path connecting them.



defined in Eq. 2 is equal to

J(P ) = R :=
1

N2

∑
u6=v
Ruv, (16)

where Ruv denotes the effective resistance between
nodes u and v in the above-constructed electric network
associated with P 2. Namely, J(P ) is the average of the
effective resistances in the whole network.

Proof: Consider the Laplacian of the matrix P 2,
L = I −P 2. Having built the electric network as in the
statement of the theorem, it turns immediately out that,
being A the incidence matrix of the graph underlying
the network, we have L = 1

2A
TCA.

Recalling the definition of the Green matrix in Eq. (6),
we easily observe that Eq. (15) gives

J(P ) = 1
N TrX

where X here denotes the Green matrix of P 2. Now
we can conclude by exploiting the relationship between
effective resistances and Green matrix∑
u6=v
Ruv =

1

2

∑
u 6=v

(eu − ev)TX(eu − ev) = N TrX

where we used the fact that X1 = 0. This immediately
yields

J(P ) =
1

N
TrX =

1

N2

∑
u 6=v
Ruv,

which is the thesis.
Remark 4.1: The previous result easily yields that

under mild assumptions the cost J(P ) is mainly due to
the topology of the graph GP associated with P . In fact,
let us denote by (GP 2 , C) the above-constructed electric
network associated with P 2, and call R(GP 2 , C) and
R(GP 2) the average effective resistances in the networks
whose graph is GP 2) and with conductances respectively
given by C and all set to 1. By Thm. 3.1 and Remark
3.1, we have

rminR(GP 2) ≤ R(GP 2 , C) ≤ rmaxR(GP 2),

where rmin and rmax are respectively the smallest and
the largest resistances in (GP 2 , C). Now we recall that
GP 2 is the 2-fuzz of GP , and so, using Lemma V-B, we
have

rmin

2µ
R(GP ) ≤ R(GP 2 , C) ≤ rmaxR(GP ),

so the middle term, which by Theorem 4.1 is equal
to J(P ), depends on the topology of GP only, up to
constants. For this reason, given a graph G, we will
from now on often refer to the cost of G, meaning the

“characteristic behavior” of the cost for any P associated
with G. Observe that the bound depends on µ and hence,
from 3.2, on the number of neighbors, which, for large
scale graphs, should remain bounded. This assumption
is rather mild, and it is satisfied in our application at
Sect. V

V. EXPLOITING LATTICES

In this section we are going to apply the previous
results in order to show how to estimate the cost J(P )

in the case its associated graph GP is what we call a
geometric graph. Here we refer to geometric graphs as
graphs which can be thought to have a “real” coun-
terpart, deployed in an hypercube in Rd, as explained
below. The goal is to show that, for what attains to the
performance cost (see Sect. IV), G can be approximated
with two suitable grids, whose dimensions depend only
on some geometric parameters characterizing GP .

A. Geometric graphs: definitions and main result

Let’s consider a connected undirected graph G =

(V, E) such that V ⊂ Rd and |V | = N . Let’s moreover
assume that Q ⊂ Rd is an hypercube of edge length `

in Rd such that V ⊂ Q, namely such that Q contains
every node of the graph.

Following [10], we define over G and Q the following
parameters:

• the minimum Euclidean distance4 between any two
nodes:

s = inf
u, v∈V, u6=v

{dE(u, v)} ; (17)

• the maximum Euclidean distance between any two
connected nodes:

r = sup
(u, v)∈E

{dE(u, v)} ; (18)

• the radius, γ, of the largest ball centered in Q not
containing any node of the graph:

γ = max {r|B(x, r) ∩ V = ∅, ∀x ∈ Q} ; (19)

• the minimum ratio between the Euclidean distance
of two nodes and their graphical distance,

ρ = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
. (20)

The main result of this section is the following.

4Given a generic graph G = (G, E) and two nodes u, v ∈ G

deployed in Rd, we will denote with dE(u, v) the Euclidean distance
between u and v (in Rd), and with dG(u, v) their graphical distance
(in G).



Theorem 5.1: Assume P to be a stochastic, symmet-
ric, aperiodic and irreducible matrix, associated with
a geometric graph GP = (V, E), and assume all the
nonzero entries of P lie in an interval [pmin, pmax].
Moreover, assume that V ⊂ Q ⊂ Rd. Then there exist
two lattices, L1 and L2 (intuitively, a rougher and a finer
version of G), such that

k1 + q1R(L1) ≤ J(P ) ≤ k2 + q2R(L2), (21)

where q1, q2, k1 and k2 depend on the geometric
properties of G, i.e. s, r, γ, ρ, and on pmin and pmax only,
and where we recall that R(L1) and R(L2) denote the
average effective resistances in L1 and L2 (with unitary
resistances).

Due to Remark 4.1, to prove the theorem we only
need to show that the following inequality holds true

k̄1 + q̄1R(L1) ≤ R(G) ≤ k̄2 + q̄2R(L2). (22)

for another set of constants.
The power of this result lies on the fact that J(P ) is

known for some families of highly structured matrices.
In particular, in the case GP is a d-dimensional grid
with N vertices, we know [5], [6] that J(P ) grows
linearly in N if d = 1, logarithmically if d = 2, and
is constant if d ≥ 3. By Remark 4.1, knowledge of
J(P ) can be used to bound the R̄(GP ): the two will
behave, up to multiplicative constants, in the same way.
Thus, we can say that the average effective resistances
of d-dimensional grids grow with the same behaviors as
above.

The contribution of the theorem is to show that
actually the same behaviors extend also to the geometric
graphs. In the following section we will show how to
obtain the upper bound of Eq. 22, the lower being
analogous.

B. An upper bound

We tessellate the hypercube Q in order to obtain a
rough approximation of G, and then compute the bound
for the effective resistance. As it is done in Fig. 1 define
γ` := `

b `γ c
, where γ is defined in Eq. 19. Consider now

the (exact) partition of Q made by hypercubes of edge
length 2γ`.

Denote by VL the set of the centers of such hyper-
cubes. We consider the lattice L = (VL, EL) where
EL = {(uL, vL) ∈ VL × VL| dE(uL, vL) = 2γ`}. Ob-
serve that γ` > γ but, because ` > γ, also γ` ≤ 2γ.
We denote QuL the hypercube whose center is uL.

2γ`
2γ

`

γ

uL
η(uL)

u

Fig. 1. The lattice L constructed for the upper bound. Black dots
are the vertices of G. Crosses are the centers of the squares forming
the tessellation of Q, i.e., the vertices of L. The dashed circle is the
largest ball centered in Q which does not contain any vertex of G, so
that its radius defines γ.

The key idea is that this lattice is constructed in such
a way that it is isomorphic to a subgraph of a suitable h-
fuzz of G. The first step is to associate vertices of L with
a subset ṼL ⊆ V . By definition of γ, the construction
of L is such that the following lemma holds true.

Lemma 5.1: For each uL ∈ VL, there exists v ∈ V
such that v ∈ QuL .

In words, every hypercube in the partition we have
constructed contains at least one element of V . Let’s
now define a map η : VL → V which assigns to each
uL ∈ VL and arbitrarily chosen (but fixed) element of
V contained in the corresponding hypercube QuL . By
Lemma 5.1, this map is well-defined and injective by
construction, and in general not surjective. Let ṼL :=

η(VL). Moreover, we define a map φ : V → ṼL which
associates to any vertex u ∈ V the vertex (also in
V ) which has been selected as the representant of the
hypercube in which u lies, namely φ(u) = η(uL) if
u ∈ QuL . An example of this can be seen in Fig. 1,
where η(uL) is also φ(u) (not reported in the figure for
clarity).

The first thing we want to obtain is an embedding
of L in a suitable h-fuzz G(h) = (V, E(h)) of G: in
order to do this, we must be sure that an edge in
EL has a correspondent in E(h). Let’s say (uL, vL) ∈
EL: a simple observation allows us to conclude that
dE(η(uL), η(vL)) ≤ 2

√
d+ 3γ`, where d is the dimen-

sion. Let’s now use the parameter ρ, defined in Eq. 20.



By definition, for each pair (u, v) ∈ V 2,

ρ ≤ dE(u, v)

dG(u, v)
⇒ dG(u, v) ≤ 1

ρ
dE(u, v)

and so

dG(u, v) ≤ 2
√
d+ 3γ`
ρ

≤ 4
√
d+ 3γ

ρ
.

If we take h = d 4
√
d+3γ
ρ e, then surely in E(h) there ex-

ists the edge (η(uL), η(vL)), which is what we wanted.
Let’s now bound “how far”, graphically, the generic

node v of V can be from ṼL. Clearly, if v ∈ ṼL, this
graphical distance is zero. If this is not the case, let uL
be such that v ∈ QuL and let u = η(v). Because it
is clear that dE(v, u) is at most 2

√
dγ`, their graphical

distance is bounded by

dG(v, u) ≤ 1

ρ
dE(v, u) ≤ 2

√
dγ`
ρ

≤ 4
√
dγ

ρ
≤ 4
√
dγ

ρ
= h,

so

dG(h)(v, u) ≤ 1.

So, dG(h)(v, ṼL) ≤ 1, ∀ v ∈ V .
Remark 5.1: This actually just means that all the

nodes in the h-fuzz which are in the same QuL are
connected by an edge

What we have proved by now is that L ⊆ G(h),
up to an isomorphism. Assume u, v ∈ V , and assume
u = φ(u) and v = φ(v), uL = η−1|ṼL

(u) and vL =

η−1|ṼL
(v). The first step in order to prove the upper

bound in Eq. 22 is to recall the result from Lemma :

Ruv(G) ≤ hµRuv(G(h)). (23)

What we want to do now is to bound the average
R(G(h)) making use of R(L), and this will yield the
result.

In order to do this, remember that the effective re-
sistance is a distance, that each resistor is unitary and
that Ruv(G(h)) ≤ dG(h)(u, v). We obtain, by direct
computation,

Ruv(G(h)) ≤ 2 +RuLvL(L).

Using Eq. 23, we have thus

Ruv(G) ≤ 2hµ+ hµRuLvL(L). (24)

Making use of the h-fuzz, we have thus obtained a direct
bound between the effective resistance in the original
graph and the effective resistance in a lattice.

Averaging now over any possible pair of nodes both
in G and in L, we have the upper bound in 22,

R(G) ≤ 2hµ+ hµαβR(L) (25)

where

• α = maxuL

{
|φ−1(η(uL))|

}
: this is surely

bounded by the maximum number of nodes which
can be put inside a square of edge length γ` < 2γ,
which does not depend on N but only on the
geometric parameters of the graph;

• β = |ṼL|2
N2 : note |ṼL| is proportional to N by a

constant related to γ. So, we can assume β to be
constant in the number of nodes too.

VI. CONCLUSIONS AND FUTURE WORK

In the paper we have shown how to relate a LQ-type
cost for the consensus algorithm to the average effective
resistance in a suitable network. The monotonicity prop-
erties of the effective resistances yield, under some mild
assumptions, the cost only depends on the communica-
tion topology, and not on the particular way the nodes
use their information. We have applied this reasoning
in order to show how to bound the performance of a
generic geometric graph in an hypercube with those of
two lattices.
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