
Staircase and other structured linear-time

encodable LDPC codes: analysis and design

Federica Garin, Giacomo Como and Fabio Fagnani
Dipartimento di Matematica, Politecnico di Torino

C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Email: fabio.fagnani@polito.it

Abstract

We consider a family of codes which can be seen both as a special kind
of serial turbo codes and as LDPC codes having a parity check matrix
which is partly random and partly structured. These codes are linear-
time encodable, thanks to the turbo structure, and can be decoded as
LDPC codes. We provide an ensemble analysis for the waterfall region,
on the line of classical results for serial turbo codes, and we find some
design parameters.

1 Introduction

One of the main problems related to LDPC codes is their encoding complexity,
which is in general quadratic in the block length, as the generating matrix is not
low density. This issue has been addressed in two different ways. On one side
there are the results in [8], which allow to construct, for given generic LDPC
matrix, equivalent generating matrices with lower encoding complexity. On the
other side, there are the constructions of parity check matrices structured in
a such a way that allows easy encoding. A successful construction is the one
using matrices with a staircase part (i.e. a sub-matrix with ones on the diagonal
and on the lower diagonal, and zeros everywhere else), so that the encoder can
be seen as a serial concatenation of a repetition code, an interleaver and an
accumulator: this gives Repeat-Accumulate codes and their generalization, the
Irregular Repeat-Accumulate (IRA) codes, introduced in [5].

In this paper, we follow this second approach, studying LDPC codes which
can be encoded with a serial turbo structure. There is a wide literature on
analysis and design of IRA (see particularly [9]), but previous work focuses on
the design of the degree distribution of the variable nodes (the time-varying
number of repetitions) and of the check nodes (the so-called grouping factor).
On the contrary, here we investigate the possibility to vary the structured part
of the matrix, which is equivalent to choosing a different inner encoder instead
of the accumulator. To do so, we focus on the simpler case when the degrees are

1

constant and we analyze the performance following the classical results for serial
turbo codes in [1]. We analyze the performance of schemes with different inner
encoders in the waterfall region, showing at first that there is an interleaver
gain, i.e. for large enough SNR the average error probability goes to zero when
the interleaver length grows to infinity. Then we look at the behavior of the
main term when the SNR goes to infinity, as was done in [1] to underline the role
of the effective free distance of the inner encoder. The results in [1] generalize
to our setting in a non-trivial way, as the relevance of the inner encoder can
be shown only expurgating some codes from the ensemble. Our results are
theoretical and are coding theorems in the same sense as in [6]: they hold true
under ML decoding, on a memoryless binary-input symmetric-output channel
(e.g. BSC or BIAWGN).

2 Encoding schemes and parity check matrices

Consider the family of serially concatenated turbo encoders which have the
following structure:

Repr Sums ψNπN

ϕN

By Repr : ZN
2 → ZrN

2 we denote the repetition code with rate 1/r; Sums :
ZrN

2 → ZrN/s
2 is defined by

Sums(x) = (x1 + . . . + xs, xs+1 + . . . + x2s, . . .)

i.e. it gives the modulo-2 sum of every block of s bits (s is the grouping fac-
tor). Finally, let ψ(D) : Zk

2((D)) → Zk
2((D)) be a rate-1 non-catastrophic and

recursive convolutional encoder, and let ψN : ZrN/s
2 → ZrN/s

2 be the truncated
encoder obtained by using the trellis of ψ(D) for rN/(sk) time steps. We will
always assume that rN is a multiple of sk, so that the above construction can
be properly made (this will be implicitly assumed also when taking limits for
N → ∞). As a reminder of properties of convolutional encoders, notice that
ψ(D) can be seen as a k × k matrix whose entries are fractions of polynomials,
and that ψ(D) is non-catastrophic if and only if this matrix has an inverse whose
entries are Laurent polynomials. Recursiveness of ψ(D) is equivalent to the re-
cursiveness of at least one entry in each column of the matrix. In particular, if
k = 1, our assumptions imply that ψ(D) = 1/p(D) for some polynomial p(D).

The encoding scheme we are considering is a particular kind of systematic
serial turbo encoder; the outer encoder is Repr, the inner encoder is ϕN =
ψN ◦ Sums. The inner encoder ϕN can be considered as the truncation of a

2

proper convolutional encoder, which is not injective, but the transmission of the
systematic bits ensures injectivity and non-catastrophicity of the overall coding
scheme. Also notice that ϕN is recursive, in the sense that inputs of weight
one produce outputs with weight growing to infinity when N →∞; this will be
essential to our result about the interleaver gain.

The representation as serial turbo codes allows linear-time encoding, and it
is also useful for some performance analysis, as stated in the next sections. The
decoding can be performed exploiting the fact that these same codes can also be
seen as LDPC codes: a parity check matrix can be constructed in the following
way. Notice that a pair (u, c) ∈ ZN

2 × ZrN/s
2 belongs to our code if and only if

c = ψN ◦ Sums ◦πN ◦ Repr(u), which is equivalent to Sums ◦πN ◦ Repr(u) +
ψ−1

N (c) = 0 and can be represented with matrices as [HN KN]
[

u
c

]
= 0.

Notice that HN is a low-density matrix depending only on r, s and on the
permutation πN , and has at most s ones per row and r ones per column, while
KN is a matrix depending on the choice of ψ, and is also low density, having a
number of ones per row and per column bounded by k(deg ψ−1(D) + 1), where
by ‘deg’ we denote the difference between the largest and the smallest exponent
of a Laurent polynomial.

We give here some examples of encoders ψ(D) satisfying our assumptions,
and of the corresponding matrices KN . The properties peculiar to these en-
coders will be commented later.

(E1) If k = 1 and ψ(D) is the accumulator ψ(D) = 1/(1 + D), we have the
so-called ‘staircase’ LDPC codes: KN has ones on the diagonal and on
the lower diagonal, and zeros everywhere else.

(E2) With k = 1, ψ(D) = 1
1+D+D3 gives

KN =

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
1 0 1 1 0 0 . . .
0 1 0 1 1 0 . . .
0 0 1 0 1 1 . . .
. .

(E3) Let k = 3 and ψ(D) = 1
1+D3

[
1 D D2

D2 1 D
D D2 1

]
.

Its inverse is ψ−1(D) =
[

1 D 0
0 1 D
D 0 1

]
, which gives:

KN =

. . .

1 0

0 1

0 0 1

0

0

1 0

0 1

0 0 1

0

0

1 0

0 1

0 0 1

0

0

0 1

0 0

1 0 0

0

1

0 1

0 0

1 0 0

0

1

(E4) Let k = 3 and ψ(D) =

[1+D+D2

1+D2
1

1+D
1

1+D2
1

1+D 1 1
1+D

D
1+D 0 D

1+D

]
.

3

Its inverse is ψ−1(D) =
[

1+D−1 D−1 0
0 1 D−1

1+D−1 D−1 1+D−1

]
, which gives:

KN =

. . .

1 0

0 1

1 0 1

0

0

1 0

0 1

1 0 1

0

0

1 0

0 1

1 0 1

0

0

1 1

0 0

1 1 1

0

1

1 1

0 0

1 1 1

0

1

3 Interleaver gain: average error probability

To analyze the performance of the coding schemes we have introduced, we will
follow the analysis of serial turbo codes in [1, 6]: we focus on the behavior in
the waterfall region and under the assumption that the decoding is Maximum
Likelihood. We build an ensemble by fixing ψ and letting the interleaver Π be a
random variable uniformly distributed over SrN (the set of all permutations of
rN elements), and then we study the average error probability and particularly
its behavior when N →∞.

The coding ensemble presented here is included in the wide class of general-
ized serial turbo codes studied in [4]; here we state the results as applied to this
particular case and we give a rough idea of the proofs, referring the interested
reader to [4] for detailed proofs.

Our main result is that, for sufficiently large SNR, there is an interleaver
gain: the average bit and word error probabilities go to zero when N →∞,
provided that r ≥ 2 and r ≥ 3 respectively. The decay is polynomial in 1/N ,
with an exponent increasing with r. More formally, denoting by Pb(e) and Pw(e)
the average bit and word error probabilities:

Theorem 1 Take s ≥ 2 and r ≥ 2. Define µ = b r+1
2 c and

d∗ =

1 if r is even
2 if r = 3
1 + dψ

1,tr otherwise

where dψ
1,tr is the smallest weight of a truncated error event of ψN having an

input weight 1 (if k = 1, then dψ
1,tr = 1).

There exist positive constants γ0, c1 and c2 (depending only on the ensemble,
i.e. on r, s, ψ(D)) such that, for all γ ≤ γ0:

• c1p
d∗N−µ ≤ Pb(e) ≤ c2γ

d∗N−µ + O(N−µ−1)

• c1p
d∗N−µ+1 ≤ Pw(e) ≤ c2γ

d∗N−µ+1 + O(N−µ)

4

where p is the equivocation probability and γ is the Bhattacharyya noise para-
meter of the channel. ¤

We prove the upper bound for Pb(e) and the lower bound for Pw(e); then
Thm. 1 follows as Pb(e) ≥ 1

N Pw(e).
The upper bound is based on the Union-Bhattacharyya bound:

Pb(e) ≤
N∑

w=1

(r+s)N/s∑

d=w

w

N
Aw,d

N
γd

where Aw,d
N

is the average number of codewords of a serial ensemble with input
weight w and output weight d. For d ≥ w,

Aw,d
N

=
1(

rN
rw

)
(

N

w

)
|V ϕN

rw,d−w| (1)

where V ϕN

h,k is the set of words v ∈ ZrN
2 such that wH(w) = h and wH(ϕN (v)) =

k.
Then we use some properties of the convolutional encoders to estimate

|V ϕN

rw,d−w|. First of all, we need to define V ϕN

h,k,n to be the set of words v ∈ V ϕN

rw,d−w

producing exactly n error events of ϕN , plus possibly a final truncated error
event not counted by n. Clearly

|V ϕN

rw,d−w| =
nmax∑
n=0

|V ϕN

rw,d−w,n|

Then, for some constants a, b > 0, we have the estimation:

|V ϕN

rw,d−w,n| ≤
(

N + n

n

)
arwbd−w

The recursiveness of ϕN comes into the picture for bounding nmax: it ensures
nmax ≤ brw/2c, as every error event must have input weight at least two. When
r ≥ 4, we use the bound nmax ≤ brw/2c for all terms, except some terms with
w = 1. We do not give here the proof for r = 2 and r = 3, which is different
because more values of w contribute to the main term of the estimations.

For r ≥ 4, notice that we have defined d∗ in such a way that d∗−1 is exactly
the smallest output weight of ϕN that can be obtained when the input weight is
r and there are br/2c error events (plus possibly a truncated one). This comes
from the fact that every pair of ones in the output of Repr can be permuted by
some interleaver in such a way that they are summed up by Sums, producing
a zero output. The consequence is that if w = 1 and d < d∗ we know that
nmax ≤ brw/2c − 1.

Substituting these estimations in Eq. (1) and separating the term with w = 1,

5

we get:

Pb(e) ≤
(r+s)N/s∑

d=d∗

1(
rN
r

)
br/2c∑
n=0

(
N + n

n

)
arbd−1γd

+
d∗−1∑

d=1

1(
rN
r

)
br/2c−1∑

n=0

(
N + n

n

)
arbd−1γd

+
(r+s)N/s∑

d=1

d∑
w=2

w

N

(
N
w

)
(
rN
rw

)
brw/2c∑

n=0

(
N + n

n

)
arwbd−wγd

Now we refer to [4] for a formal proof that, for sufficiently small γ, all these
series are convergent, and the first is bounded by cγd∗N−µ while the second
and third are bounded by c(γ)N−µ−1.

Now we give a sketch of the proof of the lower bound. The key idea is that,
for all fixed d,

Pw(e) ≥ pdP(dmin
N ≤ d)

where dmin
N is the minimum distance of the overall coding scheme (which is a

r.v. as the encoder is a r.v.).
We choose d = d∗ and we find a lower bound for P(dmin

N ≥ d∗); for simplicity
of notation we consider here only even r. We fix some codewords of the repetition
code: c∗a = Repr(Da) for all a ∈ A = {0, . . . , N − 1}. We also fix an error event
of ϕN with input weight 2 and output weight 0, for example with input 1 + D
and then we construct the following inputs for ϕN : let B = {0, . . . , 2N/s−1}r/2

and for any b = (b0, . . . , br/2−1) ∈ B define

u∗b =
r/2−1∑

j=0

Dsbj+j2N (1 + D) .

Clearly c∗a,u∗b ∈ ZrN
2 and both have weight r. Also notice that wH (ϕN (u∗b)) = 0,

so that if Π(c∗a) = u∗b then dmin
N ≤ d∗. Define the events Ea,b = {Π(c∗a) = u∗b}

and Ea =
⋃

b∈B
Ea,b, so that

P(dmin
N ≤ d∗) ≥

⋃

a∈A
P(Ea)

≥
∑

a

P(Ea)−
∑

a

∑

a′ 6=a

P(Ea ∩ Ea′)

Then
∑

a

P(Ea) = |A| |B| 1(
rN
r

) ≥ cN−µ+1.

For the term with intersections notice that Ea,b ∩ Ea′,b = ∅ if a 6= a′ but
bj = b′j for some j, while

P(Ea,b ∩ Ea′,b′) ≤ P
(
Π(c∗a + c∗a′) = u∗b + u∗b′

)
=

1(
rN
2r

)

6

if a 6= a′ and bj 6= b′j for all j. So:

∑
a

∑

a′ 6=a

P(Ea ∩ Ea′) < |A|2 |B|2 1(
rN
2r

) ≤ CN−2µ+2

If r ≥ 3, then µ ≥ 2 and this concludes the proof.
For r = 2, the proof is slightly different: A and B must be chosen smaller

by some constant factor, ensuring that |A| |B| 1

(2N
2) − |A|

2 |B|2 1

(2N
4) > 0.

4 A better smaller ensemble and a design para-
meter

In the result given in Thm. 1, notice that there is essentially no dependency of
the exponents µ and d∗ on the choice of the encoder ψ. Looking at traditional
serial turbo codes [1], we see that it is natural that µ depends only on the free
distance of the outer encoder, but we expect a dependency of the effective free
distance d∗ on the inner encoder too. What happens with our schemes is that
pairs of bits which are repetition of a same information bit can be permuted by
some interleaver in such a way that they are summed up by Sums, producing a
zero output. The value of d∗ is given by this ‘worse case’ scenario.

This remark suggests to consider a smaller family of interleavers, enforcing
that ones coming from the same error event of Repr cannot end up in positions
where they would be summed up by Sums. More precisely, we define the set

RN
r,s :=

{
π ∈ SrN : bi/rc = bj/rc ⇒ bπ(i)/sc 6= bπ(j)/sc}

What we want to consider is an ensemble of encoders constructed as in
Section 2, except that now the permutation is uniformly distributed on RN

r,s

instead of all SrN . Additionally to the motivation of finding a more interesting
effective free distance, this ensemble turns out to be a natural choice in analogy
with classical results for regular LDPC codes: restricting the permutation to
RN

r,s is the same as enforcing that the Tanner graph corresponding to the regular
part of the matrix, HN , does not have cycles of length two. This new ensemble
is also equivalent to pick HN uniformly at random in the set of N ×N binary
matrices with exactly s ones per row and r ones per column.

As RN
r,s is not a group, we cannot directly apply results from [4] (i.e. use

the same proof techniques sketched in the previous section). However, we can
slightly modify our techniques for estimating E(Pb(e)|RN

r,s), where E is taken
in the ensemble with Π uniformly distributed in SrN ; notice that E(Pb(e)|RN

r,s)
is equal to the average Pb(e) when Π is uniformly distributed in RN

r,s which is
what we would like to estimate; we will also denote it Pb(e)exp.

The key remark is that the probability that a permutation uniformly ex-
tracted from SrN belongs to RN

r,s is non-vanishing: P(RN
r,s) → e−(r−1)(s−1)/2

when N →∞ (see e.g. [2] Exercise 2.12 p. 59).

7

Notice that P(RN
r,s) tends to a constant which is strictly smaller than one, so

even though the techniques we use are the same usually known as expurgation,
the result we will get is not the typical behavior of the ensemble introduced in
Sect. 3: we will find the average behavior of a subensemble which is neither
vanishing nor typical, but is well characterized.

Our main result is the following:

Theorem 2 Take s ≥ 2 and r ≥ 2. Define µ = b r+1
2 c and

d∗exp =

2 r = 2, 3
1 + r

2dψ
f,2 even r ≥ 4

1 + r−3
2 dψ

f,2 + min
{

dψ
f,2 + dψ

1,tr, dψ
f,3

}
odd r ≥ 5

where dψ
1,tr is defined as in Thm. 1, while dψ

f,2 and dψ
f,3 are the smallest weight

of an error event of ψ(D) having input weight two and three respectively.
There exist positive constants γ0, c1 and c2 (depending only on the ensemble,

i.e. on r, s, ψ(D)) such that, for all γ ≤ γ0:

• c1p
d∗expN−µ ≤ Pb(e)exp ≤ c2γ

d∗expN−µ + O(N−µ−1)

• c1p
d∗expN−µ+1 ≤ Pw(e)exp ≤ c2γ

d∗expN−µ+1 + O(N−µ)

¤

Now we show how the proof sketched in Section 3 for Theorem 1 can be
adapted to prove Theorem 2.

For the upper bound, by the union-Bhattacharyya bound:

Pb(e) ≤
∑
w

∑

d

w

N
E(AN

w,d(Π)|RN
r,s)γ

d

where AN
w,d(π) is the number of codewords of the concatenated scheme with

input Hamming weight w and output Hamming weight d for a given permutation
π ∈ SrN .

For most of the terms, we will use the estimation

E(AN
w,d(Π)|RN

r,s) ≤
E

(
AN

w,d(Π)
)

P(RN
r,s)

=
Aw,d

N

P(RN
r,s)

(2)

and the fact that P(RN
r,s) is bounded away from zero, so that we can exploit all

what we know about
∑

w

∑
d Aw,d

N
γd.

We consider separately the term with w = 1 (as in the previous section, we
are writing the proof for r ≥ 4). First notice that

E
(
AN

1,d(Π)|RN
r,s

)
= N

∑

v∈V
ϕN

r,d−1

P
(
Π(Repr(1)) = v|RN

r,s

)

8

Then let SN
s =

{
v s.t. bi/sc 6= bj/sc ∀i 6= j : vi = vj = 1

}
and notice that v /∈

SN
s gives P

(
Π(Repr(1))= v ∩RN

r,s

)
= 0, so that

E
(
AN

1,d(Π)|RN
r,s

)
= N

∑

v∈V
ϕN

r,d−1∩SN
s

P
(
Π(Repr(1)) = v|RN

r,s

)

≤ N |V ϕN

r,d−1 ∩ SN
s |

1(
rN
r

)
P(RN

r,s)

Then, |V ϕN

r,d−1 ∩ SN
s | =

nmax∑
n=0

|V ϕN

r,d−1,n ∩ SN
s |.

The recursiveness of ϕN ensures nmax ≤ br/2c, but also notice that if
wH(v) = r and v ∈ V ϕN

r,d−1,n ∩ SN
s , then wH(ϕN (v)) ≥ d∗exp, so that for

d < d∗exp we have the tighter bound nmax ≤ br/2c − 1. Finally, we estimate
|V ϕN

r,d−1,n ∩ SN
s | ≤ |V ϕN

r,d−1,n| and we end the proof as in the previous section.

Let’s see how to adapt the proof of the lower bound (again for simplicity let r
be even). We take the same A and c∗a as in the previous proof. On the contrary,
we have to choose different u∗b, to produce output weight d∗exp. Let v ∈ ZrN/s

2

be an input for ψN with weight 2 producing an error event of output weight
dψ

f,2; let L be the length of the error event (the number of trellis steps where it
diverges from the all-zero state); also assume that the error event starts at time
zero: v = 1 + Dt for some 1 < t ≤ kL. Now define B = {0, . . . ,

⌊
N

2skL

⌋ − 1}r/2

and

u∗b =
r/2−1∑

j=0

DskLbj+j2skLN (1 + Dst)

so that wH(ϕN (u∗b)) = d∗exp − 1. Re-defining Ea with these new u∗b, we have

E
(
Pw(e)

∣∣RN
r,s

) ≥ pd∗expP(dmin
N ≤ d∗exp|RN

r,s)

≥ pd∗expP
(⋃

a∈A
Ea

∣∣RN
r,s

)

Then we use again the union-intersection bound.
First of all, notice that P(Ea,b ∩ RN

r,s) does not depend on a and b and is
non-zero. Then, to find a lower bound for

∑
a P(Ea|RN

r,s), define the events

FN
a,l,i =

{
Π(c∗a) =

r−1∑

j=0

Dlj+ij

}

and notice that, for any a ∈ A, b ∈ B, we have

P(RN
r,s) =

∑

l0<···<lr−1

0≤lj≤ rN
s −1

∑

i0,...,ir−1
0≤ij≤s−1

P
(
RN

r,s ∩ FN
a,l,i

)

=
(

rN/s

r

)
sr P(RN

r,s ∩ Ea,b)

9

so that P(Ea|RN
r,s) =

P(Ea ∩RN
r,s)

P(RN
r,s)

=
|B|(

rN/s
r

)
sr

and finally

∑

a∈A
P(Ea|RN

r,s) = |A| |B| 1(
rN
r

)
sr
≥ cN−µ+1 .

For the term with intersections, we use the simple bound

P(Ea ∩ Ea′ |RN
r,s) =

P(Ea ∩ Ea′ ∩RN
r,s)

P(RN
r,s)

≤ P(Ea ∩ Ea′)
P(RN

r,s)

Then we exploit the fact that P(RN
r,s) is bounded away from zero and we estimate

P(Ea ∩ Ea′) as in the previous section, ending the proof with

∑

a,a′∈A
a6=a′

P(Ea ∩ Ea′ |RN
r,s)≤

1
P(RN

r,s)

∑

a,a′∈A
a 6=a′

P(Ea ∩ Ea′)≤ c̃N−2µ+2

5 Conclusion, conjectures and open problems

In this paper we have presented an analysis of the average error probability of
the ensemble of LDPC codes obtained by a serial interconnection of a regular
repetition code with a generic recursive inner code. We have also studied the
sub-ensemble obtained by preventing the appearance of 2-cycles in the Tanner
graph. We have proved that both ensembles have the same interleaver gain:
they have average error probability polynomially going to zero when 1/N → 0,
with the same exponent. We have found that their behavior when the SNR
goes to infinity is not the same, and in the second ensemble it is influenced by
a parameter depending on the choice of the inner encoder ψ, providing a design
parameter for such schemes.

Our results leave space for further interesting investigations. For classical
serial turbo codes, the ensemble analysis has been done not only studying the
average error probability, but also finding the typical behavior [3], which turned
out to have a sub-exponential decay (much better than the polynomial decay of
the average code, but worse than the exponential decay of typical error proba-
bility of LDPC regular ensemble). A careful adaptation of the proofs in [7, 3],
which is beyond the scope of this paper and will be discussed elsewhere, allows
to extend those results to the ensemble described in Section 3, in the following
way. Consider the ensemble described in Sect. 3 and define the random vari-
ables XN = log(dmin

N)
log(N(1+r/s)) and YN = log(− log(Pw(e)))

log(N) . When N → ∞, the result
is that XN and YN converge in probability to the constant β (the latter only
for sufficiently high SNR), where β = 1 − 2/r. Even for classical serial turbo
codes the parameter β depends only on the free distance of the outer encoder.
However, we are working on a more detailed analysis which can underline the
role played by di

f,2, the smallest output weight of the inner encoder restricted to

10

inputs of weight two. We conjecture that for the ensemble of codes considered
in this paper the key parameter would not be dϕ

f,2, which is always zero, but
dψ

f,2, without the need to restrict the ensemble as in Section 4.
Another important further study concerns the decoding. The simplest idea

is to run the Sum-Product iterative decoding on the Tanner graph exactly as
it is done for LDPC codes. We are currently investigating the real significance
of our distance parameter in real simulations with such decoding, and the first
results do not show the clear hierarchy we would expect. We conjecture that
this is related to the fact that some encoders have many cycles of small length in
the structured part of their Tanner graph, and this can make their performance
significantly worse. For example, with k = 1, the accumulator has dψ

f,2 = 1,
while the encoder in Example (E2) has dψ

f,2 = 4, but the first one has no
cycles in the structured part of the graph, while the latter has O(N) cycles
of length six which can explain why it does not outperform the accumulator.
We are currently exploring the possibility to overcome this problem, either by
constructing encoders with cycles of reasonably large length, or by focusing on
encoders with k > 1. This second approach allows both to get more encoders
without cycles in the structured part (an example is (E3), which however has
only dψ

f,2 = 1) and to construct encoders which do have cycles of small length
on the bitwise level, but if considered blockwise (with symbols of k bits) have
a staircase structure: see example (E4), which has dψ

f,2 = 3. We think that
this last kind of codes can provide a better performance when a proper decoder
acting on symbols is applied to them.

Acknowledgment

The authors would like to thank Roberto Garello for motivation and helpful
discussions.

References

[1] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial concatenation
of interleaved codes: Performance analysis, design and iterative decoding”,
IEEE Trans. on Inf. Th., vol. 44, pp. 909–926, May 1998.

[2] B. Bollobás, Random Graphs, Cambridge University Press, 2001.

[3] G. Como, F. Fagnani and F. Garin, “ML Performances of Serial Turbo
Codes do not Concentrate”, Proc. of the 4th International Symposium on
Turbo Codes and Related Topics, Munich, Germany, April 2006.

[4] F. Fagnani and F. Garin, “Analysis of serial turbo codes over Abelian groups
for Geometrically Uniform constellations”, submitted to SIAM Journal on
Discrete Mathematics (2007).

11

[5] H. Jin, A. Khandekar and R. J. McEliece, “Irregular Repeat-Accumulate
Codes”, Proc. of the 2nd International Symposium on Turbo Codes and
Related Topics, Brest, France, Sept. 2000.

[6] H. Jin and R. J. McEliece, “Coding theorems for turbo code ensembles”,
IEEE Trans. on Inf. Th., vol. 48, no. 6, pp. 1451–1461, 2002.

[7] N. Kahale and R. Urbanke, “On the minimum distance of parallel and
serially concatenated codes”, submitted to IEEE Trans. on Information
Theory (1997), available online: http://lthcwww.epfl.ch/papers/KaU.ps

[8] T. Richardson and R. Urbanke, “Efficient Encoding of Low-Density Parity-
Check Codes”, IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, Feb. 2001.

[9] A. Roumy, S. Guemghar, G. Caire and S. Verdú, “Design Methods for
Irregular Repeat-Accumulate Codes”, IEEE Transactions on Information
Theory, vol. 50, no. 8, pp. 1711–1727, August 2004.

12

