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Abstract—Average-consensus algorithms allow to compute the nications has been analyzed in [15]. Recently a large atent
average of some agents’ data in a distributed way, and they has been captured by the realistic situation of quantizéa da

are used as a basic building block in algorithms for distribued
estimation, load balancing, formation and distributed corirol.

Traditional analysis of linear average-consensus algotiims
studies, for a given communication graph, the convergenceate,
given by the essential spectral radius of the transition matx
(i.e. the second largest eigenvalues’ modulus). For many gph
families, such analysis predicts a performance which degdes
when the number of agents grows, basically because spreadim-
formation across a larger graph requires a longer time. Howeger,
if you consider other well-known quadratic performance indices
(involving all the eigenvalues of the transition matrix), the scaling
law with respect to the number of agents can be different. Tt8 is
consistent with the fact that, in many applications, for exanple in
estimation problems, it is natural to expect that a larger number
of cooperating agents has a positive, not a negative effecho
performance.

In this paper, we consider two different quadratic indices,
which arise naturally from some estimation and control prodems
in which the consensus algorithm is used. We provide analydal
results on their asymptotic behavior when the communica-
tion network belongs to some families of Cayley graphs. This
framework includes grids on toruses in arbitrary dimensions,
which are conjectured to be a good approximation of random
geometric graphs; indeed, we show simulation results suppiing
this conjecture.

I. INTRODUCTION

transmission [16], [18], [1], [11].

In this paper we are interested in evaluating the perfor-
mance of linear time-invariant average-consensus algost
Typically this kind of analysis exploits results from Maxko
chains literature, and is focused on predicting the speed of
convergence to the average, when computation time grows.
There has been an extensive literature on this topic, with
both analysis and optimization of asymptotic convergence
speed which is given by the dominant mode of the transition
matrix [5], [27]. However, we believe that when convergence
to the average is not an objective per se, but is used to solve
an estimation or control problem, it is important to conside
different performance measures, more tightly related ® th
actual objective pursued.

In this paper we introduce two different functional costs
which arise quite naturally in control and estimation prob-
lems. The first one is a classical LQ functional cost which
evaluates the performance of the average-consensusthigori
by calculating theL, norm of a suitable variable; this cost
represents a different way to evaluate the transient phise o
the algorithm. In fact, also in classical control theorgrinare
various ways to evaluate the transient performance of a@ont
strategy: one is based on the dominant eigenvalues, and the

Average-consensus algorithms allow to compute an averaggresponding control methodology relies on the possjid
in a distributed way. These algorithms have been extensivelitably allocate such eigenvalues; a second one is bagbé on

applied to the solution of problems of distributed estimiati

Lo-norm of the transient and this yields to the so-called linea

[19] and of sensor calibration for sensor networks [12], tguadratic optimal control methodology. Our functionalhsst

load balancing for distributed computing systems [7], amd second kind of cost, for the consensus algorithm. We will
mobile multi-vehicles coordination [6]. We refer the remdeshow that this functional cost depends on all the eigengalue
to the survey [20], the recent books [25], [4] and reference$ the transition matrix, and our main contribution will be

therein.

to characterize it for some relevant families of graphs. The

In this paper, we focus on linear average-consensus.tg8jartsecond cost we propose is related to the estimation erroe mad
from the natural and widely studied algorithm proposed Hyy a network of sensors when averaging their measurements.
Tsitsiklis [26] since the early80's, the average consensud-or many families of graphs (including geometric graphs, t
problem has been addressed in many different directiospeed of convergence, as evaluated by the essential dpectra
Convergence conditions both for fixed and dynamically chantadius, deteriorates with larger networks, but on the @qtr

ing interaction topologies have been provided [21], [19], [

in estimation one would expect that a broader number of

Randomized algorithms has been considered in [9], [3]. ]n [8neasurements should improve the quality of the final esémat
[22] the authors investigate the case of data loss in thée propose a natural performance measure (average error
transmission between the nodes. The effects of noisy comnvariance) and, for some families of graphs, we find its sgalin



laws with respect to both number of vertices and computationlt is well-known in the literature [4] that, i? is primitive
time, so that we can suggest useful criteria in the design thien the algorithm (2) solves thaerage consensus problem,
the size of large-scale sensor networks. namely

The paper is organized as follows. In Section Il we formu- lim x(t) = Tavel, (3)
late the problem we deal with. In Section Il we introduce freo
three families of graphs, the Cayley graphs, the grids aad tyhere z,,, = % ZZL 2;(0). From now on we assume the
random geometric graphs: these families are the subjeatrof gollowing property.
investigations. In Section IV we illustrate our main thema Assumption 1: P is a primitive doubly-stochastic matrik]
and numerical results. Finally in the Appendix we collea th  Traditionally the performance of the average consensus
proofs of the theoretical results stated in the previouia®c a|gorithm is evaluated by considering thsymptotic conver-

Mathematical Preliminaries gence factor, defined as

Before proceeding, we collect some useful definitions and Tasym = sup limsup (||z(t) — g;aveHQ)% ) 4)
we fix some notation. More detailed definitions about Cayley z(0) t—o0

graphs will be given in Sect. Ill-A. In this papeg,= (V, E) |t is well known [4] that, if P satisfies Assumption 1 and
denotes awiirected graph whereV” is the set of verticesN' = the initial condition can be any arbitrary vector &', then
|V'| the number of vertices, anl is the set of directed edges,rasym coincides with thesssential spectral radius of P, that
i.e., a subset o¥ x V. we denote bypess(P)!. Typically, for many graph families,

A matrix M is nonnegative if M;; > 0 for all i andj. A \yhen considering sequences of matri¢dd, } of increasing
square matrix\/ is stochastic if it is nonnegative and the sumgjze it turns out that

along each row of\/ is equal tol. Moreover, a square matrix
M is doubly-stochastic if it is stochastic and the sum along ngn Pess(Pn) = 1. (6)
each column ofV/ is equal tol. Given a nonnegative matrix >
M € RVN*N we define the induced graghy, by taking N  Notice that equation (6) predicts a performance which de-
nodes and putting an eddg,) in E if M;; > 0. Given a grades as the number of agents increases. This is not surpris
graphG on V, the matrix M is adapted to, or compatible ing, since intuitively one should expect that the largerhis t
with, G if Gas C G. graph, the longer is the time required to spread the infdonat
Now we give some notational conventions. Vectors will b&Cross the nodes. A mathematical characterization of (§) ha
denoted with bold letters. Given a vector € RY and a been carried out for graphs exhibiting Cayley symmetries in
matrix M € RV*N, we letv” and M7 respectively denote [5] and for the random geometric graphs in [3].
the transpose o and of M. We let o(M) denote the set In this paper we evaluate the performance of the average
of eigenvalues of\/. With the symboll we denote theV- consensus algorithm according to two different functional
dimensional vector having all the components equal.to costs. The first one is a classical LQ functional cost which
Given any setd with finite cardinality|A|, R* will denote accounts for the speed of the average consensus algorithm by
the vector space isomorphic ®/4/, made of vectors where calculating theLo-norm of a suitable trajectory; the second

indices are elements of instead of{1,2,...,|A|}. Analo- One is related to the estimation error made by a network of
gously,R4*4 will denote the vector space of all linear map§ensors when averaging their measurements. We proceed now
from R4 to R4. by presenting them separately.

[l. PROBLEM FORMULATION A. Transient performance evaluation by Lo-norm: a LQ cost

We start this section by briefly describing the standard In this subsection we assume that the initial conditidfl)
discrete-time consensus algorithm. Assume that we havesaisfies the following condition.
set of agentd” and a graphy on V' describing the feasible Assumption 2: The initial conditionz(0) is a random vari-
communications among the agents. For each agent’ we able such thafE[z(0)] = 0 and E [z(0)z”(0)] = o3I for
denote byz;(¢) the estimate of the average of agért ¢-th somes? > 0. O
iteration. Standard consensus algorithms are built by sihgo Without loss of generality, we will conside = 1 throughout
a doubly-stochastic matri¥’ € R¥*N compatible withG  this paper.
and assuming that at every stepgent: updates its estimates When dealing with the average consensus problem it is
according to convenient to introduce the following random variable

N
zi(t+1) = Zp,-jxj (t). 1) Alt) = 2(t) — Tavel = (I — £117) 2(1),

1For the sake of the clarity, we recall that for a primitive biyustochastic
matrix pess (P) is given by the second largest eigenvalues’ modulus, i.e.,

:Ij(t + 1) = P:B(t), (2) Pess(P) : ax Al (5)

= m
A€o (P)\{1}

More compactly we can write

wherex(t) is the column vector whoséth entry isz;(¢).



where the last equality follows from the fact that, sinPe where v;(¢), ¢ = 1,...,N,t = 0,1,... are independent
is doubly-stochastic thea”=(t) = 17x(0) for all ¢+ > 0. random variables, identically distributed, with zero mesa
Observe thatA(t) represents the distance ef(¢) from the unit variance. To analyze the performance of the algorithm,
average of the initial conditions. It is easy to see that the authors introduce the variable
satisfies the same recursive equationrase.,

quationza 2(t) = (I — 2117) (1),

Alt+1) = PA®) ) and the corresponding functional cost
and thatz(t) — xa.1 if and only if A(t) — 0. oo
In control theory a classical way of evaluating the perfor- Sss(P) = 1 ZEHZ(UHQ
mance of system (7) would be considering a linear quadratic N =0

cost of the form Observe that, due to the presence of the noise, differerathy f

1 & A(t), e(t) # x(t) — Tavel; in other wordse(t) quantifies the
Ia(P) = N Z]E [ATHQA®)] diétzsmc(e)of th(e) states from their curren(t )average which, in
=0 general, differs from the average of their initial conditso
where(Q is an pre-assigned semidefinite positive matrix. In outhys the mean-square deviatiép,(P) can be viewed as a
setup we assume thgt = I and hence the above expressiofeasure of how well the weight matrik is able to enforce

reduces to the following functional cost consensus (but not in general the average consensus)tedespi
1 ) the additive errors introduced at each node at each stepe Som
Ja(P) = N ZEHA@)H . (8)  straightforward manipulations show that,Af is normal, then
t=0

6ss(P) - JA(P)

It is worth noting that/a (P) represents also as tHg-norm B. Quadratic error in distributed estimation

of the random procesgA(t)},° .

In Section IV we will characterize the behavior df (P) In this subsection we consider the following problem of
for some relevant graph families as the number of agénts distributed estimationV sensors measure the same real quan-
varies. tity y plus independent. noises. To be more precisey; if

We provide now a characterization 84 that will be useful denotes the measurement made Dby #fik sensor, we have
later on. Notice that Assumption 2 implies thaf0) is a ran- thatvi =y +n; wheren;, i € {1,..., N}, are independent
dom variable such thaE[A(0)] = 0 andE [A(0)AT(0)] = Zero-mean noises with the same variange(without loss of
7 — 1117 Hence generality, we will assume? = 1). If all the measurements

N ' !

were available at the same location, it is well known that

the optimal estimate would be given by the mean of all

measurements, i.el/N SN v;.

0o In our setup, where the sensors could be constrained by

— %Ztraee [pt (- L117) (pt)T} the graphg to communicate only with a limited number of
part neighbors, the average of the measurementsc {1,..., N}

If Pis normal, i.e.PPT = PT P, the above expression can p&an be computed efficiently in a distributed way by means of

written as a function of only the eigenvalues Bf Precisely, an average consensus algorithm. b¢0) be SU(.:h that Its-
. 1 1 t th componentz;(0) is equal tov;. Then the estimate(t) is
by observing that”* (I — +117) = (P (I — £117))", and ; ;
that o (P (I v illT)) — {0}y U (P)\ {1}, we can write updated by the sensors according to (1), wherie a doubly-
N ' stochastic matrix compatible with the gragh Clearly, under

Ta(P) = 1 i S Assumption 1,z(t) — (1/1\72?]:1@1-) 1. In this context,
A N since the goal is estimating it is quite natural to introduce
the error variable

JA(P) = % Ztrace {E[A®MAT ()]}
=0

t=0 Aea(P)\{1}
1 1
N 1— [\ e(t) = x(t) — yl
Aeo(P)\{1} A _ ®) ( )_ Y _
Remark 1: We end this subsection by remarking that th@"d the corresponding quadratic functional cost
functional cost (8) has been also analyzed in [28] in a diffier 1 T
context. The authors in [28] consider a stochastic model for Je (Pt) = NE [e (ﬁ)e(t)] '
distributed average consensus where each node, updategdfSour problem, it is easy to show that the cdstP, ¢) can
local variable with a weighted average of its neighborsteal e re-written as
as in (1), but each new value is corrupted by an additive noise
with zero mean, i.e., Je(P,t) = % trace ((P*)"P")

If P is normal, then this is equivalent to

N
zi(t+1)=> Pyz;(t) +v(t), i=1,...,N, (9
j=1 Je(P,t) = % Z)\EU(P) |>\|2t~



In the next sections, we will study the asymptotic behavidrave to define the neighbours and the weights. We fix a posi-
of J.(P,t) when bothN andt grow to infinity, for some tive integers, we define the sebs = {—3, —6+1,...,+6}¢
families of graphs. This result is particularly relevanthese and we fix|Ds| real numberspy, h = (h1,...,hq) € Ds
it suggests the right trade-off between number of nodes asuch thap; > 0Vh anthED(S pr = 1. Then, for anyn > §,
computation time in the design of large-scale sensor nésvorwe construct the Cayley matrik, € RZn %25 with generator
: Z¢ — R defined by, (g) = ps if there is anh € D

I1l. FAMILIES OF GRAPHS Tn = L Ymn(g) = Ph 8

We introd h h i family of h q .. such that, forall =1,...,d g = h; mod n, andn,(g) =0

t('a introduce er_et ? main _:m|_y or grap Isa_n tranSItlo(ﬂherwise. Note that for any > § =, is well-defined.
matrices we are going 1o consider in our analysis. We can also do a similar construction takiGg= Z? and
A. Abelian Cayley graphs and matrices defining 7(g) = pg if g € Ds andn(g) = 0 o_therwise.

First of all let's recall the definition of Cayley graphs: giv Ve assume that there are enough non-zero wejghtso as
a group(G, +) and a setS C G, the Cayley graplg(G, S) is to ensure that the corresponding infinite graph is connected
a directed graph with vertex sé&t and edge sef = {(g, ) : Moreover, we assume there are self-loops, pg# 0. These
h—g € S}. We will consider finite graphs, witfG| = N, and two assumptions guarantee that all matri€gf the sequence
matrices associated with such graphs, which respect thiegstr W€ Nave constructed above are primitive; also recall fat
symmetries of the graph: we say that a maffix RG*G (j.e. &€ doubly-stochastic and normal. _ o
with entries labeled by indexes belonging®) is Cayley if We introduce here also a useful notation, defining the

. 71 71 .
P,y = PyirniiVg, hk € G. This is equivalent to say that Laurent polynomiap(z) € R[z1,2; ..., 24,2, | given by
there exists a mag : G — R such thatP, , = w(h — k); _ K Ky
such function is called the generator of the Cayley mattix p(z) = Z Prz1 - Zq

Throughout this paper, we will also assume that the graph keDs

associated withP is strongly connected and aperiodic, andiVe will refer to the above construction of a family of Cay-
that P is stochastic, i.es(g) > 0Vg € G and dec m(g) = ley matrices{P,},>s with the short name ‘Cayley matrix
1. Notice that a stochastic Cayley matrix is also doublifamily associated withp(z1,...,24)’. With this notation,
stochastic. P, has eigenvalues\, = p(e=5hi, . . e~i%ha) b =
In this paper, we restrict our attention to the case whéh,..., hy) € Zf{.
G = 74 even though most results can be generalized to anyNote that when we write> " with h, € Z,, we mean
finite Abelian group. Under this assumption, the eigenwlughat we can substituté, with any integer which is equal
and eigenvectors aP have the following simple expressionito h,. mod n. Later, we will need the specific choice of
for any h = (hy,...,hq) € Z2, h, € {0,1,...,n — 1}, which we will denote byh € V,,
=Y r(h)e— iRkt 2 haka) Vo ={0,...,n—1}". When needed, we will actually identify
vertices of the graph with,, rather thanG,,.

kezd

is an eigenvalue with corresponding eigenveatgr ¢ RZ: B Gridsin R?
defined by The families of Cayley graphs on the groujy presented

on(k) = ﬁei(%h1k1+---+%h4kd). Zbo_ve can_be seen as grids on a (multi-dimensional) torus.

n interesting result by Boyd et al. [2] allows to compute the
Notice that such eigenvectors are orthonormal, so that a eigenvalues and eigenvectors also of grids on a cubig‘in
normal matrix. which are the same as the one on a torus except that they are
As a simple example, whed = 1, i.e. G = Zy, Suitably modified at the borders.

you obtain thatP is a circulant N x N matrix, with More precisely, define the following family of matrices.
first row equal to the vectofr(0),...,n(N — 1)]7, and Consider P, a Cayley matrix onZj, associated with
with eigenvalues/eigenvectory, = Zk:’ol ﬂ(k;)e—i%"hk p(z1,...,24), and assume that the coefficienpts satisfy the
and v, = [17@i%h7e2i%h,,,.,e(N—lﬁ%”h]T, for following quadrantal symmetryp, = pi if Vi,h; = +k;.
h=0,...,N—1. This assumption implies that reflectioas on G, defined by

or(h) = Kk with k; = hy if [ # r andk, = 2n — 1 — 7,

In our analysis we want to consider families of Caylefre symmetries of the labeled grid on the torus. For exam-
graphs, with a growing number of vertices, but with constafte, Fig. 1 shows the axis of reflection of for the case
degree, and with the same algebraic structure and samesvalie= 1. It is convenient here to identifys, with the set
for the non-zero entries aP. For example, we can look at aVs = {0,...,n — 1}%, and considew, : V,, — V..

a circular graph where each node talk to itself, to its first tw Now denote byH the group generated by, ..., 04 and
neighbours on the right and its first neighbour to the lefcheaconsider, for allg € V;, C V4, the orbitO, = {n(g) : 1 €
with weight 1/3, regardless the number of agents. H} C Vy,. Finally, defineP,, : RV» — R"" by (Po)nx =

First of all, we consider a family of groups,, = ZZ, for 3,0, P, for all h,k € V,,. Notice thatP,, is symmetric

n?

some fixedd and growingn; let N = |G,,| = n?. Then, we and that, apart from the bordeiB,, associates to edges of the



Proposition 1 (LQ cost asymptotics): Given {P,},>s a
Cayley or a grid matrix family associated witiz1, ..., z4),
there existCy, C/; > 0 (depending only oni) such that:

o ifd=1,

ClN < JA(Pn) < CiN,

o if d=2,
Calog N < JA(P,) < Cllog N ;

o if d>3,
Fig. 1. Circle with2 N vertices and reflection axis corresponding to the map Cy < Ja (pn) < CLIi .
l— 2N — 1 — 1, used in the construction of a line witN' vertices. - -

]

To give a better understanding of the above Theorem,
grid the same coefficients th&t, associates to edges of theye propose an example illustrating an interestig compariso
grid on the torus. between the behavior of the functional cakt and of the

We will refer to the above construction of a family ofessential spectrgh.ss asn — oo of a particular sequence
matrices{ P, }»>s with the short name ‘grid matrix family of Cayley graphs. We will see how the evaluation of the
associated withp(z1, ..., za)". . performance of the average consensus algorithms, in the

Using [2, Prop. 3.2], we can find the eigenvaluesiof. asymptotic regimen — oo, is strictly related to the choice

T i ix of the functional cost.
An = (el et h&Vn. Example 1: Consider the sequence of Cayley matrices
C. Random geometric graphs {P,} built as follows. For eactn, let G = Z3 and letS =

The random geometric graph is a random undirected gra%no’o’())’ (1,0,0), (0,1,0), (0’0’11)’ (-1,0,0), (0,~1,0),

drawn on a bounded region, e.g., thedimensional unitary ’0’71)}' Moreover_letyr(g) = 7 forall g € 5. Itis wel
cube[0, 1], It is generated by known (see [5]) that, in this case,
« placing vertices at random, uniformly and independently Pess(Pn) > 1 — %
inside the region, and N
« connecting two vertices if and only if the euclidean diswhereC is a constant independent from the topology of the
tance between them is at most a pre-assigned threshol@raphs. From the above inequality it turns out that, if we
The random geometric graph was first introduced in [1%S'der_ as functional cost tresymptotic covergence factor
and has been deeply studied under a communications &i"€d in (4), then the performance of the average consensus
information-theoretic point of view in [14]. It has recentl 2/90rithms associated to the sequeré?;} degrades drasti-
witnessed a large interest in many applications; partitula €&y @sn — oo. Instead, F:roposmon 1 guarantees theleX|s-
it has been successfully used to model wireless communi goce of constant§’s and ('3 such thatC < Ja(P,) < Cy
tion [10]. In Section IV-B, given a random geometric grap or all e . N _ O
G(V, E), we will associate to it a doubly stochastic matfix _ FroPosition 2 (Quadratic estimation error asymptotics):
built according to theMetropolis weights rule [29]; precisely, Given {P,}n>5 a Cayley or a grid matrix family associated

. H _ / —
if P;; denotes the element ¢f in thei-th row and in thej-th with p(z1, - -,Zd),/ there exist constantsy, = ¢, = 1,
column we will have Cly.-,Cd,Ch, ...,y >0andk € (0,1) such that

T T if (i,j) € E max —— L < g (P t) <K+ 1oa
Py = i Ziz@)?lf\ﬂu)} Py ifi=j I = Je ) = z:;,d nd=1 /2
otherwise -
whered; = [NV;\{(i,i)} |with N; = {j € V| (i,j) € E}.In Corollary 1: Given {P,}.>; a Cayley or a grid matrix
other words the weight on each edge is one over one plus family associated withp(z1, ..., z4), there exists constants
largest degree at its two incident vertices, and the seifte 720 € N, k1, k2 >0 such that, for alln > ny,
are chosen so the sum of weights at each node is 1 1 11
k1 max{ﬁ, W} < Je (P, t) < kzmax{ﬁ, W}

IV. MAIN RESULTS
O

Notice that if the average of all sensors’ measurements was
We state here our main theoretical results: an asympto§igrformed in a centralized way, the exact average thusrwstai
analysis of the proposed quadratic indices for the famites would be the best possible estimate of the measured value
Cayley graphs and of grids described in previous sectioR. Tlunder the simple model we are considering), but it would

proofs can be found in the Appendix. still have error variancé /N. Thus, it is not surprising to find

A. Asymptotic costs for Cayley graphs and grids



a term1/N in the asymptotic behavior of the decentralize 0.06—
algorithm running on grids. What is more interesting is tokdo

at the dependence oN and¢, which shows that a sensible
design of the number of nodes should take into accoL
also the computational time allowed for communication ar
computation. In fact, Corollary 1 clearly shows that whethbo
t and N grow there are two very different regimes, a first on
with N < t%/2, where the error decays agN, and a second

regime with N >> t4/2 where regardless the number of node 001l
the cost is dominated by a term scalingla¢?/2. Finally, it
is interesting to notice that, despitgss — 1 for N — oo 0 0 10 200 280 300 30 00 450 500 560 600
would suggest that these families of graphs have decreas.. N

performance for growing number of agents, indeed it is clear

that a bigger number of measurements can improve the quality
of the estimate, and in fagtjlvigm Je (P, t) = 0.

) 0.5

JIN

0.02

Fig. 2. Behavior of‘]WA ford = 1.

B. Random geometric graphs 05}
In this section we focus on the other relevant family c 04r
graphs we are dealing with in this paper, the random geotnet O35 P e st et e
graph. While several probabilistic results are known atthet " R e b
number of components in the graph as a function of the thre: 0251
old r and the number of verticed (see e.g. the monograph o2r
[23]), no comprehensive theoretical characterization been o18r
provided yet for the behavior of the eigenvalues of doubl o
stochastic matrices associated to random geometric grag 0%r
In this direction only few results are present so far. It i ®50 10 150 200 250 360N 30 400 450 50 550 600
worth citing them briefly. In [3], the authors first prove some
regularity properties on the degrees of the nodes of random Fig. 3. Behavior of 24 for d = 2.

geometric graphs; then, relying on these results, they find a
lower bound for the mixing time of random walks on randor-
geometric graphs with the mixing time of random walks o 2
regular grids on torus (the mixing time is related to th L8
essential spectral radius of the transition matrices destsat). 1'GWWWW«W
In [24] an asymptotic spectral concentration result is g@inésd. 4 |
Families of random geometric graphs of increasing sizare il ]
considered; they are built 00, 1]¢ with a threshold- which J
is assumed to tend tbas N — oo, but in such a way that the
graphs so obtained have and increasing degree and are alr
surely connected. Under this assumption it is shown that t
spectrums of the transition matrices of the random walks «

1k

0.8

0.6

0.4r

0.2

Q

these families of graphs converge,Eis— oo, to those of the 0 100 150200 250300 350 400 450 500 550 600
graphs on deterministic grids.
In this section we provide some numerical results character Fig. 4. Behavior of/ for d = 3.

izing the behavior of the costy andJ. for random geometric

graphs. Interestingly, we will bring to light further siraiities

between the random geometric graphs and the determinisiimulations close td2 for any value ofd). For each value of

grids. N we calculated the value of the plotted variable as the mean
Figures 2, 3, 4 and 5 refer tda. Precisely, in Figure 2 of 50 trials.

we depicted the behavior ofa/N for d = 1, in Figure 3 From Figures 2, 3, 4, 5, we can infer thdk increases

the behavior ofJa/log N for d = 2 and in Figures 4 and linearly for d = 1, logarithmically ford = 2, whereas it

5 the behavior of/ for d = 3 andd = 4, respectively. For becomes asymptotically constant fér= 3 andd = 4. The

each value off we run simulations fromV = 50 up to 600. analogy with Proposition 1 is evident.

We consider families of connected graphs of increasing sizeFigures 6, 7, 8 and 9 provide numerical results.farAgain

obtained with a decreasing thresholth a such a way that the we run simulations forNV = 50 up to 600 by considering

average size of the neighborhood of the nodes is kept almtanilies of connected graphs of increasing size built with a

constant independently from the value &f (in this specific decreasing threshold as in the previous set of simulations;
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Fig. 5. Behavior ofJa for d = 4. Fig. 7. Behavior ofyN J.(Py,VN).

however, in this case all the figures refer to thdimensional

cased = 2. Our aim is to underline the different scaling whet 1k . .

both ¢t and N grow, with ¢ being different functions ofV:

t constant,t = /N, t = N, t = N3/2, In Figure 6 we o8 ]
plotted the behavior of . ( Py, 20), in Figure 7 the behavior of 0aL ,

VN J. (PN, \/N) in Figure 8 the behavior a¥ .J, (Py, N)
and in Figure 9 the behavior d¥ J, (Py, N*/2). From the

drawn plots, we can deduce that evaluated for the random 02t ]

geometric graphs, exhibits a behavior very similar to the ol

stated in Corollary 1. % 10 150 200 250 300 N 30 400 450 500 550 600
Finally, these numerical results emphasize further evide:.

similarities between the spectral behavior of the tramsiti Fig. 8. Behavior ofN Ju(Px, N).

matrices built on random geometric graphs and the spectral
behavior of the transition matrices associated to the deter
istic grids.
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fact, both for grids on toruses and grids{, the essential
object in the definition of the eigenvalues is the function
f:R™ — [0,4+00) defined by

fla) = Ip(e™, ... e

Fig. 6. Behavior ofJe(Pn, 20).

APPENDIX

We give here the main steps of the proof of our main results
(Propositions 1 and 2). For notation and definitions, Werrefﬁlotice that
the reader to Sect. IlI-A and Sect. III-B.

A. Preliminary remarks fla) =ple™, ... e )p(e™™ ... e7")
Our bounds for both costs are based on a simple but Z qucos (hwy + -+ - + lazq)
effective technique for getting a bound for the eigenvalles 1€Dys



where Lemma 1. Given a constant € N, there exists constants

Z DPhDE - K4, K, > 0 (depending ord andc only) such that
h,kEDs: o ifd=1,
h—k=l1 1
Clearly f is a trigonometric polynomial withf(0) = 1 K < Z T E—) < K3
and0 < f(z) < 1 for all z € [—m,7)? \{0} Notice that he{—cn,..,en}? ! d
Vf(0) = 0 and the Hessian matrix i® = 0, H;(0), is _ h70
given by 61 61 — Y hep,, nhrhs. Itis easy to see that  * it d =2,
H(0)is negatlve semi-definite. Using the assumption that the Kol < 1 <K'l
infinite Cayley graph orZ? associated withp(z1, ..., z4) is 27081 = Z e 27087
connected and has self-loops allows to prove that it is also he{*ﬂ;‘d"c”}
non-singular (the proof is omitted here). eifd>3
As a consequence, there exists (0,7), a, 8 > 0, ¢ € - 1
(0,1) such that, for alke € [—7, 7]%, fr(x) < f(@) < fu(z) Kmni?2< Z W < Klin=2
and gL(m> < f(m) < gU(m>' where the funCtlon#La Ju. 9L, he{—cn,...,cn}? L+
and gy are defined as: h#0
O
_ 32T _ d
fi(z) = 1=fz =z forze(-a,a) The proof is omitted.
0 otherwise
1-azTz forze (—a,a) For the lower bound, the proof is very similar. Defiﬁ,e =
= ’ _|n=1 n—1|1d h
fu(z) ¢ otherwise =175 J""’O"'l"JFL 7 I} sot Tt
— iBTCE P > ——
gi(x) = {e B for z E-(*a,a)d Ia(Pn) > N = 1— f(ei?,—jhl ezz,—fhd)
0 otherwise e
T
~Jee®m® forz € (—a,a)* > 1 1
gu(x) = {c otherwise N h%; 1— fr(et™h, .. eiitha)
8. LQ codt Th ithV as i :;60 bound
We will use the explicit expressions for the elgenvalues en. wi as In the upper bound,
given in Sect. lll-A and Sect. llI-B and the bounds above. In(P.) > 1 1
. . . A( n) = 2T\2[12 2
Let's first consider a fam|I){P } of Cayley graphs: N =, B+ 4 byl
h£0
Ia(Pn) - N Z 1— |)\h|2 Finally, you conclude using Lemma 1
’};‘6 When you consider grids iiR?, the proof is very similar.
Z 1 In this case,
N f(ei%h, | ei%rha) Ja( :
};,li%L N };EGZ;% elw h1 . ’e’tg}ld)
Define V;, = {—[2],...,0,...,+[ 2]} Clearly, f(x) has o o vd _
period 27 in each of its variables, so that If you define V,, = {0,...,[%*]}" you get the following
1 bounds.
1 1
Z — i2%h JA(P,) < — d
Nhev/l .. eiha) IN( )_NZQ(QI_W)Q[h%_F”H_hz]Jﬂrc
h;éO heV, n
1 h+£0
Z 1 1 4
= _ iZZ ] << +mc
NheV/l yee, €5 d) N ZN (Tw) [h2 .Jrh?i]
h#0 hev,
h#0
Thus, if you also defing = {—[42],...,0,...,+[2]}%, and
you have: Ta(Py) 1 1
> —
1 1 Al =N BE)2[h2 + - + b3
JA(P,) < — 24 v,
Al )_NZ A2 (02 + .+h2]+(ﬂ')c i;le#\g
heV” n d
et Sl !
Now you can conclude using the following Lemma (which o N2 hev! B3 = )? [hi+ -+ B

will be useful also for the upper bound) h#0



Then again you conclude using Lemma 1. [6]

C. Quadratic estimation error

.
This proof is very similar, but uses the boungsg, g_U g
instead offr, fu. We use the same sets of indeX&sV,”,v,, [8]

defined while proving previous proposition. For the Cayley

family {P,}, [0
Je(Pt) = % Z [f(3Ehy, ..., 2% hg))
heV, [10]
<% D fo(Ehy,. .., Zhy)) [11]
heV;
< % Z e~ (i) (A +h))t + (2m)dct (12]
hev)

The you conclude using the following lemma.

Lemma 2: For any constants € (0, 1), v > 0, there exists
constantsy = ¢y = 1, cq, ... ¢/, > 0 (depending
on ¢, v andd only) such that

[13]
yCdy Chy ey [14]

[15]

1 V(PR < L a
N € = -
hE{—LanZ;.. len)}d l:;...,d nd=t 4l/2
o [16]
and
17
1 Z =y (ZE2(hI 4 +hDt S ax 1 g !
N ¢ = l:o,a,,,d nd=l¢l/2
he{—[cn],...,len|}d (18]
O
The proof is omitted. [19]
For the lower bound,
[20]
1
Ja(Py) > thv (€%, ., i ha) [21]
E ’
> 5 Zeai (b 22
hevy

from which you conclude using Lemma 2.
The proof for the grid matrix family is very similar to [23]
the one reported in previous section, using gy instead of

fr, fu and using Lemma 2 instead of Lemma 1. [25]
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