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Abstract—Minimum distances and maximum likelihood error  turbo codes [8]. In a nutshell, the idea consists in fixing the
probabilities of serial turbo codes with uniform interleaver are  guter and the inner constituent encoders, and in studyiag th
analyzed. It is shown that, for a fraction of interleavers approad- maximum likelihood (ML) error probability averaged ovet al

ing one as the block-length grows large, the minimum distance . . . . .
of serial turbo codes grows as a positive power of their block- POSSIDI€ interleavers. The main result in [5] is an uppemidou

length, while their error probability decreases exponentially fast t0 the average error probability which decays to zero as a
in some positive power of their block-length, on sufficiently good negative power of the interleaver length. The exponent ofisu
memoryless channels. Such a typical code behavior contrastspower law decay, usually referred to as theerleaver gain

the performance of the average serial turbo code, whose eror \ a5 shown to depend only on thee distanceof the outer
probability is dominated by an asymptotically negligible fraction . . -

of poorly performing interleavers, and decays only as a negative enQOder’ which turns out to be the maln deS|gn parameter of
power of the block-length. The analysis proposed in this paper Serial turbo codes. The effect of the inner constituent deco
relies on precise bounds of the minimum distance of the typical was analyzed by considering the limit performance in thé hig
serial turbo code, whose scaling law is shown to depend both signal-to-noise ratio (SNR) regime. The fundamental desig
on the free distance of its outer constituent encoder, which parameter characterizing the performance in this regime is

determines the exponent of its sub-linear growth in the block- . . . .
length, and on the effective free distance of its inner constitugn the effective free distancef the inner encoder, defined as the

encoder. The latter is defined as the smallest weight of codewords Smallest weight of codewords obtained when the input word
obtained when the input word of the inner encoder has weight of the inner encoder has weight two. These ideas have been
two, and appears as a linear scaling factor for the minimum rigorously formalized first in [24] and then, in a more getera
distance of the typical serial turbo code. Hence, despite the lack setting, in [22], where also a lower bound is proved diffgrin

of concentration of the maximum likelihood error probability f th b d onlv b ltiolicati tant. th
around its expected value, the main design parameters suggested rom the upper bound only by a mufliplicaive constant, thus

by the average-code analysis turn out to characterize also the Showing that the bound is tight for theverage serial turbo
performance of the typical serial turbo code. By showing for code

the first time that the typical serial turbo code’s minimum In fact, the average code analysis has been the main tool
distance scales linearly in the effective free distance of the inner used in the literature to study the performance of turbo and

constituent encoder, the presented results generalize, and impve - . . , .
upon, the probabilistic bounds of Kahale and Urbanke, as well as turbo-like codes in the ‘waterfall’ SNR region, see e.g.][14

the deterministic upper bound of Bazzi, Mahdian, and Spielman, [10], [34], [1], [27], [23] for a (non-exhaustive) list of exn-
where only the dependence on the outer encoder’s free distanceples of papers on the average error probability of seridddur

was proved. like ensembles, including recent work. The effectivendsh@®
Index Terms—Error probability, minimum distance, serially —design based on the average performance might lead one to
concatenated codes, turbo codes, typical code analysis. believe that there is a concentration phenomenon, i.eQsim

all codes perform closely to the average one. In this paper, w
shall prove that this is not the case, as the typical seriabtu
code performs much better than the average one. Neverheles
Serially concatenated convolutional codes with random ias explained in the sequel, the typical serial turbo codbysisa
terleaver, briefly serial turbo codes, were introduced ify [5shows the relevance of the same design parameters higddight
together with an analytical explanation of the simulatioby the average code analysis, namely, the free distance of
results. The authors based their analysis on the so-calted outer encoder and the effective free distance of therinne
uniform interleaver a conceptual tool first introduced in [6]encoder.
in order to explain the performance of Berrou et al.’s pafall A notable exception to the aforementioned literature based
on the average turbo code analysis is provided by the early

An earlier version of this work has been presented at the rttriational manuscript [26] whose focus is on the probability disttida
Symposium on Turbo Codes and Related Topics held in Munichm&ey, '

I. INTRODUCTION

on April 3-7, 2006. of the minimum distance of parallel and serial turbo code
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It is shown in [26] that, with high probability, the minimumof serial turbo codes, presented in [32]. Finally, by means
distance of serial turbo codes grows liRe'~2/4 where N of code-expurgation techniques, these results will alleasta
is the block-length, and is the free distance of the outershow (see Theorem 3) that the ML error probability of the
constituent encoder, and the scaling is up to some unspkcifigpical turbo code decreases exponentially fast in a pesiti
constants which depend both on the inner and on the oupswer of the block-length.
encoders, but not on the block-length. This result implied,t  The analysis performed in this paper involves, on the one
for almost all choices of the interleaver, serial turbo &déiand, precise bounds on the cumulative distribution fomcti
have ML error probability decreasing to zero exponentiaily (CDF) of the serial turbo code’s minimum distance, whose
a positive power of the block-length, thus showing that, dygroofs heavily rely on the combinatorial ideas developed in
to the presence of an asymptotically vanishing fractionauf b [26]. On the other hand, our proof of the deterministic upper
codes, the average-code analysis provides too conserativbound makes use of some of the techniques devised in [4]. For
prediction of the behavior of thiypical serial turbo code all the probabilistic bounds, we shall present completel§- s

In fact, analogous phenomena have long been known dontained proofs. Our choice is in the interest of readsbili
occur for other code ensembles, and this has motivatecbeth since the manuscript [26] has not been published ydt, an
considerable research effort in the analysis of the distansecause our results do not follow from the statements in [26]
spectra of such ensembles. Early results for random andrlineut rather involve some suitable modification of the argutmen
code ensembles at low rates, as well as low-density parititerein. Moreover, we shall consider a family of constituen
check (LDPC) code ensembles appear already in Gallagesiscoders which is more general than the one defined in [26],
thesis [19, Ch. 3], while more recent rigorous results awghere only systematic recursive convolutional encodersief
reported, e.g., in [3] and [28, Ch. 6] for binary random and/2 were used.
linear code ensembles, [29] and [28, Ch. 11] for binary LDPC The remainder of the paper is organized as follows. In Sec-
code ensembles, [7], [12], and [13] for code ensembles ousn 2 we introduce in a formal way the serially concatenated
groups for non-binary input channels. For a related streafodes. Section 3 gathers some fundamental bounds on the
of literature based on the application of non-rigorous bujeight-enumerating coefficients of convolutional codescivh
powerful techniques of statistical physics to the analydis will be used throughout the paper. Section 4 contains all the
LDPC codes, see, e.g., [30], [18], [31], [35] and [28, Ch..21main results on minimum distances of serial codes. Finially,
It is worth mentioning that, in contrast to the ML errorSection 5 we prove our main results on the typical behavior
probability, other parameters of these code ensemblel,asic of minimum distance and ML error probability and a number
the weight-enumerating coefficients, may concentrate ineso of related results. The most technical proofs are deferoed t
cases, see, e.g., [3] for random and linear code ensemhdes Appendix |, while Appendix Il contains some extensions.
[33] for regular LDPC code ensembles. Before proceeding, we establish the following notational

However, despite the lack of concentration of the serigbnvention, to be used throughout the paper. When deal-
turbo code ensemble’s performance, the results in [26] shewg with quantities depending on many parameters, such as
that the scaling law of the typical serial turbo code’s miaim ), d, N, n..., we shall implicitly assume that all the param-
distance is characterized by the outer encoder’s freendisfa eters are depending oN, but we shall avoid cumbersome
dg, which is the same main design parameter suggested ftationwy, dy . ... Hence, a statement such as fsisgrows
the average code analysis [5], [24], [22]. On the other hangrge, if d = o(N) andw < d, then f(w,d, N) = o(N®)’
no design parameter of the inner encoder emerges from teans that ifd = dy, w = wy satisfy wy < dy and
analysis proposed by [26], [4]. dx /N vanishes, asV grows large, thenf(wy,dy, N)/N®

The main contribution of the present paper consists #bnverges t@). When we say is constant’ we mean it does
showing that the scaling law of the performance of the tylpicaot depend onV. We shall also writef (N) = w (g(N)) to
serial turbo code does depend also on the inner 'constitumgang(]v) = o(f(N)).
encoder’s effective free distance, to be denoteddpy We
shall prove (see Theorem 1) that, with high probability, the
minimum distance of serial turbo codes scales like

dieN1—2/d? ’

Il. PROBLEM SETTING

In this section we establish some notation on convolutional
encoders, and introduce the serial turbo code ensemblee Sin
up to some constants which depend on the outer encoder do not want to put a priori limitations on the rate of
only. This result generalizes and improves upon the aforesnstituent encoders and/or their structure (e.g., syaiem
mentioned probabilistic bounds of [26, Thm. 2]. We shaBncoders), we shall consider below general convolutional
also prove (see Theorem 2) a deterministic upper bound encoders.
the minimum distance of serial turbo codes, which shows
an analogous dependence on the inner and outer encoder’s ,
parameters. This result generalizes and improves upon Sd%eCOnvolqunal encoders
of the bounds of [4], with the main improvement consisting In this section, we recall a few definitions and properties
in highlighting the dependence of the bound on the innef convolutional encoders that are essential for this paper
encoder’s parameters. Also, it improves asymptotically die refer the reader to [16] and [25] for classical results on
the best known deterministic bound for minimum distanaeonvolutional encoders, and to [17], [15], [22] for moreatlst



u which also has finite Hamming weight. THiee distance
and theeffective free distancef ¢ are defined, respectively,
as

df := min{wg(¢(u)) : u#0}, (2)
de := min{wy(¢(u)) : wg(u) =2}. (©)]

Given u € (Z5)%+, we define thesupport of u as
supp(u) := {t € Z : wu(t) # 0}. The block-termination
of a convolutional encodep after N trellis steps is defined
Fig. 1. Section of the trellis associated to a convolutieratoder. At time as follows. Fix N € Z+’ consider an Input WO-I'dL with
t > 0, the state isz(t) € ZX. Then, in response to an input) € z%, an u(t) = 0 for all t > N, and letz be the associated state
outputy(t) = Ha(t) + Wu(t) € Z3 is produced, and the state is updatedsequence. Notice that the state sequenaad the output word
asx(t +1) = Fa(t) + Gu(t) € Zy. y = ¢(u) may not be supported in the same interval. Indeed,
it can happen that(N) # 0 andy(N) # 0. However, thanks
to the controllability of the minimal realization (see, & [86]
or [17]) there exists an integer € [0, u] (called constraint

on those properties which are useful in the study of turke-li

concatenations. . .
Denote byZ, the set of non-negative integers, and considclaerngth and noE deper)d.mg on the particulamor on N), and
a map an input worda coinciding withw on [0, N — 1] and supported

inside [0, N + v — 1] such that the associated state sequence
Z hasZy4, = 0 and thus also the corresponding output word
i.e.,  maps an input word which is an infinite sequence @$ supported if0, N + v — 1]. Moreover, the pole placement
vectoré having k bits each into an output word which is artheorem (see, e.g., [36]) ensures that it is always possible
infinite sequence of vectors havingbits each. We say that choose the terminating input§ N),...,4(N +v — 1) to be

the mapo¢ is a convolutional encodeif it admits a linear a linear state-feedback, i.e., to have the farth) = —Kx(t)
finite state-space realization. This means that the relsttip for all t = N,..., N +v —1, for a suitableK ¢ Z’QX“ which
between the input and the output words (codewords) can depends only on the encodeér not onwu nor on N. In this
described by a linear dynamical system with finite memorpaper, we shall assume that, given a convolutional encoder
More precisely, there exist a state spate= Z, and matrices a matrix K has been chosen allowing one to construct the
F, G, H, W of suitable dimensions and with binary entriesterminating inputs. Then, the block termination @fafter NV
such thaty = ¢(u) if and only if there exists a (unique) statetrellis steps is defined as the map

sequencer € (Z5)%+ such thatz(0) = 0 and, for allt,

x(t+1) = Fa(t)+ Gu(t), y(t) = Hz(t) + Wu(t) . (1)

0 (TP — ()

o ZEN — Zp V)

] . ] which associates to an input word
We shall say that: is the state sequence associated with

The state realization is usually pictorially representscha (ur(0),uT(1),...,ut (N —1))T
labeled graph, called trellis. To construct the trellis; éach
t € Z,, draw2" points, corresponding to elements of the staf9® CutPut word
spaceX; then draw an edge from stateat timet to state (7 ) 7 (1)... . +T(N — 1).4T(N). ... 4T N+v—1)7
«' at time t 4 1, with input labela € Z5 and output label W@y (M- )y (), oy )
bez;ifandonly if 2’ = Fx + Ga andb = Hx + Wa (see such that
Figure 1). 0 1 N—1). a(N F(N

- o _ cu(l),.. . u(N=1), oL W(N+v—1),0,...

The minimal realization (i.e., the one having the smalles'?(u( ) u(l) u )} @) UN+v=1) )

1) of a given convolutional code is unique (up to a change= (¥(0),y(1),....y(N=1),y(N),...,y(N+vr-1),0,...),

of basis f,9f the statg spage), and has the observgpility "’Wﬁerea(N), ..., 4(N+v—1) is the above-described terminat-
controllability properties which are essential for defgnitne ing input obtained as a linear state-feedback. Such a choice

terminated encoders (see below) and for proving Lemma 1'dpthe terminating input immediately implies that is aZs-
this paper we shall always assume that we are using a minirméar block encoder

realization, in a fixed choice of coordinates for the statecsp
and we shall refer to it as the trellis of the encoder.
A convolutional encoder is said to berecursiveif, for B. Serially concatenated convolutional encoders with @nd
every input wordu with Hamming weight wi(u) = 1, the interleaver
corresponding codeword(u) has infinite Hamming weight.  \we start from two convolutional encoders
The encoder is said to beon-catastrophidf every codeword
¢(u) having finite Hamming weight comes from an inputword ~ ¢° : (Z5)*+ — (Z5)%+, B (Z5) 5 — (Zh)P+ .

IThroughout this paper, vectors are column vectors. SNotice that the size of the support is the number of non-zemove in
2Throughout this paper, Hamming weight is to be intended biewi.e., the sequence. Hence, supp(u)| = wy (u) whenk = 1, while the equality
the number of ones in the word, and not the number of non-zerongec need not hold true in general far> 1.
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Fig. 2. A serially concatenated encoding scheme.

TABLE |
THE RELEVANT PARAMETERS OF THE CONSTITUENT ENCODERS OF THE
SERIAL SCHEME INFIGURE 2

df free distance of°, see (2)

o effective free distance af', see (3) Fig. 3. An error event with active windoft1, t2].
Iy defined in Sect. IlI

n°, ' | defined in Lemma 1
14 v

, ' | constraint lengths of° and ¢!, see Sect. II-A . i , .
u° memory (size of minimal state space)@‘f’ see Sect. II-A the Intel’ested I’eadel’ to the f|rSt authOI’S Ph.D. theS|S f@i]

further detail.
In the rest of this paper, we shall investigate the perfogaan
Let »° and ' be their corresponding constraint lengths an@f the above-described serially concatenated coding sefiem
let N be a positive integer such thatdividesr(N +1°). Let assuming that the interleavéfy is a random element uni-

My be such that formly distributed on the group of permutations &ffy
. symbols. This is the classical ‘uniform interleaver’ enddm
sMy =r(N +v°), of [6], [5]. Since the interleavell y is random, the minimum
and let distance
Ky =1(My + V') =U(Z(N +v°) + ). dy™ = min{wy (¢ o Ty © ¢ (u) : u # 0)}

is a random variable itself. Similarly, assuming transiniss
over a binary-input output-symmetric memoryless channel
with ML decoding, the word error probability of the serial
Py - ZSMN 5 7EN turbo code is a random variable, to be denoted by

Consider the block terminations of and¢' after N and My
trellis steps, respectively

oS+ ZEN — Zr V)

Finally let 7y be a permutation of lengteMy and denote P(e|lly) .

. 7sM sM H
t.Jy the_ same sy_mbo’rN % .N — Ly " the correspon(_jlng While the focus of most of the literature (see, e.g.,[5], ]2&s
Imear_ |somorph|sm_. The serially c_o_ncatenated encodesiden been on the error probability of theverage serial turbo code
ered in this paper is the composition E[P(ellly)], in this paper we shall be concerned with the
Py o mn 0 ¢% : ZEN — Zéﬁv minimum distance and error probability of tigpical serial

_ o turbo code namely with the high-probability behavior afy'»
depicted in Figure 2. We shall refer ¢ as theouter encoder and the distribution of?(e[IIy), asN goes to infinity.
to ¢' as theinner encoderand tor as theinterleaver Table |
summarizes the parametersgfande' that will be used along l1l. WEIGHT-ENUMERATING COEFEICIENTS OF THE

this paper. . . CONSTITUENT ENCODERS
Throughout this paper we shall make the following assump-

tions on the constituent encoders: This section deals with the input-output weight-enumarati

coefficients of the constituent encoders. We define the error

Assumption 1. The outer encodeg® : (Z5)%+ — (Z5)%+ is events and the weight-enumerating coefficients, we recall
non-catastrophic, and its free distandg is even and satisfies some properties of convolutional encoders related with the
dg > 2. weight of codewords, and we state the bounds on the weight-
enumerating coefficients of outer and inner encoder, whidh w
be used in the following sections. The proofs of such bounds,
many of which rely on variations of the arguments developed
in [26], are deferred to Appendix I-A.

Consider a convolutional encoderc (Z5)%+ — (Z5)%+.

Among such assumptions, the ones which are truly needé say that an input word € (Z%)%+ is anerror eventif there
in order to obtain the claimed asymptotic behavior of mirexist¢; < ¢, such thatu has supporsupp(u) C [t1, ] and
imum distance and error probability are the following: nonsuch that the corresponding state sequenias support equal
catastrophicity of both encoderg; > 2 and recursiveness ofto the discrete intervalupp(z) = [t1 + 1, t2]. Notice that this
#'. The other assumptions have been introduced for simglicifynplies thatu(¢;) # 0 and that the corresponding codeword
they allow one to avoid cumbersome notation and definitiong,= ¢(u) has supporsupp(y) C [t1,t2]. The length of the
to have simpler proofs, and to easily underline the roleof error event is defined as — t; + 1 and the discrete interval
(the effective free distance) as the main design parameter ft;, -] is called theactive window See Figure 3 for a pictorial
the inner encoder. In Appendix Il we shall briefly commentepresentation.
on which results can be obtained in the most general caseEvery finitely supported input sequenesuch that(u) has
with a particular focus on the case of odgl, while we refer also finite support, can be obtained as the summation of a finit

Assumption 2. The inner encodet' : (Z3)%+ — (Z4)%+ is

non-catastrophic and recursive, has scalar input (ie= 1)

and is proper rational (i.e., the matri¥’ of its minimal state
space representation (1) is invertible).



number of error events with non overlapping active windowsave the following useful property. Let be the smallest
The following useful result was proved in [15, Lemma 20]. possible relative distance between the positions of the non

Lemma 1. Given a non-catastrophic convolutional encodefo1o entries of a weigft-input word u such thatg'(u) has

there exists a constamt such that any of its error events withfInlte Hamming weight. Let be the weight-2 input word with

. . a one in positiord and a one in positiod’, and lety := ¢'(u)
output Hamming weight’ has length not greater thaw. be the corresponding output word. Then, it is easy to see that

Let v be the constraint length af and consider the block if « is a weight2 input word, thengi(u) has finite weight
termination of lengthN, ¢ : Z&N — Z5™" ™). An error if and only if the positions of the two non-zero entrieswof
event forgy is any input word(u” (0),...,u” (N —1)) such are at a distance multiple of, sayaé" for a > 1. Moreover,
that under the assumption that is proper rational, such an output
word is made ofa consecutive disjoint copies gf and thus
it has Hamming weightiwy (7)) > wg(g). In particular, this
is an error event fop (whered is the usual linear terminating M&@ns thatwi(y) = d.. The case when the inner encoder
extension ofu). Such an error event is said to egular if its has non-scalar input or is not proper rational is discuseed i
active window|ty, t2] lies inside[0, N — 1] (the termination Append|x_ll. . ;

i is 0). Otherwise, the error event is calléerminating It is Recursiveness of' ensures that any error event fgr

clear that any input word fosy can be written as the sumn@S input weighe or larger. When considering),, however,

of a finite number of regular error events plus, possibly, '€ has to be slightly more careful: regular error events hav

terminating one, all having disjoint active windows. mde_ed vyelght at Iea§2t_, while this is not r_lecessarlly trug for a
Considers® : (Zk)%+ — (Z5)%+ andg - Z?Jf ~ (Zh)% to terminating event: which could have weight, the remaining

be the outer and inner encoder of the turbo encoder descril%%ight being in the extended paitand not counted in the

in the previous section (notice that we are considesirg 1). weight of u. . . . .
We shall denote by° andn' the constants defined in Lemma 1 The bounds we Shal.l give rely on the .|nput—we|ght_l|m-.
for ¢° and ¢! respectively. |tat|9n of error events imposed by recursiveness. 'NOI'ICG in
For the outer encoder, we define the weight—enumeratiﬁ(grt'icjlfflar that, _for cvery evea, the input words contributing
coefficient AZ,N to be the number of input words afS t Ru’),<d,w/2 will exclusively be composed of regular error

whose corresponding codewords have weightFor it, we eVEnts r(]aach _h?]ving input vyeight ef?u.aIQto . h h
need only the following simple upper bound, which holds true or the weight-enumerating coefficientsqlf,, we have the

for all non-catastrophic terminated convolutional encedand o bounds stated below. The following lemma is proved in

is mainly a restatement of [26, Lemma 3]. Its proof is provaiideAppendix I-A2. While its part (b) fOIIO.WS from mi_nor changes
- - to the arguments in [26, Lemma 1], its part (a) is a key novel
in Appendix I-Al. s . . -

contribution, since it explicitly captures the dependeotthe

Lemma 2. If ¢° is non-catastrophic, then the followingleading term on the inner encoder’s effective free distafice

(w(0),u(1), - ,u(N —1),a(N), - ,a(N +v —1),0,...)

inequalities hold true. In fact, part (a) of the following lemma will turn out to be
(@) If |d/d?| < N/2, then a fundamental ingred‘ient in the next section, when showing
the linear scaling ofl5™ in dg. In contrast, the bound of [26,
AGN < glkn"+n°+1)d+1 < N ) . Lemma 1] depends on a term, therein denote®iy), which
Ld/dg ] can be traced back to equat+/7i, and cannot be chosen

(b) If m¢ denotes the number of different error events fdpversely proportional ta,/di: therefore, [26, Lemma 1] does
¢° starting att; = 0 and producing output weighf?, Ot allow one to prove the linear scaling @f™ on d..

then . Lemma 3. Let Assumption 2 be satisfied. Then, the following
Agy” <mEN. inequalities hold true.

As for the inner encoder, we shall need a weight-(8) If wis even, then
enumerating coefficient which considers both input and ututp . (2€)° o | d w/2
weight. DefineA;{\Qd to be the number of input words afy, Ry gwys < oo Mn LIIJ :
with input weightw and output weight not greater thah _ ¢
Another weight-enumerating coefficient which will play ayke (b) If d < Mx/(27'), then
role is R;;}N<d ., defined as the number of input words ¢, N d v

e Sy <dn : 4 w/2gw/2
with input weightw and output weight not greater thah AN < R <duwpp T NguN*7d if w even,
consisting of exactly. regular error events. wysd = v N lw/2]) glw/2] if wodd

ww

Because of the assumption of recursiveness, the inner en- _ _ _
coder’s outputy'(u) has infinite Hamming weight wheneverwhereC' is a constant only depending on the inner convolu-
the input wordu has weightl. In contrast, it is well known tional encoder.

that there exists an input word of Hamming weightvhich  1he following result is essentially a restatement of [26,

produces a codeword with finite weight (see e.g. [22, Preposismma 2], with the dependence af) made explicit, and is
tion 3.6] for a proof). Having assumed thgthas scalar input proved in Appendix I-A3.

(s = 1), the codewords corresponding to weighiaput words



Lemma 4. Let Assumption 2 be satisfied.dfis even and  where

i ] o (M o i
dew <d< deMN d? = do d? d?,gd’
2 — = 260 7 f
—1
then M oN
RN 2w/2 ol d w/2 Sodd 1= Z (wN) A'LJNA@J,\Igd,

and Seven is defined similarly toSyqg, cOnsidering terms with
even w > d¢. Then, in order to obtain bounds on the

weight-enumerating coefficients, we use the upper bounds

In this section, we state and prove our main results on thgm | emmas 2 and 3, as well as the simple bound
minimum distance of the typical serial turbo code. Our rissul

will indicate that, if d? is even, then the minimum distance (MN> > My )
din scales agl, N° with high probability, where w w*

IV. MINIMUM DISTANCE OF THE TYPICAL SERIAL TURBO
CODE

) We obtain that, for some suitable positive constants
B:=1- @ €(0,1). K1, K>, K5, K, (depending on the constituent convolutional

. . . encoders only)
First, we shall provide precise upper and lower bounds

of the CDF of d%y. These bounds, stated in Theorem 1, Spo < gﬁ <C +K1d> : 7)
improve upon some of those in [26]. Then, we shall prove ! 2 N

a deterministic upper bound afi#™. Such a bound, stated

in Theorem 2, generalizes and improves upon some of the  Spaq< » Ky Nbw/@I=lw/2lgh/2]

results of [4]. As explained in the Introduction, the most &2 <w<n'd
novel contribution of both Theorems 1 and 2 with respect w odd
to the existing literature consists in highlighting theeraf d\/? w0 7L/ d2 | w2 )2
the effective free distance of the inner encodgr,as a linear = (N) Z A Ky'N ! d
scaling parameter foiy™. d?jﬁg‘d
We start by observing that a standard application of the PN
union bound gives the useful bound (see [26, Lemma 6]) < (N> Z (Kotn)®, ®)
nid w:d?+1

min My - o i,N
P(dy" <d) < ) ( w ) AGN AL cas VIS KN whereRy = Ko\/di;

_Jo
w=dy

4) < warlw/dg] -2 g2 @ lwyag - e
The limitation w < n'd is due to the remark that any Seven < Z Ky N de oy RN 2>

terminating or regular error event of, with output weightd di <wsntd

has input weightv bounded from above bynid (and here d 0 "

we are considering = 1). < (1 + ) > (Ksén)" C))
Now, using the bounds on the weight-enumerating coef- w=dy+2

ficients established in the previous section, we obtain then
following result on minimum distances, which is a refinement
of [26, Thm. 2.a]. Koty < }7 Ksty <
Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume 2

thatd = o(N”), as N grows large. Then, there exisi§ > 0
such that

ere K5 := \/di max{K3, K, }. It follows from (5) that

(10)

DN =

~ JO % 1
c, 2K§f“§N( ) <C (11)

4
N
=3 d 1
. 2 dg
P(dy" < d) < C (Nﬁ;ii) , (1 i N) 2K < 5O 12

for all N > No, whereC' := 2mg (26/\/77)@ for sufficiently largeN. From (7) and (11), it follows that

. a (1 d ae (1 1
Proof: Define ¢y := (N=7d/di)'/?, and observe that S <&y (20+K1N) <&N <20+ 60> - (13)

the assumptionl = o(N”) implies that . . o .
Equation (10) implies that the series in right-hand sides of

Env = o(1), da =o(¢y) (5) both (8) and (9) are convergent, and dominated by twice th_eir
N first term. From this remark, together with (11) and (12), it
as N grows large. Now consider (4), and split the summatioiollows that
therein in three parts: 1

~ Soaa < (2 22(1% )d?+1< Loett (19
P(d%" < d) < Sgp + Soda+ Seven, (6) ol < | 3y 2n) S5l



Seven < (1 + ](37)2 (K5§N)d?+2 < écgff . (15) where K := i(l — z/df;)d?/2/ (rd?/%d?d‘;nO).
The claim follows by combining (6), (13), (14), and (15 Proof: Let us definety = (N~7d/d;)

It is possible to obtain also a lower bound for the CDFp ._ ZP(E;(d))’ Ty = 1 Z P(E;, (d) N E},(d)) .
j€J

of the minimum distance, showing that, asymptotically ia th 2 Wes

block-length, the upper bound in Proposition 1 is tight.sThi J1752

lower bound, stated below as Proposition 2 is a novel relsilt. Then, using the inclusion-exclusion principle we obtain

proof combines techniques similar to those of [26, Thm. 2.b]

W|th the mclusmn-.exclusmn principle [2, p. 124]. P(d%® < d) > P (Uje] E;‘(d)) >T, —T5. (17)
First of all, we fix an error event* for the outer convolu-

tional encoder®, having active window0, 7" — 1] for some We give a lower bound for the first summation using Lemma 5,

T, and with an output* = ¢°(u*) such thatwy(c*) = d?. Lemma 4, and (26). Also, recall thaf| = [N/(dgn°)]. We

Note that2 < T < dgn°. ConsiderN > T'. For a nonnegative get

integer j, definec; as the codeword obtained by shifting

1/2, and

-1
for j trellis steps, so that the active window([i5T" + j — 1]; r, = |J| RN Mn
e N . ) - dg,<d,dg/2\ o
clearly, if[j2—j1| > T', thenc;, andcj, have non-overlapping f
supports. N | 28/2 e d d¢ /2
Now consider the terminated encodey;, and, with a slight Z done | Ted? N a
abuse of notation, let; denote its codewords corresponding f a ¢
to the above-constructed codewords¢of Define the set of > 2K¢y (18)

indicesJ := {dgn°j, j € Z4}n{0,1,...,N —1—dgn°}, so

N ) ; ] with the last inequality following from the fact that
that if j; and j, both belong toJ, andj; # js, then clearly

lja —j1| = d2n° > T. Forj € J andd € Z., define the event {dJ o4 (1 B dfa> S 4 < _ 2)
, i i di] = d d) = di )’
E;(d) = {wn(¢y (In(c}))) < d} ) ) - f
A {¢iN(HN(C;)) hasd? /2 regular events. thanks to the assumptioh> 1d¢d., and from the inequalities
. * H H min
Clearly, for anyj, E(d) implies dy™ < d, so that My < 2rN, L N J > L,
den° 2dgn°

P(d3™ < d) > P(Uje B} (d)) -
which hold true for sufficiently largeVv.

Now, we find an upper bound for the second summation
'T (17) using Lemma 5, Lemma 3, and (26), as follows

The following lemma provides an expression ﬁB(E;‘(d))
and shows that, asymptotically, the eveAts(d) are ‘almost’
pairwise independent. Its proof, deferred to Appendix I-B
closely parallels the arguments of part of the proof of [26, 1] (Jgg)v) . M\ ! 2 B
Thm. 2.a]. The main difference with respect to [26, Thm. 2.a] T’ < ( 5 )MNfdo <R2g<d7d?/2< & ) ) <TIy,
is in the definition of the evenk (d), which in our case has ( s ) - f

the additional restriction thapy (Ilx(c})) hasdy/2 regular where

events. Our definition does not significantly modify the groo

of this result, but turns out to be a key point in orderto show _ 1 / N \?2 (]fl[év)
the role ofd, in Proposition 2. 275 (dfc’no) (

Lemma 5. Let Assumptions 1 and 2 be satisfied. Then, for all

J1#j2€J, Notice that
—1
* My i — Mn\ (My — dg B
P(E}(d)) = ( d?) Rd’gfgd,dw, (16) My =rN(1+o0(1)), < P ) ( " =1+o(1),
(fgg) as N grows large, so that
P(E;, (d) N Ej,(d)) < (NT;I?)P(E;I(CZ))P(E; (d)). . R
dg < 7 £
f 2= 27‘d(f)(d?n°)2 ( +0( )) N

We shall obtain our lower bound by considering the prob-
ability of the union eventJ; £7(d) and using the inclusion- Sinced = o(N?) by assumption, one has thé, = o(1), so
exclusion principle. that

_ 2o
Proposition 2. Let Assumptions 1 and 2 be satisfied. Assume Ia<Ty< K&y,

1 i _
that d > 3dpd;, andd = o(N”), as N grows large. Then, ¢, s fficiently large N. Together with (17) and (18), the
there existsiVg > 0 such that, for allv > Ny, foregoing ImpIIeS the claim. ]

g /2
P(dRi < d) > K (Nﬁji> ' 7 We may combine Propositions 1 and 2, in the following.



Theorem 1. Let Assumptions 1 and 2 be satisfied. Then, foney obtain ([4, Thm. 3]), when specialized to the constant-
every positive sequencg} such thatlimy_,..ey = 0, memory case, gives a bound which is asymptotically weaker

there exists a finiteVy > 0 such that than Theorem 2. In fact, [4, Thm. 3] gives
085'115/2 <P(dy" < diNPey) < Cfeﬁ/z, dmin < ON-(rpe+2)!

for all N > No, where Cg and C7 are positive constants for some positive constartt, and whereu® is the dimension
depending on the outer encoder only. of the state space of the outer encoder. It is easy to show that

Theorem 1 provides some fundamental insight into the eff < 7(x° +1) and thus that
fect of the constituent convolutional encoders on the mimm Bl (r(u®+ 2))_1
distance of the typical serial turbo code. On the one hand, it H ’

shows that the minimum distance of the typical serial turbg fact, we can always construct a non-zero outer codeword
code grows as a positive power of the block-length. In facif weight at most-(1.°+ 1), as follows. Take a non-zero input

it implies that the probability that the minimum distan€g™  at time zero, and then drive the state back to zero by applying
grows any slower tharV” vanishes asV grows large. The the termination procedure: the corresponding codeword is
exponent of this power law growtl, depends only on the freesypported in[0,°] C [0,x°] and thus has weight at most
distance of the outer encodef, in an increasing way. This is r(u® 4 1).

in line with the results of [26] On the other hand, it showatth The result we obtain in Theorem 2 is also asymptotica"y
the minimum distance of the typical turbo code scales liyeatighter than the currently best known bound for serial turbo

in the eﬁectiye free distance of the inner encod%r, While CodeS, presented in [32], WhiCh, F:YS grows |arge, grows as
the effect ofd, on the average error probability of serial turb@zst s Ny1-1/4F

codes has been studied in [5], [22], up to our knowledge no

results have previously appeared in the literature rejadin
to the minimum distance. Such a scaling effectipfon d"
is particularly relevant for moderate block-lengths.

The result stated below provides a deterministic upperin this section, we discuss implications of the previous re-
bound on the minimum distane&™®, showing an analogous sults to the analysis of the error probability of the typisatial
dependence on the parametdfsandd_.. turbo code. For the sake of concreteness—even if the results
Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, £GE" be easily generalized to binary-input output-symretri
all mempryles's channgl;—we.shall assume jthe channel to be
the binary-input additive white Gaussian noise channekmwh
w € {0,1} is transmitted, the output of the channel is
and for every realizationry of the interleaverlly, the (—1)“L + Q, whereL € (0,4+0c0) and 2 is an independent
minimum distance satisfies Gaussian random variabfe ~ A (0, 02). The signal-to-noise

. 0 o ratio is
AR < 6rd? (8den°)?/ % (61)2d NPlog N.  (19)

V. ERROR PROBABILITY OF THE TYPICAL SERIAL TURBO
CODE

N = 2%/% 8dge (6%

p:=L?/(20%).
It is worth comparing the upper bound (19) with the high
probability scalingN?d. implied by Theorem 1. On the one
hand, the dependence a¥ of the right-hand side of (19)
involves an additional factolog N. On the other hand, the
right-hand side of (19) shows a linear dependencedpn
though multiplied by a factofs')?, which depends itself on ¢, N—L@#-1D/2) < E(P(e|Ty)) < C,N L@ -D/2)
the inner encoder, and is therefore relatedd}oitself. It is _
important to highlight the fact that, in contrast to Theorém for some constant¢’;, C> whose dependence of} in the
Theorem 2 holds for every choice of the interleaver, and nbigh SNR regime can be made explicit.
only with high probability with respect to its random chaice However, the error probability of the average serial turbo
In fact, it may be conjectured that such greater strengthef tcode turns out to be much larger than that of the typical
statement could be the main reason for the additional fact@erial turbo code. Indeed, the former is dominated by an
in the upper bound (19). asymptotically negligible fraction of poorly performingdes.
Theorem 2, whose proof is deferred to Appendix I-B2n the sequel, we shall use so-called expurgation techsique
may be thought of as a generalization of [4, Thm. 2]. Ther# order to show that the error probability of the typicaliakr
only the case when the outer encoder is a repetition cosbo code decays faster thamp(—N”~<), for all € > 0.
was considered, while we extend it to general serial turboFor everyN > 1 ande > 0, we consider the event
codes. Moreover, our modification of [4, Thm. 2] unveils the . in 5e
fundamental role played by the inner encoder’s paramelers By = {dy" > N°™°}.
ando’. _ _ _ It follows from Theorem 1 that
Indeed, [4] considers serial turbo codes as well, in an even
more general setting with growing memory, but the result P(Ey)>1-— Oy N—edk/2, (20)

As already mentioned, the focus of most of the previous
literature on the analysis and design of serial turbo codes h
been on the error probability of the average code, for which
it is known [5], [22] that



The following proposition gives an upper bound on the averagequalityd < N/(2n') < Kx/(2n'), we can apply Lemma 3.
word error probability of the serial turbo ensemble, condHence, we can find a positiv@; such that
tioned on the event’y;.

N/ o AoNAlNh Nj@r) i -
Proposition 3. Let Assumptions 1 and 2 be satisfied. Thenz d G < Z > ¢ ( )( ) iyt
there exists some finitg > 0 such that, if the signal-to-noiser=n6-< w=dg ( w =NF—c w=dg

ratio p satisfiesp > po, then, for alle € (0,() there exist

Then, observe that the functl@rq,z) := (a/z)* has maximum
some finite constantd; > 0 and C' > 0 such that

value g(a/e) = e%/¢, so that

E[P(e|lly) |EY] < Cexp(—2NP79) (hJw)™/? < eh2e).
for all N > Nj. Moreover,w < ¢N for someé > 1, so
Proof: The main tool for this proof is the classical (w/NYE % < famapw

union-Bhattacharyya bound, introduced for the averager err
probability in serial ensembles in [5]. Here we use a modifiddence, asw < 'k, we can find a constar, > 1 such that

version of it, where we consider the ensemble expurgated fro N/@) n'h go.N i N N/(2n')
i ini i w w,h
the codes with low minimum distance Z MN A< Z (Cor)"
Ky n'h AON 11\2 =NPB—c w=d? _NB—¢
w h .
E[P(ellly)|Ex] < Z Z (MN) ’ For the remaining terms, haviny/(2n') < h < Ky, we use
A the following trivial upper bounds on the weight-enumengti
(21) coefficients
wherey = exp(—p).
To prove this bound, first notice that AoN < <MN> and Ai,l\; < <KN)
w — w w,h — )
E[xP(e|ll
E[P(e[lIn)|ER] = [X(iw» from which we have
P(EY)

o . n'h A°; N pLN Kn K
wherey denotes the indicator function of the evelii;. The Z Z wh b < Z nih( N> )
union-Bhattacharyya bound (see e.g. [5] or [24]) gives he N () i J‘f}j") =N ) h

Ky . :
; N h h mpti 20t h < Kp,
(e[Tly) < ZAZenaLHNVh Orc]);vhr;c;tlcet at, under the assumptidfy (27') < h < Ky
- ()= () =e
where by A5*"™™~ we denote the number of codewords with h' )=\ h -

weight h of the serial code obtained from the given ensembjgr some positive constant’; which depends only on
when the interleavelly is sampled. Then (21) is obtained as, [,1°, 14, . Finally, putting all terms together, we have

follows proved that there exists some const&ht> 1 such that
& ial [T & >
serial
E[P(e|ly) x] < E[Y | A7 x4 E[P(ey)|ER]< S (€)' < S (@)
h=1 h=NB-¢ h=NB—¢
< Z AserlalHN Jyh Assuming thaty < 1/Cy, the series is convergent, and equal

to (C4y)N" /(1 — C4v). As we do not aim at optimizing

K constants, we can further assume that 1/(Cye?), so that

Z Z AN AN (MN) AP the claim easily follows withC' = Cy/(1 — e2). |
w,h ’

h=NB-¢

h=N#—< w=dp It is worth pointing out that the consta6étin Proposition 3
.is independent from the signal to noise ragioprovided that
this is large enough.

From Proposition 3 and Theorem 2, we can obtain the
following result, characterizing the asymptotic decayeraf

the error probability of the typical serial turbo code.

where the last equality is obtained by applylng the expoessi
[24, Eq. (7.1)]. The limitations? < w < n'h come from
the fact that, by definition ofi? and by Lemma 1, if these
inequalities are not satisfied theﬁtj’ﬂNA n=0.

By Theorem 1,P(E%,) approached, as N grows large. ) o
So, for somec > 0, P(E%,) > ¢, for large enoughV. Now Theorem 3. Let Assumptions 1 and 2 be satisfied. Then, there

we need bounds for the weight-enumerating coefficientsef tRXiStS some finitg, > 0 such that, if the signal-to-noise ratio
constituent encoders. p satisfiesp > po, then for alle € (0,3) there exist some

We start by considering the terms with< N/(25'). For finite No >0 and C' > 0 such that

the outer encoder, having < g id < N/2, we can apply lP’(exp(—Nﬁ*g)gP(e\HN)gexp(—NB*ED >1-CN—=%/2
Lemma 2 to find a bound foAg;™. For the inner encoder we
use the simple bound; < A1 N ", and then, thanks to thefor all N > No.

w
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Proof: By applying Markov’s inequality to the randomof the probability distribution of the minimum distance,dan

variable P(e|IIy) conditioned on the everfis,, one gets

1
IP’(P(e\HN) > qE [P(6|HN)‘EJEV} ‘ EN) <>, Ya>0.
(22)
Now, consider the event

F = {P(ellly) > exp(—N°~9)}.

From Proposition 3 and inequality (22) withw =
Cy ' exp(NP~¢), one gets that

Let us denote the complement of the evéiit by E%. Then,
it follows from (20) that

P(Fg) = P(FyNEy)+P(FNEY)
1-P(EY) +P(FR|EY) P(EY)
C1N—2%/2 4 Cyexp(—NP~9)
C]\/'—sd}’/27

P(FRIERN) <

(rano S5
Coexp(—NP~#).

N

IN

(23)

IN

IN

where the last inequality holds witlh := C; + C,, for
sufficiently largeN.
On the other hand, using the inequality

Ple|lly) > p™&" (24)

wherep = erfc(,/p)/2 is the bit error probability of uncoded

of a deterministic upper bound. As a consequence, we have
characterized the decay rate of the ML error probabilityhef t
typical turbo code, which turns out to be exponential in some
positive power of the block-length.

This contrasts the asymptotic behavior of the ML error
probability of the average serial turbo code, which is known
to decay only as a negative power of the block-length. Irespit
of such lack of concentration of the typical code perfornganc
around the average code performance, our results confirm the
centrality of the two main design parameters for serial durb
codes suggested by the average-code analysis, namelyeéhe fr
distance of the outer encoder, and the effective free distan
of the inner encoder.

In the results that we have presented, we have considered
the assumptions that the constituent convolutional ensode
are non-catastrophic, that the outer encoder’s free distan
is even and greater than 2, and that the inner encoder is
recursive, proper rational and with scalar input. As diseds
in Appendix Il, only some of these assumptions are indeed
essential in order to obtain the claimed asymptotic scaling
of the typical minimum distance and ML error probability
(non-catastrophicity of both encoders, outer encodeeg fr
distance greater than 2, inner encoder’s recursivenessle w
the other assumptions were introduced in order to simptiéy t
discussion.

APPENDIX |
PROOFsS

transmission (see e.g. [15] for a proof), and using Theorem 2 |n the present appendix, we provide the proofs of some of

one gets that

P(e[Tly) > exp(- N7+, (25)

for every realization of the random interleavég,. Then, the

claim is an immediate consequence of (23) and (25).

We conclude this section by observing that both Theorems 1
and 3 only imply weak probabilistic convergence resultscasi
the CDFs ofd" and P(e|ITy) decrease slowly itV. Indeed,

the statements of Sections Il and IV. Throughout, we shall
make repeated use of the following well-known combinatoria
bounds. For positive integera < n, one has

one may prove [11] that, while converging in distribution to

5, both the growth rate of the minimum distance, i.e.,
Xy := (log N) ' logd™
and the decay rate of the error probability, i.e.,

Yy := (log N) " log(—log(P(e|lly))),

densely cover the intervaly, 5] with probability one, where

a=1-2/[d/2].

VI. CONCLUSION

"< (”) < (e (26)
m m m
(") <o <en, 27)
m
For realsw > ¢ > 0, one has
th(w — )Yt > (w/2)" for all t € [0,w], (28)
while, for¢ > 1,
S SR (29)
(t— 1)(t—1) — ¢t .

Throughout this section, whenever we find it useful, we
shall write input and output words of the terminated enceder
(finite strings of bits) as polynomials in the indetermindie
with binary coefficients, where the powers bBf will simply
be place-holders, indicating the position where the bitunc
This is a very common notation for convolutional encoders,

In this paper we have studied the behavior of the minimumhere the powers of) denote the number of trellis steps
distance and ML error probability of serial turbo codes withnd the coefficients are vectors of a suitable number of bits,
uniform interleaver. We have shown that the minimum distanbut here we shall rather use it for the terminated encoders,
of the typical serial turbo code grows as a positive powehef tand powers ofD will count the number of bits, not of vector
block-length, whose exponent is an increasing functiorhef tlabels (this distinction is important for the outer codedsom
free distance of the outer encoder, and scales linearlytwih the proof of Theorem 2, while for the input words of the
effective free distance of the inner constituent encodechS inner encoder the assumption = 1 implies a one-to-one
scaling law has been proven by means of a detailed stuctyrrespondence between bits and trellis steps).
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A. Proofs of the results presented in Section Il Summing up (30) and (31) we get statement (a) of Lemma 2.

Our proof techniques are based on ideas from [26]. We'€ tighter bound of statement (b) of Lemma 2 is easily
retrace here the proofs in all detail, both since [26] has ngptained from the observation that input words with output
appeared yet, and in order to be able to underline the role'¥¢ight d¢ necessarily consist of just one error event starting
the effective free distance of the inner encodér, in the interval[0, N — 1]. u

1) Proof of Lemma 2:This_ is esse_ntially a restate_ment of 2) Proof of Lemma 30ur arguments closely parallel those
[26, Lemma 3]. We start by introducing some notation: of [26, Lemma 1]. The main novelty consists in proving
e Let RZ’N and Tfi”N denote, respectively, the number okeparate bounds for the leading term (statement (a)), and
input words to¢3; having output weight! and consist- the other ones (statement (b)). While the proof of part (b)
ing exclusively of regular error events, or containing & essentially the same as the one of [26, Lemma 1], with

terminating error event. We thus have different handling of some of the constants involved, theopr
o.N 0N o.N of part (a) is novel, and fundamental in showing the correct
AgT = RyT + Ty scaling ind..

. Let R?(;N ., be the number of input words tgg, Similarly to what we have done before, we need tqintroduce
consisting of regular error events whose output weight§everal auxiliary weight-enumerating coefficients for
aredy,...,d,, respectively. Similarly, Ietl“((;’f\j‘__ydn) be o Let Ri’u{\;d (respectively,T;f\éd) denote the number of
the number of input words t@<, consisting ofn — 1 input words for¢', having input weightw and output
regular error events having output weights, in order, weight not larger thani, and consisting exclusively of
di,...,d,_1, and a final terminating one of weigHhy,. regular error events (respectively, containing a terminat

Assume thatl; + - - - + d,, = d. Then, one has that ing error event). _ -

n o (N « Let R i (respecflvely,T_wéM) deno_te the number
R((’h,‘..,dn) < 2%m <n> . of input words for ¢}, having input weightw, output

weight not larger thani, and consisting ofn regular
Indeed, we are consideringerror events, with lengths at most events (respectivelyp — 1 regular error events plus a

din®, ..., d,n° respectively, so that the sum of their lengths  terminating one).

is bounded bydn°. Thus, the number of distinct choices for « Fix two vectors of integersw = (wy,...,w,) and
the bits in the input word inside the active windows of such b = (by,...,b,) with w; > 0 andb; € [0, N — 1]. Let
error events are at mo&t®”. The only remaining freedom Ril;%xd,n (respectively,Ti;{\éKd’n) denote the number

is in the choice of the starting points of the error eventsl an  of weight«v input words tog', such that: the output has
the number of possibilities is clearly bounded from above by weight not larger thani, and contains: regular error
(J,\f) events (respectivelyp — 1 regular error events plus a

Hence, one has terminating one); for alll < j < n the j-the error event
ld/d2 | starts in positiorb; and has input weighi;.
RZ’N = Z Z R?,;Ilvwdn) In order to prove statement (a), we naotice that, for any input
n=1 dyot: word with w/2 error events and input weight, recursiveness
d Ly di=d.d; of ¢! forces input weigh® for each error event. So the input
d o N (30) - i,N .
kdn words contributing toR can be written as
< Z 2 o w,<d,w/2
2 \n |d/d?)
N w/2 )
< 2<1+’“”°>d< ) u=>Y D'(14+D"
/) 2 D% )

where we are using assumption thafdy | < N/2. Similarly, with b, > b,_; + 6'a;—, (So that the error events have disjoint

N active windows). We also have the restriction (¢'(u)) < d,
d’l]o b H
1 ut we can obtain an upper bound on the number of such words

. L . by imposing a weaker condition.
because the:-th event, being terminating and having length” \ iice that

at mostdn°, starts in a position betweeN — dn® and N — 1
on the trellis. Therefore,

o,N kdn®
Ty =2

w/2 w/2

iy as 3w <¢>i (1+D5‘at))
t=1

IN

[d/dg] t=1
PR D S e
N - ol ;Dt(HD R
d
< ;(Z)deno((d/dg _1)61770 D The restrictionwy (¢'(u)) < d thus implies that
< 2(1+kn"+n°)d( Ny d Y a<d. (32)
- Ld/dg] 1<t<w/2
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Observe that there aréd/ 4.}y choices for positive integers Everything is similar to the regular case, except for the
at, .. aw/Q Sa“sfy'ng (32) F|na”y, there are at mo@i{uN additional Conditionbn > MN — d?’]l This comes from the
ch0|ces for the starting positions,. .., b, of the error remark that the terminating event has clearly output weight

events. Summing up, and using (26), We obtain smaller thand, hence of length smaller thas'. Being a
terminating event, it cannot start befakéy — dn'. Moreover,

ld/di]\ (My 2e\" 2| d |"*  the recursiveness imposes > 2 for the regular events, while
<(=) mp?|= . o \ .
di, for the terminating event only,, > 1 is required.
With the same proof as for the bound (33) ﬂjﬁKd’n,
we have also -

i,N
Ry <awso = w w
2 2

This yields statement (a) of Lemma 3.

w

In order to prove statement (b) of Lemma 3, we start by TN < dn
considering the case when is even. We first show that wb,<dn = \yy—n )’
; dn'! so that
i,N n
R < < (w — n) ' (33) w/2 g
1
Notice indeed thaﬂ%iuj\g <d.n is smaller than the number of T, <d - 221 Z W bz - (w - n)
binary words of Iengthin with exactlyw — n ones, because * gﬁ,;f;’;v")' ogb;(.i’gg,;;%
it is possible to exhibit an injective map between the words w;22Vj<n,wp 21 bp>My—dn'
we want to count and such words. Given an input word (of w/2 w—n\/ M dni
. . . . N i n
length My) producingn error events having input weights < (n B 1) <n B 1) (w B n)
wy, ..., Wy, fixed starting pointdy,...,b,, and total output n=1
i it i i w/2 n— Nw—n
welghtg d, map it into a word o.f lengthin in the.followmg < ez g Mz (dn))
way: remove all the zeros outside the active windows of the se n Z (n — 1)) (w — m) (=)
error events, and furthermore remove the bit corresponiding n=1
; ; H R w/2
the starting p0|_nt of _each error event (which is surely a.one) < w1 dnt M2 (dn')®~
The word obtained in such a way has surely lengthin’, = 2 My Z —w )
then add dummy zeros at the end to get a word of ledgth n=1
the number of ones i& — n. This map is injective since the e w dn w/2
starting points of the error events are fixed and known. This < (w/2)® 2 My ZMN dn')®
proves (33). /’21 0
Now, consider the decomposition _ e w My (dnh)?
i, i, N ~ (w/2)v 2 My 7
Ry can= Z Z Ry <dn> dn
w=(wy,...,w,): b=(b1,...,bn): where the third inequality above follows from (26) and (27),
w22, wj=w  0Shi < <bn <My the forth one from (29), and the fifth one from (28). Now,
where, once again, the constraimt > 2 comes from the statement (b) of Lemma 3 follows from the fact that
recursiveness od'. Using (33), we obtain the bound w/2—1
i,N 1 N
w/2-1 w/2-1 w—n—1 MN dnl Aw <d w <d, w/2+ Z Rw <dn . (34)
ZRw<dn_ Z n—1 n w—"n
n=1 The case of oddv requwes slightly more care. We start
w/2—-1 w1 (eMy)" (edni)w=n with the analysis owa <d,|w)/2]" Input yvords contrllbutlng to
= n w_n is term are made —1 events with input weigh? an
<) e o w1 this t de af /2~ 1 events with input weigh? and
n=1 one event with input weighg, i.e.,
Q2w w/2—1
lw/2]—-1
MR (ntd)® ; ,
(w/2)" Z M u= Y  D"(1+D"")+D(1+D"+D").

t=1

e w(nl)w/Q d¥ M2 . o
All the error events have disjoint support, which implies

= w2 o1

dn the weaker condition thab; < --- < bj,/2j—1 andb #
where the second inequality follows from (26) and (27), arld; - -, bw/2)—1. The overall output weight is< d, and
the third one from (28). this implies the weaker conditiod: 31/~ 4, < d and
Finally, we have to consider weight-enumerating coeffiz < a’ < n'd. There are:
cients of typeT'. For them, we have id .
yp . ?72 choices for suchu, a’;
i, N i, N
T,ea= ) Tutan ( |d/d| ) Hoices f
1<n<w . N choices foraq,...,a 1
-> ¥ > /2~ ey
- b, <d,n* .
1<n< ™ we(wr,..wn): b (byymbn): h " e NO more than |w/2] N choices  for

w/2]
S wi=w 0<b; <+ <b, <Mn
w; >3V, wa>1  by>My—dn bi,...,blw2j—1,b, where the factor|[w/2] comes
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from the choice of the position where to put the errawith
event of weight 3 in between the other events.

o 0<i1 <ig <+ <iy My —6'd/d.],
Summarizing, iy <idg < - <y < My —0'[d/d]

N w My ’r]id Ld/dieJ 0=ho< hi <hy <- <hw/2 Ld/dJ
wosdlw/2] = ng (Lw/QJ)< )<Lw/2J - 1) It is evident that they have input weight and consist of
i\2 w kw2l 2y g/qn | te/21 w/2 disjoint error events. The only property which remains
< ()" we Lw%J [4/4 [w/a] -1 to be verified is whether they produce output weight not
[w/2] (lw/2] = 1) 5] exceedingd. In fact, thet-th error event has input word
12 )3(92e)w 51 o .
= (q@? ST fuf) My UZJ : DI (1 4 PP i)y
e

(35)  so that the output has weight
where the second inequality follows from (26), and the last

inequality follows from (28) and (29). wit (¢'(1+ DY Pe=hee)) <t (hy — hy_y).
The remaining regular terms are bounded exactly as in

. tt¢Ilﬁus, the total output weight can be bounded from above as
case whenw is even

w/2] -1 _ )] arsiprls! di wz/z(h hio1) = dihy s < d
N — _ = w >~ .
nz:l Rw <an < iz J(\fé? . (36) e t— N1 ellw/2

Observe that, for every choice of the tweo/2-tuples
We now pass to studying the terr‘iﬁ$ <dr Differently from (i1, 2. .- iwy2) nd (1, ha,.. . hy ), ONE obtains distinct

the even case, we shall consider the main té?‘ﬂrﬁid rw/2]  input words. It follows that

separately. Input words contributing g w /21 consist of ; . ;
|w/2] regular error events, each wnhﬁ%pué%veight and RN > (MN -9 Ld/deJ) (Ld/deJ> (39)
one terminating event with input weigit with overall output 7 w/2 w/2
weight < d. We represent such input words as Recall that, by assumptior¥ < 4 < ¥ andw is even.
Lw/2) Hence, ‘
u = Z D (1 4 D%at) 4 pM~—! w d | d My 1d
<zl weolg)z % Semerg)

and we observe that the following conditions hold The final bound follows by applying (39) and (26). -

O§b1<"'<wa/2j < My,

1 <n'd, d. Zat <d. B. Proofs of the results presented in Section IV
Throughout this subsection, we shall use the wardsc;
Thus, we get and the set of indiced defined in Section IV.
M d/di 1) Proof of Lemma 5:This proof closely follows part of
Tl‘ujid fwja] S < N )dni(L / EJ> the proof of [26, Thm. 2.b].
,Lw/ﬂ [w/2] w2 (37) The first statement is immediate, let us prove the second
nw2e)” w2y | d one. Let
— 2 ww N dl : \
. = D
The remaining terms are bounded as in the even case, i mzzl
[w/2] 2w [w/2] (5 i\ [w/2] Given a multi-index
M d
Z Tzluj\id n — ° w E = MAS L ) . (38) e
n=1 (w/2) P T = (71,...,Taz) € [MN]*,

By bounding the addends of the right-hand side of (34) as \ihere[My] := {0,..., My — 1}, define the event
(35), (36), (37), and (38), one finds that the leading ternas ar

in fact the ones on the right-hand side of (35) and of (37), and Er = {lly(D'") = D™ ¥m =1,...,d?}.
statement (b) follows. ] Clearly

3) Proof of Lemma 4:We shall use ideas similar to thos DNE:(d P(E ( ’ E,),
of [26, Lemma 2]. We conS|der a subclass of input Wordg Z

contributing to the terme <dw/2 exactly those which can
be written as where the summation index runs over all[M]%

Z (Dit-i-ht,léi n Dit+ht6‘) Then, notice that
1<i<u/2 P(E; (d)|EL (d) N Er) = P(EL(d)|E-).  (40)
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Also notice that proportional to the distance between the two ones. The goal

_ M — do\ ! is to find a non-empty subset of indic&sC U, such that its
IP’(E;;(d)}ET) < R;’de d0/2< Ndo f) (41) cardinality|S] is even and grows at most logarithmically with
pe f N, and such that, for ath = 1,. .., df, the ones being the:-

Indeed, after having fixed the positions where IIy maps th one of wordsc; with j € S form pairs in such a way that
the d¢ ones ofc},, we need to find how many choices forafter the permutation the distance within ones of the same
the positions of the ones ef, will produce an output weight pair grows at most agv/?. This will allow us to construct

less than or equal td, out of the ("~ %) ways to choose an outer codeword: = 3, 5 c; which gives a codeword

dg positions among\ly — d2. The number of such favorabley = ¢y o ™ (c) of the serial scheme, whose weight grows at
choices is bounded by the number of favorable choices tHB@st as a constant time§” log N.

we would have if we could choose among Ally positions, ~ In order to find the setS, consider the sefMy] =

including the unavailable positions already assigned toi.e., {0,..., My —1} and divide it inb intervals/y, ..., I, each

RiN_. 4s /2 Which proves (41). of length at mos{ My /b]; b is a parameter depending on
Equations (40) and (41), together with (16), give that will be properly chosen later in this proof.

. Define a hypergrapf/ = (V, E) in the following way. Take
MnN\ (My —d? a dg-partite vertex set” being the union ofif disjoint copies
dg ) ( dg ) " of W ={I,...,I,}. The set of hyperedgds has cardinality
|U| and isdg-regular in the sense thd C W%, i.e., every

hyperedge contains exactly one vertex from each ofdhe

P(E; (d) N Ej,(d)) copies of W. Any hyperedge inF corresponds to an index

My —do\ /M i ¢ U, and is defined as = (I), ..... I} . % where,
SZP(Efl(d)ﬂET)P(E;‘Q(d))< Ndo f) ( N>’ VRS and is defined as = (I, ..., hdf) c W% where
T f

P (B3, )] 5, () Ex) < P(E3, (@)

Therefore,

dg denoting as above
a7
where the summation index runs over the sefMy]%. ¢t = Z Dim
. J
Finally, observe that m—1
> P(E;(d)NE;) =P(E; (d). with {t,,}, and increasing sequence, the indey is such
Te[MN]d? ' l that ﬂN(Dt”‘) S Ihm-

Define the degree of a vertex in the hypergraph as the
number of hyperedges that contain that vertex. The follgwin

2) Proof of Theorem 2:The key idea, introduced in [4], lemma holds:

consists in turning the problem of finding codewords of smally 1\ ma 6 ([4], Lemma 3) Given ak-partite, k-regular hy-
weight into the problem of finding a generalized cycle on rgraph(V, E) with b vertices in each part, itb*/2 < ||,
hypergraph. We describe here the construction of the deitaf} ., there exists a non-empty subSet £, with |S| < l;logb

hypergraph, adapting the construction from [4] to our Bgili o, that in the induced sub-hypergraph, S) every vertex
and then we state the lemma on hypergraphs given in [ s even degree (possibly zero). ’ n

which completes the proof. The aim is to show that, for
any interleaver, it is possible to find a suitable subset ef th
codewordsc;, say {c; : j € S}, with cardinality growing
at most as logarithmically withV, and such that the outer
codewordc: =256 _produc_es a codewo_n_gj: Pyomn(c) { 17| 2/d;’J { 1 N[\ 2/
of the serial code having weighty (y) positive and smaller b= < - do) = (ido {OOD .
than K N log N, for some constanis . 4(0")% 4(0)% Ldn

Let Zs: be the ring of integers modulé'. Define a map This ensures that is an integer satisfying
o :J — Z by associating to an index € J a vector

From this, the claim immediately follows.

We shall show here that this lemma implies Theorem 2. In
the above construction of the hypergrafh we choose

(01(j), -+, 0a2(4)) in the following way: if k2 < \JIO <|U| =Bl
& (01)%
f
¢ = Z D' an (D) = D™, so that we can apply Lemma 6 and find the sulsset
m=1 By construction of the hypergraph, there is a bijection
with {t,,},, an increasing sequence, then,(j) = m, Detween hyperedges and indicestinC J; let S C U be

mod &'. By the pigeonhole principle, clearly there existéhe indices corresponding to the hyperedges'irso that any
U C J with |U| > |J]/(6")% such thato(j;) = o(j) for all hyperedges € S corresponds to some woig, j € S. Let

Ji,j2 € U. c:=Y,e5¢; € Zy', and observe that is clearly a non-
This means that, for evemy. = 1,...,d?, all them-th ones zero codeword of the outer code. Henge= ¢\ (mn(c)) is

in words cj, with j € U, are permuted byry to positions a non-zero codeword of the serial turbo code.
whose relative distance is a multiple 6f. Thus, applying By construction,my(c) is composed of S|d¢/2 pairs of
¢' to any pair of such ones gives an output weight which nes. Each pair has both ones lying in a same intefvaind
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at a distance multiple of'. Hence, of ¢\, made of error events with input weigBt (proofs of
. 1S|de . [ My Lemma 3 and Theorem 2), and to have clean expressions of the
wi (¢ (mn(c))) < de; [bw constants depending afi. Indeed, under such assumptions,
an input word with weight two produces a finite-weight output
Finally use the bound of5| which is the key contribution of word if an only if the two ones are separatedddy— 1 zeros,

Lemma 6:|S| < d?logb. and the output weight iad, because the word is made of
Our choice ofb gives shifted copies of the same error event, with non-overlappin
2/d? ) support. Whenp! is not proper rational, the above-mentioned
log(b) < log(N*/r) = € log(N) error events have overlapping support, so that the weight is

f smaller thanad®: this allows one to prove bounds on the

0. 0\2/d2 [ si2 Ar1—2/dS one side, while for the other side it is necessary to intreduc
[ My /b] < 6r(8d¢n°)~ % (6")°N i another parameter of the inner encoder, for which the opposi
which concludes the proof. m inequality holds true. When' has non-scalar inputs (> 1),
we have to look separately at pairs of ones being in different
components of the entry vector, so that we need to define
APPENDIXII s parameter$'(j) and corresponding weight& (j), one for
GENERALIZATIONS each component = 1, ..., s; moreover, we need to take into

Parts of Assumptions 1 and 2 were stated for the sake agfcount also possible pairs of ones where the second one is
simplicity, and are in fact not essential for the validitytbE not in the same component as the first one (which turn out to
results presented. In this appendix, we shortly discuss hbave an asymptotically negligible role). For more detaike
such assumptions can be weakened, pointing out the role tfi2¥], Sections 4.5.2 and 4.5.3.
played in the proofs and stating the results that can bersdlai Removing the assumptions that has scalar inputs( =
in greater generality, while we refer the interested redder 1) and is proper rational K is invertible) does not change
[21] for more details and proofs. any of the asymptotic results wheN grows large: except

The following formulation is the one truly needed in ordefor the value of the constants and their dependencé: pall
to obtain the claimed asymptotic behavior of the minimurthe statements of this paper remain true under Assumptions 1
distance and the error probability: and 4.

Removing the assumption thaf is even requires some
more effort, because of the key role that was played by
_ words where an outer codeword with weigljt (or multiples
Assumption 4. The inner encodet' : (Z5)%+ — (Z)*+ is of it) was producing inner codewords composed of error
non-catastrophic and recursive. events each with input weight two. In the remainder of this

Non-catastrophicity of both constituent encoders andrrec§eCtion. we consider the case of odfl and for simplicity

siveness of the inner encoder are needed in order to ensure'¥f focus again on the simpler case where the inner encoder

properties of the weight-enumerating coefficients (Lemmassat'Sf'eS Assumptlon 2, while we replace Assumption 1 with
and 3), and to give the limitations on the input weightd€ following:
(due to Lemma 1 and to the absence of input-weight-1 inngEsymption 5. The outer encode® : (Z&)2+ — (Z3)%+ is
coge;vords) in the summations in the proofs of Propositionsnbn-catastrophic, and its free distandg is odd and satisfies
an . de > 3.

The assumptiod? > 3 is needed in order to ensure titat> =9
0, and is essential in order to have minimum distance growingWe shall state and prove the main results (the asymptotic
with high probability as some positive power &f. Indeed, typical behavior ofdiy'™ and P(e[llx), while we shall refer
whend? = 2 (and thusg = 0), Theorem 2 still holds true, the reader to [21] for details on some results we shall only
and states that, for any choice of the interleavers sequerf¢dickly mention.
the minimum distance grows at most logarithmically with Notice that, under Assumptions 5 and 2, Lemmas 2 and 3
Moreover, a slight modification of the proof of Proposition Aold true without any modification. However, Proposition 1
(see [21, Sect. 4.5.1]) allows one to prove that, whgnr= 2, needs to be modified, because the dominant term in the
summations is not the same, due to the ceilings and floors
of the fractions in the exponents. The following Propositio

and

Assumption 3. The outer encodet® : (Z5)2+ — (Z5)%+ is
non-catastrophic, and its free distandg satisfiesd? > 3.

P(du™ <d.) > c

for some positive constant which implies that holds true, where for simplicity we do not look at the explici
; dependence of the constants énand on other parameters
P (P(€|HN) > pde) >, of the inner encoder such as the output weight of terminated

error events with input weight or of regular error events with

wherep = erfc(,/p)/2 is the bit error probability of uncoded input weights.

transmission.
The assumptions that the inner encogéhas scalar input Proposition 4. Let Assumptions 5 and 2 be satisfied. Assume

(s = 1) and is proper rational K is invertible) have been thatd = o(N”) as N grows large. Then, there existé, > 0

considered in order to simplify the analysis of the codeworénd C,,C> > 0, depending on the constituent convolutional
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encoders only, such that, for al > N, interval [«, 3] with probability one, but we shall not discuss
g\ /2 . . such issue here.
P(dy™ < d) < Cy () (N—ﬁd)df/2 + Oy (N—ﬂd)df ) For evendg, Proposition 1 (or equivalently the upper bound
N in Theorem 1) was completed by Theorem 2: the two results
Before giving the proof, we underline the fact that, differtogether imply that the growth raf€y := (log N) ! log &%
ently from Proposition 1, we have two terms in this uppegonverges in probability t@. For odddy, it is indeed possible
bound, and either one can be the dominant one, dependingt@prove a deterministic upper bound, analogous to Theorem 2

how fastd grows with V: defining by a slight modification of the construction of the bipartite
9 graph from the hypergraph in the proof of Theorem 2 (see the
k=1-— 1 proof of [4, Thm. 2] for repeat-accumulate codes, or see)[21]
f Unfortunately, such a bound is of the form
(notice thatx < B), if d = o(N"*) the dominant term is the _ N
first one, while otherwise it is the second one. dwin < CNPlog N

Proof. From (4), we use Lemmas 2 and 3 to find bounds
on the weight-enumerating coefficients of the constituent ewhere 1 5

coders, and we get Bi=1———=1—— > 3.
e R T I S
n'd
P(dp" < d) < Z o Nlw/d]=[w/2] lw/2] (42) However, as suggested in [26], it is still possible to prdvat t
- N¥ is the actual growth rate of3¥®, using a second-order

. _ . method, as shown below.
for someC' > 0 depending on the constituent convolutional

encoders only. For eveif, the asymptotically dominant term Theorem 4. Let Assumptions 5 and 2 be satisfied.dIf=

in the summation was the one with = d?. Here, for oddd?, w(NP) as N grows large, then there exist positive constants
we have different dominant terms: the ones with= d? and C1, C2, and Ny, such that

with w = d? + 1 dominate ifd = o(N*), and otherwise the c NB

dominant term is the one witw = 2d¢. To prove this, we P(du™ < d) >1— et Co—,
consider separately the terms with odd and ewein (42). N d
For the odd terms, usingw/d?| < w/d? and the fact that for all N > Nj.

[w/2] = (w+ 1)/2 for odd w, we get

—JO
w=dg

Proof: Let the outer codewords™, c; and the set of

1 . . . . . .
ol /a2 | T » d\?2 s 1\w indicesJ be the same as in Section IV and in Appendix I-B.
Z CuN Lo/ a2 gl S(N) Z(CN zdz) - We define events quite similar to ti€"'s involved in the proof
d?éwdédnid w2d? of Proposition 2, but here we consider pairs of codewafts
we (43) More precisely, forji, jo € J, we define

For evenw, we need to split once more the summation in

two parts. A first summation will contain the terms with Ej s (d) = U Ej.jz(b,e),
multiple of d?, for which |w/dg| = w/d; notice that such (b,e)eB
terms havew > 2d2. All the other terms will have where
w 1 o o
Lw/dfOJ§707707 de?+1 df df
dg  dg Ej, j,(b,e) == {HN(C;;) =Y D", Iin(c},) = Zm} :
Hence, t=1 t=1
Z ow N lw/d?]=Tw/2] glw/2] b=(b1,...,ba), e=(e1,...,eq), and
df<w<n'd
v e w w B:=<q(be)st.0<b <e < -+ <bge <eg <M
<y (CN*gd%) NS (czvfgd%) . (44) = bestish<a =y = TN
w>2d2 w>dg+1

e = by + L,6VE, Y0 1y < |d/d] }
Similarly to the proof of Proposition 1, we can use the
assumption! = o(N*) to conclude that, for sufficiently large
N, the series in (43) and (44) are convergent and each on
bounded by twice its first term.

Now, let x;, ;, be the indicator of the event? ; (d), and
@&fine the random variable
Similarly to what was done for the even case with Propo- Z:= Z Xij.g2 «
sition 2, a lower bound can be found, which ensures that the J1,92€J, j1#52
upper bound given in Proposition 4 is tight fdr= o(N"); Clearly
this is useful in order to findv = 1 — 2/[d?/2] such that
the growth rateXy := (log N)~'logdy™ and the decay P(4u" < d) > ]p( U E*

5 (@) =1-P(Z =0).
rateYy := (log N)~!log(—log(P(e|ll))) densely cover the J1.j2 €T, 1
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which follows from Chebyshev’'s When one of the indices is repeated, gay= js, we have
inequality and is known as ‘second-order method’ [Zhat
Thm. 4.3.1], gives .
E(22) Aj = Z P<Eg1 g4(d)‘ 1.2 (B, e)) ( 1.2 (B, e))
P(Z=0) < [EEZ)P -1, (be)eB .
Ld/de]\ di!(My — 3dp)!
< L
so that = Z ( d? (MN — 2d?)! P(Ejl,Jz (bae))
Z A (be)eB
jest A L\ d@!(My — 3dg)
min E(Z?) _ nmdstis =P(E% . (d) (Ld/ dej)df( al
PY™ < d) 22— gong =2~ = . (45) (£33 (d)) g
where forj = (j17j23j3aj4) eJ
AJ = ]P)(Ejl J2 (d) m Ej?: ]4 (d))
and

(48)
P(E;;/(d))
G5 ET it

(My — 2dg)!
and the same bound holds true Wh@n: ja
Finally, it's clear thatA; = P(E}

The following steps allow one to find bounds f6rand A
so thatE =

such thatjs = j; andj; = jo
First, notice thafP(E? ; (d)) is the same for all pairg # j,

* .(d)) forall j € J*

The above bounds allow one to prove that the right-hand

side of (45) tends to one. In fact, we can split the summation

into the following terms
. j-
[J1(|J] = 1)P(E; ;. (d)). Then, notice that the

union in the definition of£; ., [
P

wi
(d) is a disjoint union, so that

(™ <d)>2—S;— 83— Sa,
here
A; A
= X @ Si= Y F
Z ]P’(Ejj b e) J1=js#j2=j4 J1.d2.93 4
(be)eB
Moreover S3 =
(dp)*(My — 2d3)!
P(E; (be)) =~ T £
Lemma 4)

distir;ct

- T

jZ?éjl:]:S J1#J2=ja

JasFJjaFj2 J1#J3#ja

and the sef3 can be conveniently described in the followingl/N” grows unbounded by assumption. On the other hand,

equivalent way (which was already used in the proof ofithout loss of generality one may assume taV vanishes
B:= { b.e S.t.Vt, bt = ’it +ht 1(5- andet = 1t +ht5

0<i; <ig < -

[I]‘

Remember thatJ| and My grow linearly with N, and that
since the deterministic upper bound guarantees digt <
c <y < My — §'\d/d |,

0= ho < h; <hg<-
from which it is clear that

CNPlog N for any choice of the interleavers sequence. Then
using (46), (47), (48), and the bound (26) for the binomial
“ < hyyo < ld/dL]}.

My — 6'|d/d
8] = < N — 0'ld/d,]

coefficients, it is easy to conclude that, &sgrows large

4 Cy

< — <

Sy <1+ N S3

d/de]

dy )

Thus we have the following explicit formula

. My —6'|d/d!
]P’(Ej,j/(d))( /]

)

f
N -
Then we considerA;. We use a similar proof as for
Lemma 5, i.e., we condition on the everfs, ;,(b, e)

Cs o
= S, < =2 NPq—1)ds
N ) 2 N + C ( )
for some positive constants;, Cs, Cs, Cy
(d2N?(My — 2dg)!
Mn!

Similarly to Section V, we shall now show how the above

|
results on the minimum distance imply results on the word
If j1, 72,3, ja are all distinct, then

error probability. We will use here the same notation
- BY = {d%™ > NP2} | F5 := {P(e[Tly) > exp(—=NP79)}.
(46) A first result is that Proposition 3 holds true also when
Assumption 5 replaces Assumption 1: the only modification
in the proof is that nowP(E%,) converges tol thanks to
Proposition 4 instead of Theorem 1.
Aj = Z P(Ej*s . (d)\Ejl,jQ(h e))]}»(};m2 (b,e)) The following theorem is the analogous of Theorem 3 for
(b,e)eB odd d(f)
(dR1)*(My — 4dp)! Theorem 5. Let Assumptions 5 and 2 be satisfied. Then, there
< Z ‘B‘ (M Qdo) L P( ]1J2(b e)) . p
(be)eB o -
X . (M — 4d2)/(Mp)! -
- P(Ejl 2J2 (d))P(Ejs Ja (d)) [(MN _ 2d?)!]2
so thatA; <P(E3 ;,(d))"(1+O(1/N)) asN grows large

0;5_

exists some finitpy > 0 such that, if the signal-to-noise ratio

p satisfiesp > po, then for alle € (

(47) finite Ny > 0 and C > 0 such that, for allN > N,
P

) there exist some
(exp( NB+€) < P(e|Ily) < exp(—N” 6))>1fczv ed



Proof: Similarly to the proof of Theorem 3, the upperis]
bound follows from Proposition 3 and from Proposition 4
(which is the analogous for od¢f of Proposition 1) [19]

O —€
< NT;?HJQ exp(—NP~¢) . [20]
The lower bound is obtained again using (24), but here the
role of Theorem 2 is replaced by Theorem 4 [21]

P(Fy) < l—P(E]EV)—i—IP’(EMFﬁ,)

1 C2
>1—-—-— = .
- N Nedt

Finally, notice that, foe € (0,8 — x), 1/N = o (1/N*%) as
N grows large.

P(Pe|lly) 2 p™' ") 2 P(dR™ = N7*7)

(22]
(23]
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