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Abstract— In this paper we study the ML error probability of
serially concatenated schemes averaged over different interleaver
ensembles. We prove asymptotic results when the interleaver
length goes to infinity: differently from the parallel case, the
choice of the ensemble can change the decreasing speed of error
probability.

I. INTRODUCTION

The uniform interleaver is a standard technique introduced

by Benedetto and Montorsi [1] in order to analyze the perfor-

mances of turbo codes: as the complexity of the analysis of a

single concatenated code is too big, they fixed the component

encoders and the interleaver length N and considered an

interleaver uniformly drawn from the set of all permutations

of N elements. By this approach, they studied the average

error probability of parallel turbo codes, and particularly they

provided asymptotic results when interleaver length N goes

to infinity in the form of an upper bound to the average bit

error probability: Pb(e) ≤ CN−1 for some positive constant C
only depending on the component encoders and on the channel

signal-to-noise ratio (SNR). This bound is tight, as shown in

[3], in the sense that1 Pb(e) � N−1.

An analogous study has been carried out also for serial turbo

codes, (see [2], [6] and [5]); the result is that average bit and

word error probabilities satisfy

Pb(e) � N−�(do
f+1)/2� and Pw(e) � N−�(do

f−1)/2� (1)

where do
f is the free distance (minimum Hamming weight) of

the outer encoder.

Naturally the question arises if we can find some permu-

tations which give better performances than the average. A

way to study this problem is to do the same kind of average-

based analysis, but on a subset of all interleavers. In order to

re-use the same techniques, we need to look at subgroups of

the permutation group (and we also need that the number of

invariants of the subgroup does not grow with the interleaver

length, see [3] for a precise definition of ‘regular permutation

group families’).

1The symbol an � n−α, for n → ∞, means that c1/nα ≤ an ≤ c2/nα

for some positive constants c1, c2; in this paper, the constants can depend on
the component encoders and on the channel SNR.

In the case of parallel concatenations, the study in [3] shows

that for any choice of a regular family of permutation sub-

groups the average error probability has the same asymptotic

behavior Pb(e) � N−1. Some further study has then been

done to find out, for particular subgroups, how the coefficient

of the main term changes (see [4] for this in a more general

setting).

The interesting fact is that, for serial concatenations instead,

the exponent of N can change when we consider different

subgroups, and there are indeed examples in which the speed

of convergence is better than the one in (1).

All the results we have cited in this introduction, as well

as all the results we will give in this paper, have to be

considered coding theorems in the same sense as in [6]:

there is an implicit assumption that the channel is memoryless

binary-input symmetric-output (e.g. BSC or BIAWGN), whose

noiseness is described by the Bhattacharyya parameter γ, and

we state that there exists a threshold γ0 > 0 such that, for

any fixed γ < γ0, our statements hold true. So, our statements

are true for sufficiently good channels (small γ, high SNR),

but without requiring that γ → 0; we make no attempt here

to give tight estimations of the threshold γ0. Another implicit

assumption is that decoding is maximum likelihood (ML).

II. ENSEMBLES DESCRIPTION

We fix an outer and an inner encoder φo and φi, which are

both non-catastrophic convolutional encoders, with rates k/m
and m/n respectively (1 ≤ k < m ≤ n) and controllability

indexes (constraint lengths) νo and νi. We will need some

more assumptions on the component encoders, which we will

introduce later because they vary slightly from one ensemble

to another.

We fix a parameter N ∈ N, and we terminate φo after N
trellis steps and φi after M := N + νo trellis steps, obtaining

φo
N : Z

kN
2 → Z

mM
2 and φi

N : Z
mM
2 → Z

n(M+νi)
2 . We will

consider a serially concatenated scheme, with as interleaver a

permutation πN of mM bits:

kN bits−→ φo
N

mM bits−→ πN
mM bits−→ φi

N

n(M + νi) bits−→
We will consider three different ensembles. In each of them,

the interleaver is a random variable ΠN uniformly distributed
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over a subgroup GN of SmM (the group of all the permutations

of mM elements).

(E1) Bit permutation: GN = SmM . This case is the classical

uniform interleaver: π ∈ GN is a permutation acting on

all the mM bits of a codeword c ∈ Z
mM
2 .

(E2) Separate channels bit permutation: GN = (SM )m. Here

we consider the output of the outer encoder as m separate

channels, i.e. we read an outer codeword as an element

c ∈ (ZM
2 )m. Inside each channel, bits are randomly

permuted, but different channels are never mixed, i.e. π =
(π1, . . . , πm) ∈ GN acts on c = (c1, . . . , cm) ∈ (ZM

2 )m

in the following way: π(c) = (π1(c1), . . . , πm(cm)).
(E3) Symbol permutation: GN = SM . Here we permute

the symbols of the output of φo
N (i.e. the elements

of Z
m
2 coming out from the convolutional encoder at

any trellis step). We can still read outer codewords as

elements (c1, . . . , cm) ∈ (ZM
2 )m and consider the action

π(c1, . . . , cm) = (π(c1), . . . , π(cm)), or equivalently we

read the outer codewords as elements (c1, . . . , cM ) ∈
(Zm

2 )M , and a permutation π ∈ GN is a permutation

acting on M symbols.

Notice that in the classical case (E1) the action of GN keeps

invariant the Hamming weight of the word, while in the case

(E2) it keeps invariant the m Hamming weights of the m
components, and in case (E3), for any symbol in Z

m
2 , the

number of its appearances in the word does not change.

We will write wH(c) to denote the Hamming weight

(number of ones) of a codeword c. Given c ∈ (ZM
2 )m we

will write wm(c) for the Hamming weights of its m com-

ponents: wm(c1, . . . , cm) = (wH(c1), . . . ,wH(cm)). Given

c ∈ (Zm
2 )M , ws(u) ∈ N

2m−1 will be a vector indicating, for

each non-zero element of Z
m
2 , the number of its appearances

in c. Given h = (h1, . . . , ha) ∈ N
a, we will write |h| =

h1 + . . . + ha. So, |wH(u)| = wH(u) and |wm(u)| = wH(u),
while |ws(u)| is the number of non-zero symbols in u (a sort

of Hamming weight defined on symbols instead of bits).

We will write ρ(u) = wH(u) in case (E1), ρ(u) = wm(u)
in case (E2) and ρ(u) = ws(u) in case (E3) and we will call

ρ(u) the vector weight of u. With these notations, the above

remark on the invariants of the action of GN can be restated

more precisely: ρ(u) = ρ(v) ⇔ ∃π ∈ GN : v = π(u).
A very important parameter in the analysis of average

performances of serial ensembles is do
f , the free distance of

the outer encoder. Anyhow, for our third ensemble, the most

relevant weight is not the Hamming weight, but the number

of non-zero symbols, and hence we define the symbol free
distance of the outer encoder as do

s := minu{|ws(φo(u))|}.

Clearly do
s ≤ do

f . We will write do to mean do
f for (E1) and

(E2) and do
s for (E3).

We state now the assumptions we need on φo and φi, in

addition to non-catastrophicity (the reasons will be clear later):
• φo must have do ≥ 3;

• φi must be recursive in the following sense:

|ρ(u)| = 1 ⇒ wH(φi(u)) = ∞ .
Notice that what we are requiring is standard recursiveness of

φi for (E1) and (E2), while for (E3) we ask a more restrictive

assumption, a recursiveness with respect to symbols: no input

with only one non-zero symbol (regardless to the Hamming

weight of this symbol) can produce a finite weight output.

III. AVERAGE PERFORMANCES

For the classical ensemble (E1), it is well-known that

Pb(e) � N−α and Pw(e) � N−α+1 (2)

with α = 
(do
f +1)/2� (see [2],[6], [5]). We claim that also for

(E2) and (E3) there exists α > 0 such that Eq. (2) holds true;

in this section, we will characterize this exponent. A sketch of

the proofs is presented in next section, while in section V there

is an example of component encoders for which ensemble (E2)

performs better than the others.

Let Co,N = φo,N (ZkN
2 ) ⊆ Z

mM
2 be the outer block code

and let H = {ρ(c) : c ∈ Co,N for some N}. Following [1], we

define an error event of a convolutional encoder as a codeword

whose corresponding trellis state sequence, for some t1 < t2,

is zero for all t ≤ t1 and t > t2, and is non-zero for all

t1 < t ≤ t2. We call [t1, t2] the support and t2 − t1 the length

of the event. When an encoder is terminated after N trellis

steps, an error event is said to be regular if t2 ≤ N , otherwise

it is called terminated. For a terminated event, we call N−t1 its

length. Any codeword c of a terminated convolutional encoder

is the sum of some n(c) regular error events, plus possibly a

terminated one, all with non-overlapping supports. We define:

• no(h) = max{n(c) : c ∈ Co,N , ρ(c) = h}
• ni(h) = max{n(x) : x = φi,N (u), ρ(u) = h}
• f(h) = 1 + |h| − no(h) − ni(h)

It is clear that for any given h, the above definitions do not

depend on N , if N is chosen sufficiently large, fact that we

will always assume from now on. It is also clear that for what

no(h) is concerned, maximum can always be obtained with a

codeword which only admits regular error events, while this

is not necessarily true for ni(h). Notice that, for all h ∈ H ,

1 ≤ no(h) ≤ 
|h|/do� and 0 ≤ ni(h) ≤ 
|h|/2� and then


(do+1)/2� ≤ 1+|h|−
|h|/do�−
|h|/2� ≤ f(h) ≤ |h| (3)

We define:
α = min{f(h), h ∈ H} . (4)

Our main result is that, for such α, (2) holds true.

As clearly there exists h ∈ H with |h| = do, (3) gives


(do + 1)/2� ≤ α ≤ do (5)

For (E1), the well-known equality α = 
(do + 1)/2� comes

from the following property of convolutional encoders, which

implies that ni(do
f ) = 
do

f/2�:

Proposition 1: There exists δ ∈ N such that, for any j ∈
{1, . . . ,m}, input (1 + ejD

δ) (i.e. a word made of all zeros

except two ej spaced δ apart, where ej is a vector in Z
m
2 with

all zeros except a one in position j) produces as output of φi

a regular error event. �
If we call αj the exponent corresponding to ensemble (Ej),

inequality (5) and the above expression for α1 imply that

α2 ≤ α1; an example where strict inequality holds true is given

in section V. On the contrary, no general ordering holds true

for α3 and α1 or α2.
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Now, we define the set of the vectors h minimizing f(h):
H = {h ∈ H : f(h) = α}. Inequalities (3) and (5) imply that

H is a finite set. In fact, if f(h) = α,

do ≥ f(h) ≥ 1+ |h|−
|h|/do�−
|h|/2� ≥ 1+ |h| ( 1
2 − 1

do

)
which gives |h| ≤ 
2do(do − 1)/(do − 2)� ≤ 4do.

We define:

• d∗(h)= min{wH(x) : x=φi(u), ρ(u)=h, n(x)=ni(h)}
• d∗ = min{d∗(h) : h ∈ H}.

With the above definitions, we can state our main result in a

form that underlines, additionally to the exponent of N , also

the dependence of the coefficient on the channel SNR:

Theorem 1: There exist positive constants c1, c2 and c3

(c1, c2 depending only on the component encoders, not on the

SNR, c3 possibly depending on the SNR) such that:

• c1p
d∗

N−α ≤ Pb(e) ≤ c2γ
d∗

N−α + c3N
−α−1;

• kc1p
d∗

N−α+1 ≤ Pw(e) ≤ kc2γ
d∗

N−α+1 + kc3N
−α;

where p is the equivocation probability and γ is the Bhat-

tacharyya noise parameter of the channel. �
For a definition of p and γ see e.g. [3] and [6]. For the

BIAWGN channel, p = 1/2 erfc
√

Es/N0 and γ = e−Es/N0 ;

note that they exhibit a quite similar dependence on the SNR

per transmitted bit Es/N0.

IV. SKETCH OF THE PROOFS

In this section we give the outline of our proofs. We prove

the upper bound for Pb(e) and the lower bound for Pw(e);
then Thm. 1 follows by the trivial remark Pb(e) ≥ 1

kN Pw(e).

A. Upper bound

This proof is based on the union-Bhattacharyya bound

(see e.g. [6]) and on estimations of the weight enumerating

coefficients of the component encoders.

The union-Bhattacharyya bound gives:

Pb(e) ≤
∑
w

∑
d

w

kN
Aw,d

N
γd (6)

where Aw,d
N

is the average number of codewords with input

Hamming weight w and output Hamming weight d.

Recalling which are the invariants under the action of our

permutation groups, we can express Aw,d
N

as a function of

proper enumerating coefficients of the component encoders:

we define Ao,N
w,h to be the number of codewords of φo

N with

input Hamming weight w and output vector weight h, Ai,N
h,d to

be the number of codewords of φi
N with input vector weight

h and output Hamming weight d.

Proposition 2: Aw,d
N

=
∑
h∈H

1
Mh

Ao,N
w,hAi,N

h,d , where:

Mh =
(
mM

h

)
for (E1), Mh =

(
M
h1

)(
M
h2

)
. . .

(
M
hm

)
for (E2)

and Mh =
(
M
h

)
for (E3). �

Notice that, for all our three ensembles,(
M

e|h|
)|h|

≤ Mh,N ≤ (mM)|h| . (7)

Thus, by (6) and Prop. 2 we have

Pb(e) ≤
∑

w,h,d

w

kN

[
e|h|
M

]|h|
Ao,N

w,hAi,N
h,dγd (8)

Remark 1: The indexes of the summations clearly must

satisfy w ≤ kN , h ∈ H (which implies do ≤ |h| ≤ mM )

and d ≤ n(M + νi). Moreover, the three indexes are related

to each other. A first remark is that, for each h, the output

weight must be d ≥ d∗(h). �
Other relevant relations involving w, h and d are given by the

following property, which follows from non-catastrophicity.

Proposition 3: There exist two positive constants µo and µi

(trivially equal to 1 when the encoders are systematic) such

that the summation in (8) is only over w ≤ µo|h| and over h
satisfying |h| ≤ µid. �

We will use the following estimations of the enumerating

coefficients (see [3] for an idea of the proof):

Proposition 4: For some positive constants ao, ai, bo, bi:

• Ao,N
w,h ≤

no(h)∑
no=1

(
N + no

no

)
aw

o b|h|
o

• Ai,N
h,d ≤

ni(h)∑
ni=0

(
N + ni

ni

)
a
|h|
i bd

i �

Then, by estimations of the binomial coefficients, we prove

the following inequality: for some positive constant C,[
e|h|
M

]|h| no(h)∑
no=1

ni(h)∑
ni=0

(
N + no

no

)(
N + ni

ni

)
≤ C|h| |h|f(h)−1

Nf(h)−1

Finally, substituting all the estimations into (8), we get, for

some positive constants C1, C2, C3:

Pb(e) ≤
∑

w,h,d

|h|f(h)−1

Nf(h)
Cw

1 C
|h|
2 Cd

3γd (9)

where the indexes of the summation satisfy the inequalities

described in Remark 1 and Prop. 3.

Now, we split the summation into two terms, separating

h ∈ H from h /∈ H. In the following we show that the first

term is bounded by cγd∗
N−α, while the second is bounded

by c′(γ)N−α−1, thus ending the proof.

For the first term, remember that H is finite and so also

when N → ∞ the summation over h has a finite number of

terms. As w ≤ µo|h|, also the summation over w has finitely

many terms. Finally notice that, for each h ∈ H,

n(M+νi)∑
d=d∗(h)

(C3γ)d ≤
+∞∑
d=d∗

(C3γ)d ≤ C4(C3γ)d∗

(the last inequality holds true, for some C4 > 0, if γ < 1/C3).

The second term is equal to

1
Nα+1

∑
d,h/∈H,w

Cw
1

( |h|
N

)f(h)−α−1

|h|αC
|h|
2 Cd

3γd (10)

Note that h ∈ H\H implies f(h)−α−1 ≥ 0 and so, as surely

|h| ≤ mM < 2mN , and trivially f(h)−α−1 < |h|, we have

(|h|/N)f(h)−α−1 < (2m)|h|. As
∑

w≤µo|h| C
w
1 ≤ µo|h|C|h|

1 ,

the second term (10) is bounded by

1
Nα+1

∑
d,h

µo|h|C|h|
1 (2m)|h||h|αC

|h|
2 Cd

3γd

For each d, the summation over h is for |h| ≤ µid and, for a

constant K > 1,
∑

h:|h|≤µid

µo|h|C|h|
1 (2m)|h||h|αC

|h|
2 ≤ Kd.
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Finally,
∑
d∈N

(KC3γ)d = c′(γ) < ∞ if γ < 1/(KC3).

B. Lower bound

The main idea is the same used in [3] for parallel ensembles:

• given πN ∈ GN , if the minimum distance df (πN ) of the

serially concatenated scheme with interleaver πN satisfies

df (πN ) ≤ d, then the word error probability of such

scheme, Pw(e|πN ), satisfies Pw(e|πN ) ≥ pd;

• for all d > 0, Pw(e) ≥ pd
P(df (ΠN ) ≤ d), where P is the

probability defined over the ensemble we are considering.

For some fixed values of d, we can find a lower bound to

P(df (ΠN ) ≤ d). This is the result we will prove:

Proposition 5: For any h ∈ H , there exists C > 0 such

that P(df (ΠN ) ≤ d∗(h)) ≥ CN |h|−no(h)−ni(h). �
If we choose h ∈ H such that d∗(h) = d∗, this result gives

P(df (ΠN ) ≤ d∗) ≥ CN−α+1 and so Pw(e) ≥ pd∗
CN−α+1.

We now give the outline of the proof of Prop. 5. We fix

once and for all the following objects:

1) A weight vector h ∈ H .

2) An outer codeword c∗ ∈ Co,N such that ρ(c∗) = h, con-

sisting of no = no(h) regular error events c∗1, . . . , c
∗
no

.

Denote by lk the length of c∗k.

3) An input codeword u∗ for the inner encoder, such

that ρ(u∗) = h and such that x∗ = φi,N (u∗) has

weight wH(x∗) = d∗(h) and is the concatenation of

ni = ni(h) regular error events x∗
1, . . . , x

∗
ni

plus a

possible terminated one x∗
ni+1. Denote by u∗

k the input

corresponding to x∗
k and by λk its length.

Notice that c∗ can be chosen not to depend on N , while this

may not be possible for u∗. However, we can assume that the

error events x∗
k and their inputs u∗

k remain the same apart from

some possible translations.

We now select a number of possible recombinations for both

c∗ and u∗ where their respective error events are permuted and

moved across the entire time axis [0,M − 1].
Let us start with c∗. First we fix no consecutive intervals

having length respectively Mk =
⌊

N
nolk

⌋
lk for k = 1, . . . , no.

Consider now A =
∏no

k=1[0,Mk/lk − 1]. Given a ∈ A we

define c∗a to be the outer codeword which, for every k =
1, . . . , no, contains exactly one translated copy of the error

event c∗k starting at time aklk +
∑

j<k Mj .

A similar job is done on the inner input word u∗. In this case

we split the time axis into ni +1 consecutive intervals having

length respectively Qk =
⌊

M−λni+1

niλk

⌋
λk for k = 1, . . . , ni

and a last one of length Qni+1 ≥ λni+1. Consider now

B =
∏ni

k=1[0, Qk/λk − 1]. Given b ∈ B we let u∗
b be the inner

input word which, for every k = 1, . . . , ni, contains exactly

one translated copy of the input error event u∗
k starting at time

bkλk +
∑

j<k Qj , while the terminated one remains fixed in

its position in the interval [M − Qni+1,M ]. Let x∗
b be the

output x∗
b = φi,N (u∗

b).
Given a ∈ A and b ∈ B, we define the events

Ea,b = {ΠN (c∗a) = u∗
b} and Ea = ∪

b∈B
Ea,b .

Notice that Ea is an union of disjoint events. Clearly πN ∈
Ea,b implies df (πN ) ≤ wH(x∗

b) = d∗(h), so:

P (df (ΠN ) ≤ d∗(h)) ≥ P (∪a∈AEa) .

Our aim is now to estimate this last probability, using:

P(∪a∈AEa) ≥
∑
a∈A

P(Ea) −
∑

a,a′∈A
a �=a′

P(Ea ∩ Ea′)

We will prove a lower bound for the first term and an upper

bound for the second term, thus ending the proof of Prop. 5. In

both parts, we will use the following remark: ∀u,v ∈ Z
mM
2 ,

P(ΠN (u) = v) =

{
1/Mh if ρ(u) = ρ(v) = h

0 if ρ(u) �= ρ(v)
(11)

Consider the first term: by Eq. (11) and (7), we have∑
a∈A

P(Ea) =
∑
a∈A

∑
b∈B

P(Ea,b) =
#A#B
Mh

� Nno+ni−|h| .

It remains to estimate the second term. We have:∑
a,a′∈A
a �=a′

P(Ea ∩ Ea′) ≤
∑

a,a′∈A
a �=a′

∑
b,b′∈B

P(Ea,b ∩ Ea′,b′)

Our aim is to give a bound to the number of pairs

(a, b), (a′, b′) such that Ea,b ∩ Ea′,b′ �= ∅ and a bound to

P(Ea,b ∩ Ea′,b′).
Assume we have fixed pairs (a, b), (a′, b′) ∈ A × B with

a �= a′ and such that Ea,b∩Ea′,b′ �= ∅. This immediately im-

plies that b �= b′. Let dH(a,a′) be the number of components

of the vectors a and a′ which are different (the Hamming

weight of a− a′) and analogously define dH(b, b′). We have

1 ≤ dH(a, a′) ≤ no and 1 ≤ dH(b, b′) ≤ ni.

By the definition of c∗a and c∗a′ , we can find outer codewords

c̃∗, c̃∗a, c̃∗a′ (possibly c̃∗ = 0) having disjoint supports, each

consisting of some of the error events c∗k, such that c∗a = c̃∗ +
c̃∗a and c∗a′ = c̃∗+ c̃∗a′ . More precisely, letting ño = dH(a,a′),
c̃∗ consists of no − ño error events, and c̃∗a, c̃∗a′ consists of

the same ño error events, only shifted in different positions.

Clearly, ρ(c̃∗a) = ρ(c̃∗a′) = h − ρ(c̃∗). Also notice that ño ≤

|ρ(c̃∗a′)|/do� and that |ρ(c̃∗a′)| ≥ do because ño ≥ 1.

Similarly, we can find inner input words ũ∗, ũ∗
b, ũ∗

b′

(possibly ũ∗ = 0) having disjoint supports, each consisting of

some of the input error events u∗
k, such that u∗

b = ũ∗ + ũ∗
b and

u∗
b′ = ũ∗ + ũ∗

b′ . Letting ñi = dH(b, b′), ũ∗ has ni − ñi error

events and ũ∗
b, ũ∗

b′ are made by the same ñi error events shifted

in different positions. Clearly, ρ(ũ∗
b) = ρ(ũ∗

b′) = h − ρ(ũ∗).
By ρ–recursiveness of φi, ñi ≤ 
|ρ(ũ∗

b′)|/2�.

The fundamental remark is that if πN ∈ Ea,b ∩Ea′,b′ then

πN (c̃∗) = ũ∗, πN (c̃∗a) = ũ∗
b and πN (c̃∗a′) = ũ∗

b′ .

This implies that ρ(ũ∗) = ρ(c̃∗) and that ρ(ũ∗
b) = ρ(ũ∗

b′) =
ρ(c̃∗a) = ρ(c̃∗a′) = h − ρ(c̃∗). We will use the notation h̃ =
ρ(ũ∗

b). We have: |h̃| ≤ |h|, |h̃| ≥ do, 1 ≤ ño ≤ 
|h̃|/do� and

1 ≤ ñi ≤ 
|h̃|/2�.

Now we define c̃ = c̃∗+ c̃∗a + c̃∗a′ and ũ = ũ∗+ ũ∗
b + ũ∗

b′ . By

construction, c̃ is made by no +dH(a,a′) regular error events,
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and ũ gives ni+dH(b, b′) regular error events; their invariants

weight is ρ(c̃) = ρ(ũ) = h+h̃. The above fundamental remark

also implies that Ea,b ∩ Ea′,b′ ⊆ {ΠN (c̃) = ũ}. Hence, by

(7) and (11), P(Ea,b ∩ Ea′,b′) ≤ 1/Mh+h̃ � N−(|h|+|h̃|).
We can now end the proof:∑

a,a′∈A
a′ �=a

∑
b,b′∈B

P(Ea,b ∩ Ea′,b′)

=
∑
h̃:

do≤|h̃|≤|h|

∑
a,a′∈A: a�=a′,

dH(a,a′)≤�|h̃|/do�

∑
b,b′∈B: b �=b′,

dH(b,b′)≤�|h̃|/2�

P(Ea,b ∩ Ea′,b′)

≤
∑

h̃:do≤|h̃|≤|h|
c Nno+�|h̃|/do�+ni+�|h̃|/2�−|h|−|h̃|

≤ C(h)Nno+ni−|h|−ε

where ε = min{f(h̃) : do ≤ |h̃| ≤ |h|} and C(h) > 0. As

h ∈ H , ε ≥ 
(do − 1)/2� ≥ 1. �

V. EXAMPLE

We give an example of a serial turbo scheme for which the

ensemble (E2) has better average performances than (E1) and

(E3) and we comment the reasons of the improvement.

We consider the following outer and inner encoders:

φo =
[
1, 1

1+D+D3

]
φi =

[ 1
1+D 0

0 1
1+D

]
These encoders satisfy the assumptions of our analysis:

• both encoders are non-catastrophic;

• φo has free distance do
f = 4 and do

s = 3;

• φi is recursive and symbol-recursive.

We calculate the parameters α and d∗ of Thm. 1 for these

encoders. To do so, we need to notice that all the words c of

the outer code such that wH(c) = do
f are obtained when input

is 1+D +D3 or its shifts and have wm(c) = (3, 1), ws(c) =
(0, 2, 1) (listing the symbols in the order (0, 1), (1, 0), (1, 1)).
To calculate ni(h), we use Prop. 1. We find that α is:

(E1) α1 = 
(do
f + 1)/2� = 2.

(E2) α2 = 3. In fact α2 ≥ 
(do
f + 1)/2� = 2, where equality

could be reached only with |h| = 4, no(|h|) = 1,

ni(h) = 2, but this is not possible, as the only h ∈ H
such that |h| = 4 is h = (3, 1), which has no(h) = 1
but ni(h) = 1, which gives f(h) = 3 and so α2 = 3.

(E3) α3 = 2. In fact α3 ≥ 
(do
f + 1)/2� = 2, and equality is

reached with h = (0, 2, 1), which has |h| = 3, no(|h|) =
1, ni(h) = 1 and so f(h) = 2.

By an exhaustive listing of all small-weight codewords, we

can also find H, noting that h ∈ H implies h = 4 for (E1),

|h| ≤ 8 for (E2) and |h| ≤ 6 for (E3). We then find the

exponent d∗ for our ensembles: d∗
1 = 2, d∗2 = 3, d∗3 = 3.

At high SNR, the Union-Bhattacharyya bound is known to

be tight with respect to actual performances. So, to show the

improvement of average performances of (E2) with respect

to (E1), we have fixed a SNR per information bit Eb/N0 =
10 dB and we have computed, for increasing N , the average

union bound for (E1) and (E2), by using (6) and Prop. 2. The

( )wP e

10 100 1000
10-12

10-11

1x10-10

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4
 (E1)
 (E2)

kN

Fig. 1. Behavior of Pw(e) for ensembles (E1) and (E2) at Eb/N0 = 10 dB

resulting curves are plotted in Fig. 1 and confirm the analyzed

behavior.

Now notice which are the properties of the component

encoders that make (E2) behave better than the classical

uniform interleaver (E1). The outer encoder is such that all its

codewords with Hamming weight do
f have an odd weight in

each of the two components. The inner encoder has a stronger

recursiveness property than the usual one: we can say that it

is recursive with respect to any component. In fact, not only

wH(u) = 1 ⇒ wH(φi(u)) = ∞, but also

∃j ∈ {1, 2} : wH(uj) = 1 ⇒ wH(φi(u1, u2)) = ∞ .

The inner encoder of our example is very simple, but the same

property holds true also for many other encoders. Clearly,

any pair of rate-1 non-catastrophic recursive encoders 1/p(D),
1/q(D) can give the same result, when they act separately on

the channels as φi =
[

1/p(D) 0
0 1/q(D)

]
. Anyway, φi doesn’t

need to be a diagonal matrix, i.e. the encoder is not obliged to

process the two inputs separately: the only property needed is

recursiveness with respect to each input component, as defined

above. For instance: φi =
[

1/(1+D) 1
1+D 1/(1+D)

]
.

Even if they are very simple, the encoders of our example

give the best possible α2 for do
f = 4 and m = 2. Using the

fact that m = 2 and Prop. 1 we have a tighter estimation

of α2 than simply α2 ≤ do
f : for any h with |h| = do

f ,

no(h) = 1 and ni(h) = 
h1/2� + 
h2/2� ≥ do
f/2 − 1,

thus giving α2 ≤ f(h) ≤ do
f/2 + 1. In our example, we have

exactly α2 = do
f/2 + 1 = 3.
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