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Abstract—A class of serial turbo codes admitting low-density
parity-check (LDPC) representation is considered. Their parity
matrix has a random and a structured part. Thanks to their turbo
structure, these codes are linear-time encodable, while they can
be decoded as LDPC codes.

Previous works enlightened the role of the inner encoder in the
error floor region and suggested the use of a non-binary iterative
decoding algorithm. In this paper, a density-evolution analysis is
developed giving insight into the performance of these codes in
the waterfall region. The inner encoder is optimized in order to
guarantee the best tradeoff between error floor and threshold.

I. INTRODUCTION

One of the main problems of LDPC codes is their encoding

complexity, which is generally quadratic in the block length,

as the generating matrix is not low density. This issue has

been addressed in two different ways. On one side there

are the results in [9], which allow to construct, for given

generic LDPC matrices, equivalent generating matrices with

lower encoding complexity. On the other side, constraining

the parity check matrix to have a particular structure can

a priori guarantee easy encoding. A successful construction

uses matrices with a staircase part (i.e. a sub-matrix with

ones on the diagonal and on the lower diagonal, and zeros

everywhere else), so that the encoder can be seen as the

serial concatenation of a repetition code, an interleaver and

an accumulator. They are called Repeat-Accumulate (RA)

[5] codes or, if repetition is not uniform, Irregular Repeat-

Accumulate (IRA) codes [4].

We follow this second approach, studying LDPC codes

encodable with a serial turbo structure. There is a wide

literature on the analysis and design of IRA codes (we refer

to [10] and references therein). Previous works [3] and [2]

investigate the possibility to vary the structured part of the

parity matrix, which is equivalent to replacing the accumulator

by another convolutional inner encoder.

Theoretical results in [3] predict that performance in the

error floor region can be significantly improved by optimizing

the inner encoder. Such an analysis, assuming ML decoding,

was confirmed in [2] using a non-binary decoding algorithm

that hides the small cycles present in the standard Tanner

graph. MonteCarlo simulations showed that hierarchies indi-

cated by the ML analysis were respected in the medium-high

SNR region.

In this paper, we turn our attention to the behaviour of

these structured codes in the waterfall region. Inspired by

[10] and [7], we use density evolution to analyze the non-

binary decoding algorithm proposed in [2]. This relates the

threshold to the choice of the inner encoder. It is observed

that Repeat-Accumulate exhibits the best threshold, and the

worst error floor behaviour. On the other hand, we show that

it is possible to design structured LDPC codes with optimal

error-floor behaviour and good threshold.

Simulations both on BEC and on AWGN channel validate

our analysis.

II. CODING SCHEME AND DECODING ALGORITHM

Consider the family of Repeat-Sum-Convolute (RSC) codes,

defined by the following encoding structure:

Repr Sums ψNπN

ϕN

By Repr : F
N
2 → F

rN
2 we denote the repetition code with

rate 1/r; Sums : F
rN
2 → F

rN/s
2 is defined by

Sums(x) = (x1 + . . . + xs, xs+1 + . . . + x2s, . . .)

i.e. it gives the modulo-2 sum of every block of s bits. Finally,

let ψ(D) : F
k
2((D)) → F

k
2((D)) be a rate-1 non-catastrophic

and recursive convolutional encoder, and ψN : F
rN/s
2 → F

rN/s
2

be the truncated encoder obtained by using the trellis of ψ(D)
for rN/(sk) time steps. Define the rate R = (1 + r

s )−1

systematic encoder

ΦN : F
N
2 → F

(1+ r
s )N

2 , ΦNu = (u,Sums ◦πN◦Repr u) .

We will always assume that rN is a multiple of sk, so that

the above construction can be properly made.

ΦN is a particular kind of systematic serial turbo encoder

where the outer encoder is Repr and the inner encoder is

ϕN = ψN ◦ Sums. ϕN can be considered as the truncation

of a proper convolutional encoder, which is not injective, but

the transmission of the systematic bits ensures injectivity and

non-catastrophicity of ΦN .

The representation as serial turbo codes allows an encod-

ing time linear with kN . The decoding can be performed

exploiting the fact that these codes have a natural LDPC

representation.

Indeed, notice that a pair (u, c) in F
N
2 × F

rN/s
2 is in the

image of ΦN if and only if c = ψN ◦ Sums ◦πN ◦ Repr(u).



This is equivalent to Sums ◦πN ◦ Repr(u) + ψ−1
N (c) = 0

and can be represented in the matrix form [HN KN ]
[

u

c

]

= 0.

Here HN is a r
sN ×N matrix depending on the permutation

πN only. It is sparse, having at most s ones per row and r
ones per column. KN is a r

sN × r
sN matrix depending on the

choice of ψ only. It is also low density, having a number of

ones per row and per column bounded by k(deg ψ−1(D)+1).
In [3], RSC ensembles are analyzed with classical tools

from turbo codes literature [1]: an interleaver gain is proved (at

medium-high SNR), in the sense that ML bit and word error

probabilities, averaged over all interleavers, are asymptotically

vanishing when the interleaver length grows to infinity, pro-

vided that r ≥ 2 and r ≥ 3 respectively. The same paper

also provides a design parameter for the inner encoder: the

error floor can be lowered by increasing dψ
2 , i.e. the minimum

Hamming weight of codewords of ψ(D) corresponding to

input weight two. This result is obtained studying a smaller

ensemble where some spread is enforced in the interleaver

(or equivalently 2-cycles are forbidden from the Tanner graph

associated with the parity-check matrix).

Decoding can be done by message passing on the Tanner

graph associated with the LDPC matrix. However, simulation

results with this algorithm do not match with the theoretical

predictions in [3]. For example, most codes, even with high

dψ
2 , do not outperform the simple accumulator. The poor

performance of such codes can be explained by the presence of

O(N) small cycles in the structured part of the Tanner graph,

as opposed to the staircase, cycle-free structured KN of the

accumulator.

In this paper, we focus on a specific family of RSC codes,

where the inner encoder has the form ψ(D) = (A + BD)−1

with A,B ∈ F
k×k
2 invertible matrices. Note that any non-

catastrophic convolutional encoder ψ(D) can be represented

in this form, with possibly non-invertible A and B; the

invertibility assumption could be relaxed, but here, for the sake

of simplicity, we don’t deal with the most general case.
The form (A + BD)−1 corresponds to a structured part of

the parity matrix which is block-wise staircase:

KN =











A 0 0 . . . 0

B A 0 . . . 0

0 B A . . . 0

.

.

.
. . .

. . .
.
.
.

0 0 . . . B A











Obviously if k = 1 and A = B = 1 this reduces to the

accumulator. This structure can be exploited by a non-binary

algorithm proposed in [2], which avoids cycles.
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Fig. 1. Tanner Graph of the hybrid nonbinary algorithm

It applies a sum-product belief propagation algorithm on

the graph represented in Fig. 1. This associates to the parity

matrix [HNKN ] a labeled factor graph with vertex set given

by Vi ∪ Vp ∪ Vc, where:

• Vi = {i1, . . . , iN} is a set of N information nodes, each

corresponding to an information bit (recall the codes are

systematic);

• Vp = {p1, . . . , p r
ks

N} is a set of r
ksN parity nodes, each

corresponding to a group of k consecutive parity bits;

• Vc = {c1, . . . , c r
ks

N} is a set of r
ksN check nodes each

corresponding to a group of k consecutive rows of the

matrix.

For every 1 ≤ j ≤ r
ksN , the parity node pj is connected

only to the check node cj with an edge labeled by λij ,cj
=

A, and to the check node cj+1 with an edge labeled by

λij ,cj+1
= B. There is an edge between a check node cl in Vc

and an information node ij in Vi whenever the k × 1 block

(HN )[k(l−1)+1,kl],j is nonzero; such an edge is labeled by the

k × 1 block λcl,pj
= (HN )[k(l−1)+1,kl],j itself.

Messages exchanged between information nodes and check

nodes lay in P(F2) while messages exchanged between parity

nodes and check nodes lay in P(Fk
2) (i.e. probability distribu-

tions over F2 and F
k
2 respectively).

Denote the message from node v to node v′ at time t by

m
t
v→v′ . For every adjacent parity node v and check node

c initialize m
0
c→v as the uniform distribution over Z

k
2 and

similarly for every adjacent information node v and check

node c let m
0
c→v be the uniform distribution over Z2. Then

for every time step t ≥ 1

• the message sent from a node v in Vi ∪Vp to an adjacent

check node c, m
t
v→c is the normalized pointwise product

of zv , the channel output message at time v, and of

messages m
t−1
c′→v received by the node v from all its

neighbors c′ but c;

• the message sent from a check node c to an adjacent

information or parity node v is given by

m
t
c→v(x) = P

t
c→v

(
∑

v′∼c
v′ 6=v

λc,v′Xv′ = λcvx
)

where the probability P
t
c→v is evaluated by considering

the random variables Xv′ mutually independent, each

distributed according to mv′→c.

III. DENSITY EVOLUTION

We analyze the previously described algorithm using the

density evolution (DE) method [8]. The key remark is that this

approach is possible because the Tanner graph corresponding

to the non-binary decoding algorithm does not present cycles

in the structured part, and classical results on regular LDPC

ensembles [8] ensure that the random part is locally tree-

like with high probability. So, in addition to a possible

improvement in performances, the non-binary algorithm also

makes possible an analysis which was not allowed in general

for RSC ensambles with binary message-passing, because of

the structural presence of short cycles in the Tanner graph.

Consider a family of binary-input output-symmetric (BIOS)

channels ordered by physical degradation and indexed by a



parameter ǫ. Then, asymptotically in N , the behaviour of the

algorithm can be characterized by a dynamical system, which

assumes the following form, reflecting the structure of the

Tanner graph of Fig. 1:











yt+1 = fǫ(yt,x
A
t ,xB

t )

x
A
t+1 = fA

ǫ (xA
t ,yt)

x
B
t+1 = fB

ǫ (xB
t ,yt)

(1)

In (1), for all t ≥ 0, yt ∈ P(P(F2)) is the density of

messages sent at time t from information nodes, while x
A
t

and x
B
t in P(P(Fk

2)) are the densities of messages sent

by parity nodes, on edges labeled by A and B respectively

(under the assumption that there is no cycle of length smaller

than 4t). Note that for parity nodes we need to consider

separately the densities of messages on edges with label A
and B, because we have fixed matrices A, B and we cannot

use the simplification given by averaging. We can exploit

the averaging effect only for information nodes, which have

random labels on their output edges.

A. Density evolution on BEC

While for general BIOS channels (as the AWGN or the

BSC) the dynamical system (1) is infinite-dimensional, we will

focus here on the BEC, where it reduces to finite dimension.

In this case, assuming transmission of the all-zero codeword

(assumption justified by symmetry of the channel and code

linearity), the messages sent during the decoding are:

• from and to an information node: either 0 or ‘erased’.

(i.e. the uniform probability on the set {0} and {0, 1}
respectively);

• from and to a parity node: the uniform distribution on

some vector subspace of F
k
2 , possibly {0} or F

k
2 itself. If

the message comes from the channel, not all subspaces

are possible, only those corresponding exactly to the

restriction of F
k
2 to some of its components, i.e. the

spaces having as a basis a subset of the canonical basis

{e1, . . . ,ek} of F
k
2 .

More simply, one can identify the messages with the subspaces

themselves, so that the alphabet of messages from and to the

parity nodes is G := { subspaces of F
k
2 }.

So, the density evolution system will have the following

variables:

• yt∈ [0, 1] = fraction of information bits erased at time t;
• x

A
t ∈ P(G) defined by xA

t (V ) = fraction of output

messages from parity symbols (on edge with label A),

which at time t are equal to V ;

• analogous definition for x
B
t on edges with label B.

We will use the short-hand notations [k] := {1, 2, . . . , k} and,

for I ⊆ [k], F
I
2 := span{ei, i ∈ I}. We will denote by πi(V )

the restriction of a vector space V ∈ G to its i-th component,

i.e. πi(V ) is {0} if all vectors in V have their i-th component

equal to zero, and is {0, 1} otherwise.
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Fig. 2. Portions of Tanner graph, with messages exchanged

With these notations, the equations describing the density

evolution on the BEC are:

yt+1 =ǫ









1 −
(1 − yt)

s−1

k

k
∑

i=1

∑

V ∈G:
πi(AV)={0}

xA
t (V )

∑

W∈G:
πi(BW)={0}

xB
t (W )









r−1

(2)

and, for any U ∈ G,

xA
t+1(U)=

∑

I⊆[k]

∑

J⊆[k]

∑

W∈G

ǫ|I|(1−ǫ)
k−|I|

xA
t (W ) pJ (yt)n

A
U,W,I,J

(3)

where:

• pJ (yt) = (1 − (1 − yt)
s
)
|J|

(1 − yt)
s(k−|J|)

• nA
U,W,I,J =

∣

∣

{

V ∈G : BV =AW + F
J
2 , U =V ∩ F

I
2

} ∣

∣;

using the assumption that B is invertible, nA
U,W,I,J be-

comes simply 1 if U = B−1(AW + F
J
2 ) ∩ F

I
2 and 0

otherwise.

The equation for x
B
t+1 is the same as (3), simply exchanging

the role of A and B everywhere.

Fig. 2 helps to understand the meaning of equations (2) and

(3). It shows the portion of Tanner graph corresponding to one

updating step in the iterative decoding, from the perspective

of an information and a parity node. The triangles denote the

output from the channel. The check nodes can be thought as

the aggregation of k bit-wise check nodes. The i-th bit-wise

check is connected to the information nodes having label ei.

Referring to Fig. 2(a), yt+1 is the probability that

my = {0, 1}. This happens only if both the message from the

channel and all the r−1 incoming messages from check nodes

give an erasure. The channel sends an erasure with probability

ǫ. For each of the r − 1 edges, we will now compute the

probability that the message is {0}, i.e. not erased, assuming

that the label is ei: the averaging on i then comes from the

fact that the labels are uniformly random. Looking at the check

node, we see that it sends {0} for the i-th component when all

the other s− 1 edges incoming with label ei carry a {0} and

both messages AV and BW from parity nodes give {0} when

restricted to the i-th component. This happens with probability

(1 − yt)
s−1

∑

V :πi(AV)={0}

xA
t (V )

∑

W :πi(BW)={0}

xB
t (W ).

x
A
t+1 is the distribution of the messages mx in Fig. 2(b);

let’s compute the probability that mx = U . Note that U is



the intersection of the message received from the channel and

the one coming from the check node. The channel can send

any of the spaces F
I
2, I ⊆ [k] (i.e. an erasure exactly in the

components listed in the indexes set I), each with probability

ǫ|I|(1 − ǫ)k−|I|. The check node computes the sum of the

vector spaces it receives. The combination of the ks messages

from the information nodes is F
J
2 , J ⊆ [k], i.e. an erasure

exactly in the components listed in J , with probability pJ(yt).
In fact, a bit-wise check node j is erased when at least one of

the s information nodes with label ej carries an erasure. The

check node has to sum F
J
2 and the message it receives on the

edge labeled with A, which is AW with probability xA
t (W ),

for any W ∈ G. In conclusion, any triple I ⊆ [k], J ⊆ [k], and

W ∈ G appears with probability ǫ|I|(1−ǫ)k−|I|pJ(yt)x
A
t (W )

and contributes to xA
t+1(U) if and only if U = B−1(AW +

F
J
2 ) ∩ F

I
2, i.e. nA

U,W,I,J 6= 0.

The evolution equations (2) and (3) describe a dynamical

system, with variable z = (y,xA,xB) ∈ [0, 1] × P(G) ×
P(G). It is clear that if we denote by δV a vector in P(G)
with a one in position V and zeros everywhere else, z

∗ :=
(0, δ{0}, δ{0}) is a fixed point of the system. Since yt → 0
represents successful decoding, finding the threshold means

finding up to what value of ǫ the system converges to z
∗

from the initial condition z0 = (1, δ
F

k
2
, δ

F
k
2
). This choice of

z0 corresponds to the initialization of the decoding algorithm.

Numerical computation of the threshold for different values

of A and B can guide the choice of the inner encoder, as is

discussed in Section IV.

An interesting theoretical question which is often considered

in the Density Evolution literature is the stability condition:

you look for conditions ensuring that the fixed point to which

you wish convergence (in our case, z
∗) is asymptotically stable

for all ǫ, i.e. for all ǫ, there exists a neighbourhood of z
∗ such

that starting from any initial condition in that neighbourhood

the system will converge to z
∗ . This is clearly a necessary

condition for convergence from your given initial condition,

and it can provide interesting design guidelines, as it happens

for the degree distributions of the irregular binary random

LDPC ensemble.

In our setting, it turns out that z
∗ is asymptotically stable,

for all ǫ, for any choice of A and B, provided that r ≥ 3.

This generalizes the well-known result that for the regular

LDPC ensemble, with left degree at least three, the asymptotic

stability of the fixed point 0 is always true. However, the

proof in our setting is less trivial. You need at first to

linearize the system, i.e. to compute the Jacobian matrix in

z
∗, J(z∗). r ≥ 3 ensures that the first line of J(z∗) is all-

zero. Then you can note that x
A
t+1 does not depend on x

B
t

and depends linearly on x
A
t ; denote by MA the |G| × |G|

matrix describing this linear map in the case when yt = 0.

Analogously define MB . Now note that the eigenvalues of

J(z∗) are: 0 and then the eigenvalues of MA and MB . Now,

instead of explicitly computing the eigenvalues of A and B,

which are hard to express in closed form, we prove that the

linear systems on P(G) associated with MA and MB have

a unique asymptotically stable fixed point in δ{0}, by using

a Lyapunov technique (see e.g. [6]): we define the function

η(x) =
∑

U∈G(dim U)x(U), which can be interpreted as the

average dimension of the subspaces of F
k
2 with respect to the

probability distribution x. We note that η is a linear function,

η(x) ≥ 0 for all x ∈ P(G), η(x) = 0 if and only if x = δ{0},

and we prove that η is strictly decreasing along the trajectories,

i.e. η(MAx) < η(x) and η(MBx) < η(x) for all x 6= δ{0}.

IV. SIMULATIONS AND NUMERICAL RESULTS

Our analysis is validated by simulation results in which at

low SNR the hierarchy given by the threshold is respected.

The threshold has been obtained numerically, iteratively cal-

culating message densities and considering a maximum of 250
iterations.

All the examples simulated have r = 4 and s = 4, so that

the overall rate R is 1/2. Simulations differ for k and for the

choice of ψ(D), which influences both the threshold and the

parameter dψ
2 .
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Fig. 3. Results on BEC channel, k = 3, block length 2400, rate 1/2

Fig. 3 shows the behaviour of the non-binary decoding

algorithm with k = 3 for three encoders, on the BEC

channel. For the low SNR region the predicted hierarchies are

respected, they can be read on the graph in the BER region

between 10−1 and 10−2. Hierarchies are reversed at higher

SNR, as predicted by the parameter dψ
2 .

Fig. 4 shows analogous simulations for some codes with

k = 4. For all the curves the matrix B has been kept fixed

equal to the identity while A, starting from the identity matrix,

has been filled up with more and more ones: this leads to

a decreasing threshold and a dψ
2 which is very low when

A is sparse; this suggests some relation between our design

parameters and sparseness of the matrices. Simulation results

are again perfectly matching with the predictions.

Simulations show that performance on the AWGN respects

the same hierarchies of the BEC thresholds; see e.g. Fig. 5.

This suggests that density evolution on the BEC can also

provide some insight into the behaviour on other channels,

and give guidelines for the choice of the encoding scheme.

Another possibility, which will be considered in future work,
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is to study finite-dimensional approximations of the AWGN

density evolution, as it is done for IRA codes in [10].

In [3], we have underlined the role of the parameter dψ
2 :

its maximization improves performance at high SNR. Now

density evolution provides an optimization criterion for low

SNR: maximizing the threshold. It is well-known that these

two optimizations are often in contrast, so that a compromise

is necessary if both SNR regions are targeted. We want to

investigate if this happens also in our setting.
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Fig. 6. Distribution of the threshold as function of d
ψ
2

with k = 3, 4

Fig. 6 reports the threshold vs. dψ
2 for a large number

of choices of the pairs A, B. These numerical results show

that the best threshold corresponds to A and B being both

permutation matrices; unfortunately, it is easy to prove that

this condition implies dψ
2 = 1, the same as with the simple

accumulator on which we wanted to improve. For k = 3 we

see that the values of the threshold are quite dispersed, even

if there is some dependence on dψ
2 , in that the lower dψ

2 , the

higher the maximum threshold. For k = 4, apart from the

special case dψ
2 = 1, the thresholds don’t exhibit any apparent

dependence on dψ
2 . This suggest, especially for k = 4, the

following simple design criterion: take A and B with the

maximum threshold among those having the maximum dψ
2 .

V. CONCLUSION AND FUTURE WORKS

This paper has analyzed the behaviour of the non-binary

decoding algorithm presented in [2], applied to a family of

linear-time encodable LDPC codes. We have developed the

density evolution that allows the prediction of the performance

for the low-medium SNR region, on the BEC. MonteCarlo

simulations have confirmed the theoretical and numerical re-

sults both on BEC and AWGN channels. The density evolution

has showed to be a powerful tool for optimizing such a family

of codes and it can be jointly used with the effective free

distance of the inner encoder (dψ
2 ), which influences the error

floor.

Further investigations will be devoted to the case of irregular

degrees in the random part of the Tanner graph (equivalent

to time-varying repetition and summation codes). Re-writing

equations (2) and (3) for the irregular case is straightforward,

while some theoretical analysis, even just the stability con-

dition, looks a hard task. We plan to use numerical values

of the threshold as a tool for optimizing irregular degrees

distribution, as is usually done in the unstructured case.
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