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Abstract—Average-consensus algorithms allow to compute the
average of some agents’ data in a distributed way, and they
are used as a basic building block in algorithms for distributed
estimation, load balancing, formation and distributed control.

Traditional analysis of linear average-consensus algorithms
studies, for a given communication graph, the convergence rate,
given by the essential spectral radius of the transition matrix
(i.e. the second largest eigenvalues’ modulus). For many graph
families, such analysis predicts a performance which degrades
when the number of agents grows, basically because spreading in-
formation across a larger graph requires a longer time. However,
if you consider other well-known quadratic performance indices
(involving all the eigenvalues of the transition matrix), the scaling
law with respect to the number of agents can be different. This is
consistent with the fact that, in many applications, for example in
estimation problems, it is natural to expect that a larger number
of cooperating agents has a positive, not a negative effect on
performance.

In this paper, we consider two different quadratic indices,
which arise naturally from some estimation and control problems
in which the consensus algorithm is used. We provide analytical
results on their asymptotic behavior when the communica-
tion network belongs to some families of Cayley graphs. This
framework includes grids on toruses in arbitrary dimensions,
which are conjectured to be a good approximation of random
geometric graphs; indeed, we show simulation results supporting
this conjecture.

I. I NTRODUCTION

Average-consensus algorithms allow to compute an average
in a distributed way. These algorithms have been extensively
applied to the solution of problems of distributed estimation
[19] and of sensor calibration for sensor networks [12], to
load balancing for distributed computing systems [7], and to
mobile multi-vehicles coordination [6]. We refer the reader
to the survey [20], the recent books [25], [4] and references
therein.

In this paper, we focus on linear average-consensus. Starting
from the natural and widely studied algorithm proposed by
Tsitsiklis [26] since the early80′s, the average consensus
problem has been addressed in many different directions.
Convergence conditions both for fixed and dynamically chang-
ing interaction topologies have been provided [21], [17], [5].
Randomized algorithms has been considered in [9], [3]. In [8],
[22] the authors investigate the case of data loss in the
transmission between the nodes. The effects of noisy commu-

nications has been analyzed in [15]. Recently a large attention
has been captured by the realistic situation of quantized data
transmission [16], [18], [1], [11].

In this paper we are interested in evaluating the perfor-
mance of linear time-invariant average-consensus algorithms.
Typically this kind of analysis exploits results from Markov
chains literature, and is focused on predicting the speed of
convergence to the average, when computation time grows.
There has been an extensive literature on this topic, with
both analysis and optimization of asymptotic convergence
speed which is given by the dominant mode of the transition
matrix [5], [27]. However, we believe that when convergence
to the average is not an objective per se, but is used to solve
an estimation or control problem, it is important to consider
different performance measures, more tightly related to the
actual objective pursued.

In this paper we introduce two different functional costs
which arise quite naturally in control and estimation prob-
lems. The first one is a classical LQ functional cost which
evaluates the performance of the average-consensus algorithm
by calculating theL2 norm of a suitable variable; this cost
represents a different way to evaluate the transient phase of
the algorithm. In fact, also in classical control theory, there are
various ways to evaluate the transient performance of a control
strategy: one is based on the dominant eigenvalues, and the
corresponding control methodology relies on the possibility to
suitably allocate such eigenvalues; a second one is based onthe
L2-norm of the transient and this yields to the so-called linear
quadratic optimal control methodology. Our functional is this
second kind of cost, for the consensus algorithm. We will
show that this functional cost depends on all the eigenvalues
of the transition matrix, and our main contribution will be
to characterize it for some relevant families of graphs. The
second cost we propose is related to the estimation error made
by a network of sensors when averaging their measurements.
For many families of graphs (including geometric graphs), the
speed of convergence, as evaluated by the essential spectral
radius, deteriorates with larger networks, but on the contrary
in estimation one would expect that a broader number of
measurements should improve the quality of the final estimate.
We propose a natural performance measure (average error
variance) and, for some families of graphs, we find its scaling



laws with respect to both number of vertices and computation
time, so that we can suggest useful criteria in the design of
the size of large-scale sensor networks.

The paper is organized as follows. In Section II we formu-
late the problem we deal with. In Section III we introduce
three families of graphs, the Cayley graphs, the grids and the
random geometric graphs: these families are the subject of our
investigations. In Section IV we illustrate our main theoretical
and numerical results. Finally in the Appendix we collect the
proofs of the theoretical results stated in the previous section.

Mathematical Preliminaries

Before proceeding, we collect some useful definitions and
we fix some notation. More detailed definitions about Cayley
graphs will be given in Sect. III-A. In this paper,G = (V, E)
denotes andirected graph whereV is the set of vertices,N =
|V | the number of vertices, andE is the set of directed edges,
i.e., a subset ofV × V .

A matrix M is nonnegative if Mij ≥ 0 for all i and j. A
square matrixM is stochastic if it is nonnegative and the sum
along each row ofM is equal to1. Moreover, a square matrix
M is doubly-stochastic if it is stochastic and the sum along
each column ofM is equal to1. Given a nonnegative matrix
M ∈ R

N×N , we define the induced graphGM by taking N
nodes and putting an edge(j, i) in E if Mij > 0. Given a
graphG on V , the matrixM is adapted to, or compatible
with, G if GM ⊆ G.

Now we give some notational conventions. Vectors will be
denoted with bold letters. Given a vectorv ∈ R

N and a
matrix M ∈ R

N×N , we letvT andMT respectively denote
the transpose ofv and of M . We let σ(M) denote the set
of eigenvalues ofM . With the symbol1 we denote theN -
dimensional vector having all the components equal to1.

Given any setA with finite cardinality|A|, R
A will denote

the vector space isomorphic toR|A|, made of vectors where
indices are elements ofA instead of{1, 2, . . . , |A|}. Analo-
gously,RA×A will denote the vector space of all linear maps
from R

A to R
A.

II. PROBLEM FORMULATION

We start this section by briefly describing the standard
discrete-time consensus algorithm. Assume that we have a
set of agentsV and a graphG on V describing the feasible
communications among the agents. For each agenti ∈ V we
denote byxi(t) the estimate of the average of agenti at t-th
iteration. Standard consensus algorithms are built by choosing
a doubly-stochastic matrixP ∈ R

N×N compatible withG
and assuming that at every stept agenti updates its estimates
according to

xi(t + 1) =

N
∑

j=1

Pijxj(t). (1)

More compactly we can write

x(t + 1) = Px(t), (2)

wherex(t) is the column vector whosei-th entry isxi(t).

It is well-known in the literature [4] that, ifP is primitive
then the algorithm (2) solves theaverage consensus problem,
namely

lim
t→∞

x(t) = xave1, (3)

wherexave = 1
N

∑N
i=1 xi(0). From now on we assume the

following property.
Assumption 1: P is a primitive doubly-stochastic matrix.�

Traditionally the performance of the average consensus
algorithm is evaluated by considering theasymptotic conver-
gence factor, defined as

rasym = sup
x(0)

lim sup
t→∞

(‖x(t) − xave‖2)
1

t . (4)

It is well known [4] that, if P satisfies Assumption 1 and
the initial condition can be any arbitrary vector ofR

N , then
rasym coincides with theessential spectral radius of P , that
we denote byρess(P )1. Typically, for many graph families,
when considering sequences of matrices{PN} of increasing
size, it turns out that

lim
N→∞

ρess(PN ) = 1. (6)

Notice that equation (6) predicts a performance which de-
grades as the number of agents increases. This is not surpris-
ing, since intuitively one should expect that the larger is the
graph, the longer is the time required to spread the information
across the nodes. A mathematical characterization of (5) has
been carried out for graphs exhibiting Cayley symmetries in
[5] and for the random geometric graphs in [3].

In this paper we evaluate the performance of the average
consensus algorithm according to two different functional
costs. The first one is a classical LQ functional cost which
accounts for the speed of the average consensus algorithm by
calculating theL2-norm of a suitable trajectory; the second
one is related to the estimation error made by a network of
sensors when averaging their measurements. We proceed now
by presenting them separately.

A. Transient performance evaluation by L2-norm: a LQ cost

In this subsection we assume that the initial conditionx(0)
satisfies the following condition.

Assumption 2: The initial conditionx(0) is a random vari-
able such thatE[x(0)] = 0 and E

[

x(0)xT (0)
]

= σ2
0I for

someσ2
0 > 0. �

Without loss of generality, we will considerσ2
0 = 1 throughout

this paper.
When dealing with the average consensus problem it is

convenient to introduce the following random variable

∆(t) = x(t) − xave1 =
(

I − 1
N 11

T
)

x(t) ,

1For the sake of the clarity, we recall that for a primitive doubly-stochastic
matrix ρess(P ) is given by the second largest eigenvalues’ modulus, i.e.,

ρess(P ) := max
λ∈σ(P )\{1}

|λ|. (5)



where the last equality follows from the fact that, sinceP
is doubly-stochastic then1T x(t) = 1

T x(0) for all t ≥ 0.
Observe that∆(t) represents the distance ofx(t) from the
average of the initial conditions. It is easy to see that∆
satisfies the same recursive equation asx, i.e.,

∆(t + 1) = P∆(t) (7)

and thatx(t) → xave1 if and only if ∆(t) → 0.
In control theory a classical way of evaluating the perfor-

mance of system (7) would be considering a linear quadratic
cost of the form

J∆(P ) =
1

N

∞
∑

t=0

E
[

∆T (t)Q∆(t)
]

whereQ is an pre-assigned semidefinite positive matrix. In our
setup we assume thatQ = I and hence the above expression
reduces to the following functional cost

J∆(P ) :=
1

N

∞
∑

t=0

E‖∆(t)‖2. (8)

It is worth noting thatJ∆(P ) represents also as theL2-norm
of the random process{∆(t)}∞t=0.

In Section IV we will characterize the behavior ofJ∆(P )
for some relevant graph families as the number of agentsN
varies.

We provide now a characterization ofJ∆ that will be useful
later on. Notice that Assumption 2 implies that∆(0) is a ran-
dom variable such thatE[∆(0)] = 0 and E

[

∆(0)∆T (0)
]

=
I − 1

N 11
T . Hence,

J∆(P ) =
1

N

∞
∑

t=0

trace
{

E
[

∆(t)∆T (t)
]}

=
1

N

∞
∑

t=0

trace
[

P t
(

I − 1
N 11

T
) (

P t
)T

]

If P is normal, i.e.,PPT = PT P , the above expression can be
written as a function of only the eigenvalues ofP . Precisely,
by observing thatP t

(

I − 1
N 11

T
)

=
(

P
(

I − 1
N 11

T
))t

, and
that σ

(

P
(

I − 1
N 11

T
))

= {0} ∪ σ(P ) \ {1}, we can write

J∆(P ) =
1

N

∞
∑

t=0

∑

λ∈σ(P )\{1}
|λ|2t

=
1

N

∑

λ∈σ(P )\{1}

1

1 − |λ|2

Remark 1: We end this subsection by remarking that the
functional cost (8) has been also analyzed in [28] in a different
context. The authors in [28] consider a stochastic model for
distributed average consensus where each node, updates its
local variable with a weighted average of its neighbors’ values
as in (1), but each new value is corrupted by an additive noise
with zero mean, i.e.,

xi(t + 1) =

N
∑

j=1

Pijxj(t) + vi(t), i = 1, . . . , N, (9)

where vi(t), i = 1, . . . , N, t = 0, 1, . . . are independent
random variables, identically distributed, with zero meanand
unit variance. To analyze the performance of the algorithm,
the authors introduce the variable

z(t) =
(

I − 1
N 11

T
)

x(t),

and the corresponding functional cost

δss(P ) :=
1

N

∞
∑

t=0

E‖z(t)‖2

Observe that, due to the presence of the noise, differently from
∆(t), e(t) 6= x(t) −xave1; in other wordse(t) quantifies the
distance of the states from their current average which, in
general, differs from the average of their initial conditions.
Thus the mean-square deviationδss(P ) can be viewed as a
measure of how well the weight matrixP is able to enforce
consensus (but not in general the average consensus), despite
the additive errors introduced at each node at each step. Some
straightforward manipulations show that, ifP is normal, then
δss(P ) = J∆(P ).

B. Quadratic error in distributed estimation

In this subsection we consider the following problem of
distributed estimation:N sensors measure the same real quan-
tity y plus independent. noises. To be more precise, ifvi

denotes the measurement made by thei-th sensor, we have
that vi = y + ni whereni, i ∈ {1, . . . , N}, are independent
zero-mean noises with the same varianceσ2

0 (without loss of
generality, we will assumeσ2

0 = 1). If all the measurements
were available at the same location, it is well known that
the optimal estimate would be given by the mean of all
measurements, i.e.,1/N

∑N
i=1 vi.

In our setup, where the sensors could be constrained by
the graphG to communicate only with a limited number of
neighbors, the average of the measurementsvi, i ∈ {1, . . . , N}
can be computed efficiently in a distributed way by means of
an average consensus algorithm. Letx(0) be such that itsi-
th componentxi(0) is equal tovi. Then the estimatex(t) is
updated by the sensors according to (1), whereP is a doubly-
stochastic matrix compatible with the graphG. Clearly, under
Assumption 1,x(t) →

(

1/N
∑N

i=1 vi

)

1. In this context,
since the goal is estimatingy, it is quite natural to introduce
the error variable

e(t) = x(t) − y1

and the corresponding quadratic functional cost

Je (P, t) =
1

N
E

[

eT (t)e(t)
]

.

For our problem, it is easy to show that the costJe(P, t) can
be re-written as

Je(P, t) = 1
N trace

(

(P t)T P t
)

If P is normal, then this is equivalent to

Je(P, t) = 1
N

∑

λ∈σ(P ) |λ|2t.



In the next sections, we will study the asymptotic behavior
of Je(P, t) when bothN and t grow to infinity, for some
families of graphs. This result is particularly relevant because
it suggests the right trade-off between number of nodes and
computation time in the design of large-scale sensor networks.

III. FAMILIES OF GRAPHS

We introduce here the main family of graphs and transition
matrices we are going to consider in our analysis.

A. Abelian Cayley graphs and matrices

First of all let’s recall the definition of Cayley graphs: given
a group(G, +) and a setS ⊆ G, the Cayley graphG(G, S) is
a directed graph with vertex setG and edge setE = {(g, h) :
h−g ∈ S}. We will consider finite graphs, with|G| = N , and
matrices associated with such graphs, which respect the strong
symmetries of the graph: we say that a matrixP ∈ R

G×G (i.e.
with entries labeled by indexes belonging toG) is Cayley if
Pg,h = Pg+k,h+k∀g, h, k ∈ G. This is equivalent to say that
there exists a mapπ : G → R such thatPh,k = π(h − k);
such function is called the generator of the Cayley matrixP .

Throughout this paper, we will also assume that the graph
associated withP is strongly connected and aperiodic, and
that P is stochastic, i.e.,π(g) ≥ 0 ∀g ∈ G and

∑

g∈G π(g) =
1. Notice that a stochastic Cayley matrix is also doubly-
stochastic.

In this paper, we restrict our attention to the case when
G = Z

d
n even though most results can be generalized to any

finite Abelian group. Under this assumption, the eigenvalues
and eigenvectors ofP have the following simple expression:
for any h = (h1, . . . , hd) ∈ Z

d
n,

λh =
∑

k∈Zd
n

π(h)e−i( 2π
n

h1k1+···+ 2π
n

hdkd)

is an eigenvalue with corresponding eigenvectorvh ∈ R
Z

d
n

defined by

vh(k) = 1√
N

ei( 2π
n

h1k1+···+ 2π
n

hdkd) .

Notice that such eigenvectors are orthonormal, so thatP is a
normal matrix.

As a simple example, whend = 1, i.e. G = ZN ,
you obtain that P is a circulant N × N matrix, with
first row equal to the vector[π(0), . . . , π(N − 1)]T , and
with eigenvalues/eigenvectorsλh =

∑N−1
k=0 π(k)e−i 2π

N
hk

and vh = [1, ei 2π
N

h, e2i 2π
N

h, . . . , e(N−1)i 2π
N

h]T , for
h = 0, . . . , N − 1.

In our analysis we want to consider families of Cayley
graphs, with a growing number of vertices, but with constant
degree, and with the same algebraic structure and same values
for the non-zero entries ofP . For example, we can look at a
a circular graph where each node talk to itself, to its first two
neighbours on the right and its first neighbour to the left, each
with weight 1/3, regardless the number of agents.

First of all, we consider a family of groupsGn = Z
d
n, for

some fixedd and growingn; let N = |Gn| = nd. Then, we

have to define the neighbours and the weights. We fix a posi-
tive integerδ, we define the setDδ = {−δ,−δ + 1, . . . , +δ}d

and we fix |Dδ| real numbersph, h = (h1, . . . , hd) ∈ Dδ

such thatph ≥ 0 ∀h and
∑

h∈Dδ
ph = 1. Then, for anyn > δ,

we construct the Cayley matrixPn ∈ R
Z

d
n×Z

d
n with generator

πn : Z
d
n → R defined byπn(g) = ph if there is anh ∈ Dδ

such that, for alll = 1, . . . , d gl = hl mod n, andπn(g) = 0
otherwise. Note that for anyn ≥ δ πn is well-defined.

We can also do a similar construction takingG = Z
d and

defining π(g) = pg if g ∈ Dδ and π(g) = 0 otherwise.
We assume that there are enough non-zero weightsph so as
to ensure that the corresponding infinite graph is connected.
Moreover, we assume there are self-loops, i.e.,p0 6= 0. These
two assumptions guarantee that all matricesPn of the sequence
we have constructed above are primitive; also recall thatPn

are doubly-stochastic and normal.
We introduce here also a useful notation, defining the

Laurent polynomialp(z) ∈ R[z1, z
−1
1 , . . . , zd, z

−1
d ] given by

p(z) =
∑

k∈Dδ

pkzk1

1 . . . zkd

d

We will refer to the above construction of a family of Cay-
ley matrices{Pn}n≥δ with the short name ‘Cayley matrix
family associated withp(z1, . . . , zd)’. With this notation,
Pn has eigenvaluesλh = p(e−i 2π

n
h1 , . . . , e−i 2π

n
hd), h =

(h1, . . . , hd) ∈ Z
d
n.

Note that when we writeei 2π
n

hr with hr ∈ Zn, we mean
that we can substitutehr with any integer which is equal
to hr mod n. Later, we will need the specific choice of
hr ∈ {0, 1, . . . , n − 1}, which we will denote byh ∈ Vn,
Vn = {0, . . . , n−1}d. When needed, we will actually identify
vertices of the graph withVn rather thanGn.

B. Grids in R
d

The families of Cayley graphs on the groupZd
n presented

above can be seen as grids on a (multi-dimensional) torus.
An interesting result by Boyd et al. [2] allows to compute the
eigenvalues and eigenvectors also of grids on a cube inR

d,
which are the same as the one on a torus except that they are
suitably modified at the borders.

More precisely, define the following family of matrices.
Consider P2n a Cayley matrix on Z

d
2n associated with

p(z1, . . . , zd), and assume that the coefficientsph satisfy the
following quadrantal symmetry:ph = pk if ∀i, hi = ±ki.
This assumption implies that reflectionsσr on Gn defined by
σr(h) = k with kl = hl if l 6= r and kr = 2n − 1 − r,
are symmetries of the labeled grid on the torus. For exam-
ple, Fig. 1 shows the axis of reflection ofσ1 for the case
d = 1. It is convenient here to identifyGn with the set
Vn = {0, . . . , n − 1}d, and considerσr : Vn → Vn.

Now denote byH the group generated byσ1, . . . , σd and
consider, for allg ∈ Vn ⊆ V2n, the orbitOg = {η(g) : η ∈
H} ⊆ V2n. Finally, definePn : R

Vn → R
Vn by (Pn)h,k =

∑

l∈Ok
Ph,l, for all h, k ∈ Vn. Notice thatPn is symmetric

and that, apart from the borders,Pn associates to edges of the
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Fig. 1. Circle with2N vertices and reflection axis corresponding to the map
l 7→ 2N − 1 − l, used in the construction of a line withN vertices.

grid the same coefficients thatPn associates to edges of the
grid on the torus.

We will refer to the above construction of a family of
matrices{Pn}n≥δ with the short name ‘grid matrix family
associated withp(z1, . . . , zd)’.

Using [2, Prop. 3.2], we can find the eigenvalues ofPn:

λ̄h = p(ei π
n

h1 , . . . , ei π
n

hd), h ∈ Vn .

C. Random geometric graphs

The random geometric graph is a random undirected graph
drawn on a bounded region, e.g., thed-dimensional unitary
cube[0, 1]d. It is generated by

• placing vertices at random, uniformly and independently
inside the region, and

• connecting two vertices if and only if the euclidean dis-
tance between them is at most a pre-assigned thresholdr.

The random geometric graph was first introduced in [13]
and has been deeply studied under a communications and
information-theoretic point of view in [14]. It has recently
witnessed a large interest in many applications; particularly
it has been successfully used to model wireless communica-
tion [10]. In Section IV-B, given a random geometric graph
G(V, E), we will associate to it a doubly stochastic matrixP
built according to theMetropolis weights rule [29]; precisely,
if Pij denotes the element ofP in the i-th row and in thej-th
column we will have

Pij =







1
1+max{di,dj} if (i, j) ∈ E

1 − ∑

(i,k)∈E\{(i,i)} Pik if i = j

0 otherwise

wheredi = |Ni\{(i, i)} | with Ni = {j ∈ V | (i, j) ∈ E}. In
other words the weight on each edge is one over one plus the
largest degree at its two incident vertices, and the self-weights
are chosen so the sum of weights at each node is1.

IV. M AIN RESULTS

A. Asymptotic costs for Cayley graphs and grids

We state here our main theoretical results: an asymptotic
analysis of the proposed quadratic indices for the familiesof
Cayley graphs and of grids described in previous section. The
proofs can be found in the Appendix.

Proposition 1 (LQ cost asymptotics): Given {Pn}n≥δ a
Cayley or a grid matrix family associated withp(z1, . . . , zd),
there existCd, C

′
d > 0 (depending only ond) such that:

• if d = 1,
C1N ≤ J∆(Pn) ≤ C′

1N ;

• if d = 2,

C2 log N ≤ J∆(Pn) ≤ C′
2 log N ;

• if d ≥ 3,
Cd ≤ J∆(Pn) ≤ C′

d .

�

To give a better understanding of the above Theorem,
we propose an example illustrating an interestig comparison
between the behavior of the functional costJ∆ and of the
essential spectralρess as n → ∞ of a particular sequence
of Cayley graphs. We will see how the evaluation of the
performance of the average consensus algorithms, in the
asymptotic regimen → ∞, is strictly related to the choice
of the functional cost.

Example 1: Consider the sequence of Cayley matrices
{Pn} built as follows. For eachn, let G = Z

3
n and letS =

{

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0),
(0, 0,−1)

}

. Moreover letπ(g) = 1
7 for all g ∈ S. It is well

known (see [5]) that, in this case,

ρess(Pn) ≥ 1 − C

N3

whereC is a constant independent from the topology of the
graphs. From the above inequality it turns out that, if we
consider as functional cost theasymptotic covergence factor
defined in (4), then the performance of the average consensus
algorithms associated to the sequence{Pn} degrades drasti-
cally asn → ∞. Instead, Proposition 1 guarantees the exis-
tence of constantsC3 andC′

3 such thatC3 ≤ J∆(Pn) ≤ C′
3

for all n. �

Proposition 2 (Quadratic estimation error asymptotics):
Given {Pn}n≥δ a Cayley or a grid matrix family associated
with p(z1, . . . , zd), there exist constantsc0 = c′0 = 1,
c1, . . . , cd, c

′
1, . . . , c

′
d > 0 andk ∈ (0, 1) such that

max
l=0,...,d

1

nd−l

cl

tl/2
≤ Je (Pn, t) ≤ kt +

∑

l=0,...,d

1

nd−l

c′l
tl/2

�

Corollary 1: Given {Pn}n≥δ a Cayley or a grid matrix
family associated withp(z1, . . . , zd), there exists constants
n0 ∈ N, k1, k2 > 0 such that, for alln ≥ n0,

k1 max

{

1

N
,

1

td/2

}

≤ Je (Pn, t) ≤ k2 max

{

1

N
,

1

td/2

}

�

Notice that if the average of all sensors’ measurements was
performed in a centralized way, the exact average thus obtained
would be the best possible estimate of the measured value
(under the simple model we are considering), but it would
still have error variance1/N . Thus, it is not surprising to find



a term1/N in the asymptotic behavior of the decentralized
algorithm running on grids. What is more interesting is to look
at the dependence onN and t, which shows that a sensible
design of the number of nodes should take into account
also the computational time allowed for communication and
computation. In fact, Corollary 1 clearly shows that when both
t andN grow there are two very different regimes, a first one
with N ≪ td/2, where the error decays as1/N , and a second
regime withN ≫ td/2 where regardless the number of nodes
the cost is dominated by a term scaling as1/td/2. Finally, it
is interesting to notice that, despiteρess → 1 for N → ∞
would suggest that these families of graphs have decreasing
performance for growing number of agents, indeed it is clear
that a bigger number of measurements can improve the quality
of the estimate, and in fact lim

t,N→∞
Je (Pn, t) = 0.

B. Random geometric graphs

In this section we focus on the other relevant family of
graphs we are dealing with in this paper, the random geometric
graph. While several probabilistic results are known aboutthe
number of components in the graph as a function of the thresh-
old r and the number of verticesN (see e.g. the monograph
[23]), no comprehensive theoretical characterization hasbeen
provided yet for the behavior of the eigenvalues of doubly-
stochastic matrices associated to random geometric graphs.
In this direction only few results are present so far. It is
worth citing them briefly. In [3], the authors first prove some
regularity properties on the degrees of the nodes of random
geometric graphs; then, relying on these results, they find a
lower bound for the mixing time of random walks on random
geometric graphs with the mixing time of random walks on
regular grids on torus (the mixing time is related to the
essential spectral radius of the transition matrices associated).
In [24] an asymptotic spectral concentration result is presented.
Families of random geometric graphs of increasing sizeN are
considered; they are built on[0, 1]d with a thresholdr which
is assumed to tend to0 asN → ∞, but in such a way that the
graphs so obtained have and increasing degree and are almost
surely connected. Under this assumption it is shown that the
spectrums of the transition matrices of the random walks on
these families of graphs converge, asN → ∞, to those of the
graphs on deterministic grids.

In this section we provide some numerical results character-
izing the behavior of the costJ∆ andJe for random geometric
graphs. Interestingly, we will bring to light further similarities
between the random geometric graphs and the deterministic
grids.

Figures 2, 3, 4 and 5 refer toJ∆. Precisely, in Figure 2
we depicted the behavior ofJ∆/N for d = 1, in Figure 3
the behavior ofJ∆/ logN for d = 2 and in Figures 4 and
5 the behavior ofJ for d = 3 and d = 4, respectively. For
each value ofd we run simulations fromN = 50 up to 600.
We consider families of connected graphs of increasing size
obtained with a decreasing thresholdr in a such a way that the
average size of the neighborhood of the nodes is kept almost
constant independently from the value ofN (in this specific
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Fig. 2. Behavior ofJ∆
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for d = 1.
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Fig. 3. Behavior of J∆

log N
for d = 2.
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Fig. 4. Behavior ofJ∆ for d = 3.

simulations close to12 for any value ofd). For each value of
N we calculated the value of the plotted variable as the mean
of 50 trials.

From Figures 2, 3, 4, 5, we can infer thatJ∆ increases
linearly for d = 1, logarithmically for d = 2, whereas it
becomes asymptotically constant ford = 3 and d = 4. The
analogy with Proposition 1 is evident.

Figures 6, 7, 8 and 9 provide numerical results forJe. Again
we run simulations forN = 50 up to 600 by considering
families of connected graphs of increasing size built with a
decreasing thresholdr as in the previous set of simulations;
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Fig. 5. Behavior ofJ∆ for d = 4.

however, in this case all the figures refer to the2-dimensional
cased = 2. Our aim is to underline the different scaling when
both t and N grow, with t being different functions ofN :
t constant,t =

√
N , t = N , t = N3/2. In Figure 6 we

plotted the behavior ofJe(PN , 20), in Figure 7 the behavior of√
N Je

(

PN ,
√

N
)

, in Figure 8 the behavior ofN Je (PN , N)

and in Figure 9 the behavior ofN Je

(

PN , N3/2
)

. From the
drawn plots, we can deduce thatJe evaluated for the random
geometric graphs, exhibits a behavior very similar to the one
stated in Corollary 1.

Finally, these numerical results emphasize further evident
similarities between the spectral behavior of the transition
matrices built on random geometric graphs and the spectral
behavior of the transition matrices associated to the determin-
istic grids.

50 100 150 200 250 300 350 400 450 500 550 600
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

N

Fig. 6. Behavior ofJe(PN , 20).

APPENDIX

We give here the main steps of the proof of our main results
(Propositions 1 and 2). For notation and definitions, we refer
the reader to Sect. III-A and Sect. III-B.

A. Preliminary remarks

Our bounds for both costs are based on a simple but
effective technique for getting a bound for the eigenvalues. In

50 100 150 200 250 300 350 400 450 500 550 600
0

0.05

0.1

0.15

0.2

0.25

0.3

N

Fig. 7. Behavior of
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N Je(PN ,
√

N).
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fact, both for grids on toruses and grids inR
d
n, the essential

object in the definition of the eigenvalues is the function
f : R

n → [0, +∞) defined by

f(x) = |p(eix1 , . . . , eixd)|2 .

Notice that

f(x) = p(eix1 , . . . , eixd)p(e−ix1 , . . . , e−ixd)

=
∑

l∈D2δ

ql cos
(

l1x1 + · · · + ldxd

)



where
ql =

∑

h,k∈Dδ :
h−k=l

phpk .

Clearly f is a trigonometric polynomial, withf(0) = 1
and 0 ≤ f(x) < 1 for all x ∈ [−π, π]d \ {0}. Notice that
∇f(0) = 0, and the Hessian matrix inx = 0, Hf (0), is
given by ∂2f

∂xr∂xs
= −∑

h∈D2δ
qhhrhs. It is easy to see that

Hf (0) is negative semi-definite. Using the assumption that the
infinite Cayley graph onZd associated withp(z1, . . . , zd) is
connected and has self-loops allows to prove that it is also
non-singular (the proof is omitted here).

As a consequence, there existsa ∈ (0, π), α, β > 0, c ∈
(0, 1) such that, for allx ∈ [−π, π]d, fL(x) ≤ f(x) ≤ fU (x)
andgL(x) ≤ f(x) ≤ gU (x), where the functionsfL, fU , gL,
andgU are defined as:

fL(x) =

{

1 − β xT x for x ∈ (−a, a)d

0 otherwise,

fU (x) =

{

1 − α xT x for x ∈ (−a, a)d

c otherwise,

gL(x) =

{

e−β xT x for x ∈ (−a, a)d

0 otherwise,

gU (x) =

{

e−α xT x for x ∈ (−a, a)d

c otherwise.

B. LQ cost

We will use the explicit expressions for the eigenvalues
given in Sect. III-A and Sect. III-B and the bounds above.
Let’s first consider a family{Pn} of Cayley graphs:

J∆(Pn) =
1

N

∑

h∈Vn

h6=0

1

1 − |λh|2

=
1

N

∑

h∈Vn

h6=0

1

1 − f(ei 2π
n

h1 , . . . , ei 2π
n

hd)

Define V ′
n = {−⌊n

2 ⌋, . . . , 0, . . . , +⌊n
2 ⌋}d. Clearly, f(x) has

period2π in each of its variables, so that

J∆(Pn) ≤ 1

N

∑

h∈V ′

n

h6=0

1

1 − f(ei 2π
n

h1 , . . . , ei 2π
n

hd)

≤ 1

N

∑

h∈V ′

n

h6=0

1

1 − fU (ei 2π
n

h1 , . . . , ei 2π
n

hd)

Thus, if you also defineV ′′
n = {−⌊an

2π ⌋, . . . , 0, . . . , +⌊an
2π ⌋}d,

you have:

J∆(Pn) ≤ 1

N

∑

h∈V ′′

n

h6=0

1

α(2π
n )2[h2

1 + · · · + h2
d]

+ (2π)dc

Now you can conclude using the following Lemma (which
will be useful also for the upper bound)

Lemma 1: Given a constantc ∈ N, there exists constants
Kd, K

′
d > 0 (depending ond andc only) such that

• if d = 1,

K1 ≤
∑

h∈{−cn,...,cn}d

h6=0

1

h2
1 + · · · + h2

d

≤ K ′
1

• if d = 2,

K2 log n ≤
∑

h∈{−cn,...,cn}d

h6=0

1

h2
1 + · · · + h2

d

≤ K ′
2 log n

• if d ≥ 3,

Kdn
d−2 ≤

∑

h∈{−cn,...,cn}d

h6=0

1

h2
1 + · · · + h2

d

≤ K ′
dn

d−2

�

The proof is omitted.

For the lower bound, the proof is very similar. DefineṼ ′
n =

{−⌊n−1
2 ⌋, . . . , 0, . . . , +⌊n−1

2 ⌋}d, so that

J∆(Pn) ≥ 1

N

∑

h∈Ṽ ′

n

h6=0

1

1 − f(ei 2π
n

h1 , . . . , ei 2π
n

hd)

≥ 1

N

∑

h∈Ṽ ′

n

h6=0

1

1 − fL(ei 2π
n

h1 , . . . , ei 2π
n

hd)

Then, withV ′′
n as in the upper bound,

J∆(Pn) ≥ 1

N

∑

h∈V ′′

n

h6=0

1

β(2π
n )2[h2

1 + · · · + h2
d]

Finally, you conclude using Lemma 1
When you consider grids inRd, the proof is very similar.

In this case,

J∆(Pn) =
1

N

∑

h∈Vn

h6=0

1

1 − f(ei π
n

h1 , . . . , ei π
n

hd)

If you define V̄n = {0, . . . , ⌊an
π ⌋}d you get the following

bounds.

J∆(Pn) ≤ 1

N

∑

h∈V̄n

h6=0

1

α(2π
n )2[h2

1 + · · · + h2
d]

+ πdc

≤ 1

N

∑

h∈V ′′

n

h6=0

1

α(2π
n )2[h2

1 + · · · + h2
d]

+ πdc

and

J∆(Pn) ≥ 1

N

∑

h∈V̄n

h6=0

1

β(2π
n )2[h2

1 + · · · + h2
d]

≥ 1

N

1

2d

∑

h∈V ′′

n

h6=0

1

β(2π
n )2[h2

1 + · · · + h2
d]



Then again you conclude using Lemma 1.

C. Quadratic estimation error

This proof is very similar, but uses the boundsgL, gU

instead offL, fU . We use the same sets of indexesV ′
n, V ′′

n , V̄n

defined while proving previous proposition. For the Cayley
family {Pn},

Je(P, t) = 1
N

∑

h∈Vn

[f(2π
n h1, . . . ,

2π
n hd)]

t

≤ 1
N

∑

h∈V ′

n

[fU (2π
n h1, . . . ,

2π
n hd)]

t

≤ 1
N

∑

h∈V ′′

n

e−α( 2π
n

)2(h2

1
+···+h2

d)t + (2π)dct

The you conclude using the following lemma.
Lemma 2: For any constantsc ∈ (0, 1

2 ), γ > 0, there exists
constantsc0 = c′0 = 1, c1, . . . , cd, c

′
1, . . . , c

′
d > 0 (depending

on c, γ andd only) such that

1
N

∑

h∈{−⌊cn⌋,...,⌊cn⌋}d

e−γ( 2π
n

)2(h2

1
+···+h2

d)t ≤
∑

l=0,...,d

1

nd−l

cl

tl/2

and

1
N

∑

h∈{−⌊cn⌋,...,⌊cn⌋}d

e−γ( 2π
n

)2(h2

1
+···+h2

d)t ≥ max
l=0,...,d

1

nd−l

c′l
tl/2

�

The proof is omitted.

For the lower bound,

J∆(Pn) ≥ 1

N

∑

h∈Ṽ ′

n

1

1 − fL(ei 2π
n

h1 , . . . , ei 2π
n

hd)

≥ 1
N

∑

h∈V ′′

n

e−α( 2π
n

)2(h2

1
+···+h2

d)t

from which you conclude using Lemma 2.
The proof for the grid matrix family is very similar to

the one reported in previous section, usinggL, gU instead of
fL, fU and using Lemma 2 instead of Lemma 1.
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