
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Matematica per le Scienze dell’Ingegneria – XX ciclo
Settore scientifico-disciplinare: MAT/05 ANALISI MATEMATICA

Ph.D. Thesis

Generalized serial turbo coding
ensembles: analysis and design

Federica Garin

Advisor Director of the doctoral program
prof. Fabio Fagnani prof. Nicola Bellomo

March 2008

Abstract

The topic of this thesis falls within modern channel coding theory, and consists in
the analysis of a wide class of serial turbo codes. Instead of binary codes only, we
consider general codes constructed from an arbitrary finite Abelian group, in order
to match the symmetries of a large family of channels. Moreover, with respect to
classical serial turbo schemes, we relax some assumptions on the constituent encoders
of the concatenation and we allow for more freedom in the choice of the interleaver.
This setting includes as special cases usual binary serial and parallel turbo codes,
as well as turbo trellis-coded modulation for Gaussian channels with geometrically
uniform input constellation, e.g. m-PSK.

In this general setting, we prove rigorous bounds on the average error probabil-
ity, generalizing an upper bound already known in the binary case and providing
a matching lower bound which is new even for binary codes. We obtain the inter-
leaver gain, i.e. the asymptotic decay of average error probability when the code-
words’ length tends to infinity, and moreover we study the behaviour with respect
to channel’s signal-to-noise ratio.

In the classical binary setting, we give a more detailed analysis: by the study
of the minimum distance distribution, together with expurgation techniques, we
find the asymptotic behaviour of typical error probability. Typical error probability
decays sub-exponentially fast, as opposed to the polynomial decay of the average,
thus showing that the average is strongly affected by a small fraction of bad codes.
However, the design parameters suggested by the average-based analysis for the
constituent encoders are confirmed also in the typical behaviour.

Then, we consider another family of binary codes that belongs to the generalized
setting we introduced, and at the same time can be seen as structured Low-Density
Parity-Check codes (a generalized version of Repeat-Accumulate codes). We discuss
average-based analysis, including an expurgated sub-ensemble, and we compare the-
oretical predictions, which are average-based and obtained for maximum likelihood
decoding, with simulation results which use message passing decoding. We propose
a new decoding algorithm which both improves performance and allows a density-
evolution analysis. Summarizing theoretical and simulative results, we describe some
guidelines for the design of the encoders.

III

Acknowledgments

First of all, I wish to thank my advisor: for having been an enthusiastic teacher; for
many hours spent together in front of a blackboard; for miraculous travel-funding;
for organizing interesting classes and seminars; and also for the fun outside work-
hours.

In addition to my advisor, other people contributed to the research presented in
this thesis: Daniele Capirone, Giacomo Como and prof. Roberto Garello. I am very
indebted with Giacomo, who taught me how to study typical error probability using
expurgation and how to analyze message-passing algorithms using density evolution,
and with Daniele, who helped me in the study of structured LDPC codes, especially
in implementing different decoding algorithms and density evolution.

I also wish to thank prof. Paul Siegel, who came from California to Torino
to teach a very interesting class, and who invited me for a visit at University of
California at San Diego: the nine months I spent at UCSD have been an exciting
opportunity to attend classes and seminars from world-renown professors, and to be
a member of a big and active research group.

Apart from academic matters, my staying in San Diego has also been a great
life experience. A big hug to all the friends who made me feel so happy there:
my labmates, the Italian friends, the International Cooking Club mates, those who
hosted me (in San Diego and in Berkeley), and those who shared with me some
journey.

In Torino, too, my everyday routine has been made much happier by my office-
mates and friends: thank you! A special thanks goes to Giacomo: I have been very
lucky to share my studies on coding theory with him, from whom I have learnt so
much. And thanks to Paolo and Sophie, for patiently checking correctness of some
proofs.

Last but not least, thanks to my family, who makes all my dreams possible.

IV

Table of contents

1 Introduction 1
1.1 Modern channel coding: introduction and state of the art 1
1.2 Overview of results and thesis outline 5

2 Group codes 9
2.1 Notation . 9
2.2 Symmetric channels and block encoders over Abelian groups 10

2.2.1 Weights . 10
2.2.2 Symmetric channels . 12
2.2.3 Block codes over Abelian groups 16

2.3 Convolutional encoders over Abelian groups 17
2.3.1 State maps and error events 17
2.3.2 Laurent series formalism . 19
2.3.3 Properties of convolutional encoders 21
2.3.4 Terminated convolutional encoders 23
2.3.5 Enumerating functions and growth estimates 24

2.4 Properties of free Zm convolutional encoders 25

3 Generalized serial turbo ensemble 28
3.1 Ensemble description . 28

3.1.1 Serial interconnections . 28
3.1.2 Regular ensembles . 29
3.1.3 Examples of serial ensembles 31

3.2 Main result: interleaver gain . 32
3.3 Proofs of the main results . 37

3.3.1 Upper bound . 37
3.3.2 Lower bound . 43
3.3.3 Proof of Propositions 3.1, 3.2 and 3.3 48

3.4 Examples . 49
3.4.1 Classical free Zm serial scheme 50
3.4.2 Subgroups of permutations for the Zm scheme 54

V

3.4.3 Structured LDPC ensemble 56

4 Binary serial turbo ensembles: typical performance analysis 58
4.1 Problem setting . 59
4.2 Weight enumerating coefficients of the constituent encoders 60

4.2.1 Preliminaries . 60
4.2.2 Outer encoder . 61
4.2.3 Inner encoder . 62
4.2.4 Proofs . 64

4.3 Minimum distance . 71
4.3.1 Left tail of the minimum distance distribution 71
4.3.2 Deterministic upper bound . 75

4.4 Probabilistic consequences . 78
4.4.1 Minimum distances . 79
4.4.2 ML Error probabilities . 81

4.5 Generalizations . 85
4.5.1 dof = 2 . 85
4.5.2 Non-scalar φi . 86
4.5.3 φi not proper rational . 91
4.5.4 Odd dof . 93
4.5.5 Other generalizations and open questions 99

5 A family of structured linear-time encodable LDPC codes 100
5.1 Encoder description and parity check matrix 101
5.2 Error floor region analysis . 102

5.2.1 Uniform interleaver . 102
5.2.2 A better smaller ensemble and a design parameter 103
5.2.3 ML predictions vs. standard BP simulations 108

5.3 Non-binary decoding of block-wise staircase LDPC codes 110
5.3.1 Encoder structure . 110
5.3.2 Decoding algorithm . 114
5.3.3 Simulation results . 116

5.4 Density evolution analysis of the non-binary decoding algorithm . . . 118
5.4.1 Density evolution equations 119
5.4.2 Convergence threshold and stability condition 121
5.4.3 Simulation results . 123

6 Conclusion 126

Bibliography 128

VI

Chapter 1

Introduction

1.1 Modern channel coding: introduction and state

of the art

Channel coding theory is the study of how to add redundancy to a source message
in order to obtain a correct received message after the decoding, even when the com-
munication channel is noisy. In his seminal work [70], Shannon gave a mathematical
formalization of the problem of digital communication, introducing probabilistic
models of sources and channels and studying both source coding (data compression)
and channel coding (error correction).

It is clear that error probability can be made arbitrarily small by adding more
and more redundancy, and letting the ratio of the lengths of information words
and corresponding codewords (called rate) go to zero. More surprisingly, Shannon’s
channel coding theorem guarantees that asymptotically vanishing error probability
can be obtained also by introducing only bounded redundancy, at the price of aug-
menting code complexity: there is a threshold associated with the channel, called
capacity, such that for any rate below capacity you can find a sequence of codes
with such fixed rate and with growing length achieving asymptotically vanishing er-
ror probability. Shannon’s proof was based on probabilistic arguments, and showed
that randomly constructed codes are good with high probability. However, random
codes have in general an unfeasible complexity, particularly in the decoding process,
which usually requires a time exponential in the codewords length. Thus, for more
than forty years, classical algebraic coding theory (see e.g. [50]) focused on the con-
struction of codes with very strong structural properties, in order to allow an easy
decoding, but the performance of such codes was far away from the theoretical limit
given by Shannon capacity.

Two modern classes of codes give an excellent performance/complexity tradeoff:

1

1 – Introduction

turbo codes, introduced in 1993 [9] (see also [10]), and Low-Density Parity-Check
(LDPC) codes, introduced in 1963 [33] but widely studied only recently, after their
re-discovering in [49] (see also [48]). The success of these two families of codes is
due to a good balance of enough randomness, which gives good performance, and
enough structure, which is exploited by a suitable iterative decoding algorithm. It-
erative decoding is suboptimal with respect to the best possible decoder (‘maximum
likelihood’, which minimizes the error probability for given code and channel), but
its performance usually approaches the optimal one. The sub-optimal decoding sig-
nificantly reduces the decoding complexity, from exponential to linear time with
respect to the codewords length, thus allowing the use of very long codes and so
improving performance.

The idea to concatenate simple constituent encoders in order to get complex
but structured codes was introduced by Forney [28], who considered serial concate-
nation of convolutional codes. The turbo schemes by Berrou et al. [9] add into
the concatenation also a random permutation, thus obtaining a very good trade-off
in between randomness and structure, which is the key of modern channel coding.
The classical binary turbo schemes are obtained by a parallel concatenation of two
encoders: the information bits are fed in two distinct encoders and the codeword
is the juxtaposition of the two codewords. However, before entering in the second
encoder, the information bits are ‘interleaved’, i.e. permuted, and this adds to the
error-correcting capability of the scheme. The iterative decoder takes advantage of
the concatenated structure, by decoding separately and optimally each individual
code, and iteratively exchanging information from one decoder to the other, thus
reaching a suboptimal but good decoding of the overall scheme.

After the amazing success of turbo codes, many different turbo-like schemes have
been proposed in the literature. Serial turbo codes were introduced by Benedetto
et al. in [3], putting together Forney’s serial concatenations with the interleaving
technique of Berrou et al. and devising an ad-hoc iterative decoder for these new
schemes. Since then, concatenations of more than two encoders and more than one
interleaver have been considered, both in a serial structure or in a mixed serial and
parallel way (see e.g. [4, 39, 41]). All these schemes go under the name of ‘turbo-like’
codes. Despite very good intrinsic properties of some multiple concatenated codes
(see e.g. [56, 41, 2]), these schemes have not yet had a significant impact in the
applications because of the difficulty to find efficient iterative decoding algorithms
(see e.g. [13] for a discussion of different decoding algorithms and their behaviour).

Low-Density Parity-Check codes are linear codes defined as the kernel of a sparse
matrix (the parity-check matrix). The constraints defining the codewords can equiv-
alently be represented by a graph, called the Tanner graph, and the decoding algo-
rithm can be seen as a message-passing algorithm running on the graph. Sparseness

2

1 – Introduction

of the matrix (and hence of the associated graph), allows to use the approximation
that all incoming messages in each node are independent, thus highly reducing the
complexity. The classical regular family of LDPC codes introduced by Gallager
has a parity-check matrix chosen uniformly at random among matrices with fixed
number of ones per row and per column (equivalently degree of nodes in the Tan-
ner graph), while more general irregular families have been considered recently [47],
where the degrees are allowed to vary according to different distributions. This ad-
ditional degree of freedom in the design of the coding scheme has allowed to find
capacity-achieving families of LDPC codes [61, 57].

One drawback of LDPC codes is that, despite their linear decoding complexity,
in general they have quadratic encoding complexity, because encoding requires the
multiplication of the input vector times the generating matrix, which is not sparse.
On the contrary, for turbo-like codes, the constituent encoders are usually convo-
lutional encoders, that can be seen as finite-state machines with linear update of
the state and of the output, so that the encoding complexity is linear in the length.
The issue of encoding complexity of LDPC codes has been addressed in two dif-
ferent ways. On one side there are the results in [62], which allow to construct,
for given generic LDPC matrix, equivalent generating matrices with lower encoding
complexity. On the other side, there are the constructions of parity check matrices
structured in a such a way that allows easy encoding. A successful construction
is the one using matrices with a staircase part (i.e. a sub-matrix with ones on the
diagonal and on the lower diagonal, and zeros everywhere else), so that the encoder
can be seen as a serial concatenation of a repetition code, an interleaver and an
accumulator: this gives Repeat-Accumulate codes and their generalization, the Ir-
regular Repeat-Accumulate (IRA) codes introduced in [38].

The extremely good performance of turbo and LDPC codes, shown by Monte-
Carlo simulations, has attracted a lot of interest in the theoretical analysis of such
codes and of the associated decoding algorithms, in order to get a deeper under-
standing of their behaviour and to guide code design. On the one side, analysis
can focus on intrinsic properties of the codes, and on the other side it can look for
properties of the decoding algorithms. For turbo codes, both parallel and serial,
the study of the code has been initiated by Benedetto et al. [6, 7, 3]: they studied
the behaviour of the error probability under the theoretical assumption of optimal
maximum likelihood (ML) decoding, and averaging among all interleavers picked
uniformly at random (uniform interleaver). Results along these lines are also in
[75, 19, 17, 39, 23]. Another interesting study of the intrinsic properties of turbo
codes concerns the minimum distance, which dominates the ML error probability
at high signal-to-noise ratio (SNR). For classical parallel turbo codes, Breiling [14]
showed that minimum distance can grow at most logarithmically with the length,

3

1 – Introduction

while with more of two encoders, or for serial concatenations, better minimum dis-
tance can be achieved [41, 2, 55]; results on the distance spectrum of turbo codes
can be found in [68]. For LDPC codes, the study of the minimum distance and ML
error probability has been considered in Gallager’s thesis [33], and new interesting
results can be found e.g. in [52].

The study of iterative decoding algorithms is one of the most challenging cur-
rent open problems in coding theory. A huge literature is devoted to this subject,
and many interesting results have been presented, even though a full understanding
of this topic has not yet been reached. We will quote here only a very small and
clearly non-exhaustive selection from this literature, identifying some of the main
research lines; a satisfactory summary of results in this research are can be found in
the book [63]. The first analysis of a suboptimal iterative decoding algorithm dates
back to Gallager’s thesis [33], while the first important results on turbo decoding are
given in [59]. A detailed description of how graphical models can describe codes and
their decoding algorithm can be found in [78, 73]. The various iterative algorithms
proposed in the coding literature have been recognized as instances of Pearl’s ‘belief
propagation’ algorithm [51], and for some of the most popular algorithms the solu-
tions to which the algorithm could converge have been characterized with variational
methods imported from statistical physics, such as the Bethe free energy approxima-
tion (see e.g. [79]). A very important tool that allows to predict convergence of the
decoder is density evolution, introduced in [60] for LDPC codes, and applied in [18]
also to turbo codes: it consists in considering the probability distribution (density)
of messages sent while running the algorithm, under the assumption that no loop
had occurred up to that given time, and describing its evolution as a discrete-time
dynamical system. This technique is particularly effective in predicting the decoding
behaviour on the binary erasure channel (BEC), where the messages are very simple
and the density evolution system is finite-dimensional (usually one-dimensional).
For other channels, the dynamical system is infinite-dimensional, and it is necessary
to find some suitable projection with lower dimension whose behaviour describes
well the system, or to make approximations which reduce the number of possible
exchanged messages; the first approach is used in so-called exit charts method [76],
and the second in the Gaussian approximation [21], both particularly used for turbo
codes. A more refined analysis, giving better prediction than density evolution, is
the so-called ‘finite length analysis’, introduced in [1].

The largest part of coding literature is devoted to linear binary codes, i.e. vector
spaces over the finite field with only two elements GF(2). This is due both to the
simplicity of such codes and to the importance of bits in digital communications.
However, in many applications, the actual transmission is not binary: in order
to gain spectral efficiency, the modulation uses a larger set of signals. In many
cases, a pragmatic approach is used, which consists in designing a good binary code,

4

1 – Introduction

optimized for a binary-input output-symmetric channel, and then using it also in
different contexts, by mapping blocks of bits to symbols in the input constellation
for the channel. In many cases, though, is is possible to design ad-hoc codes for
the given channel, particularly when the channel has symmetries which can be fully
exploited by imposing a suitable algebraic structure on the code, e.g. using a module
over some ring, or simply a group.

The study of group codes was initiated by Slepian, who actually formulated most
of his coding results in this general setting (see e.g. [71, 72]). Classical results were
established by Ingemarsson and Ungerboeck (see e.g. [37, 77]). More recently, there
has been a vivid interest in convolutional codes over rings and over groups, the so-
called trellis-coded modulation (TCM), where ‘trellis’ refers to the linear finite-state
machine describing the convolutional encoder: see [30, 5, 46, 40, 25, 26, 27, 31] and
see [29] and [45] for a mathematical formulation of a family of channels for which
these codes are well-suited. Most results on group convolutional codes are restricted
to finite Abelian groups, because in this setting it is possible to prove deeper results,
by exploiting the ring structure of the cyclic group Zm and then extending the results
by the Kronecker decomposition theorem.

With the advent of modern high-performance codes, most of the literature has
focused on a pragmatic design, where binary turbo or LDPC codes are designed
and optimized for binary-input output-symmetric channels, and then applied to all
channels. Most schemes presented in the literature belong to this class; performances
are obtained by simulations and most of the research is focused on optimizing the
mapping of the coded bits into points of the constellation (see e.g. [44, 64, 32]). A
few works have introduced some results on non-binary modern codes. For turbo
codes, this study, which goes under the name of turbo-TCM, has been initiated in
the pioneering works [34, 53] and recently in [24]. For non-binary LDPC codes,
some interesting results have been obtained, but this research mostly focuses on
non-binary fields, not on more general groups [16, 8, 22]; an interesting exception is
[74], where rings are considered.

It is interesting to note that also some more classical information-theoretic ques-
tions about symmetric channels and group codes have appeared in the literature very
recently (see e.g. [15]), showing that there are still many challenging open questions
in this area.

1.2 Overview of results and thesis outline

In this dissertation, we present a very general serial turbo scheme, which is con-
structed on a generic finite Abelian group in order to match the symmetries of a
wide class of channels. In this general setting, we study ML error probability, and
in particular its asymptotic properties with respect to the codewords’ length and to

5

1 – Introduction

the channel’s SNR. Following the lines of [3], we study performance averaged over
ensembles where the constituent encoders are fixed while the interleaver is uniformly
distributed. However, we allow a more general choice of the set to which the in-
terleaver belongs: it can be the group of permutations, or one of its subgroups, or
even a more general group whose action satisfies some suitable regularity properties.
This setting includes as special cases usual binary serial and parallel turbo codes,
as well as turbo trellis-coded modulation for Gaussian channels with geometrically
uniform input constellation, e.g. m-PSK. We prove rigorous bounds on the average
error probability, generalizing an upper bound already known in the binary case
[7, 3, 39, 23] and providing a matching lower bound which is new even for binary
codes. We obtain that, under some assumptions on the constituent encoders and
at sufficiently high but fixed SNR, average error probability is vanishing when the
length goes to infinity, with a polynomial decay whose speed is described by the solu-
tion of a combinatorial optimization problem, involving in general both constituent
encoders. Our bounds also underline the dependence on the SNR, characterized as
the solution of a second optimization problem. In special cases, such as in the classi-
cal binary setting, these two optimization problems simplify and involve separately
the two encoders, and thus provide simple design criteria.

In the special case of classical serial turbo schemes, we can go further in the study
of the ensemble and find not only the average, but also the typical error probability.
To do so, it is essential to obtain refined bounds on the constituent encoders’ weight
enumerators, with techniques from [41]. First we study the distribution of minimum
distance: we find bounds for its left tail, with techniques mostly from [41], and we
find a deterministic upper bound which generalizes a result in [2], there obtained
for Repeat-Convolute codes. The new deterministic upper bound is asymptotically
tighter than the best known bound for minimum distance of serial turbo codes, pre-
sented in [55]. Then, from the results on minimum distance, we obtain the typical
asymptotic behaviour of ML error probability at high SNR, using a conditioning
technique known as ‘expurgation’. This approach is classical in information theory
and in the LDPC literature (see e.g. [33]), but is new for turbo-like codes. Our anal-
ysis shows that typical error probability decays sub-exponentially fast, as opposed
to the polynomial decay of the average, thus showing that the average is strongly
affected by a small fraction of bad codes. However, the design parameters suggested
by the average-based analysis for the constituent encoders are confirmed also in the
typical behaviour: the speed of the decay increases with the free distance of the
outer encoder, while performance is also improving when the effective free distance
of the inner encoder (i.e. the minimum distance if the encoder is restricted to input
weight two), but the dependence appears only as a multiplicative term.

In the binary case, we consider also another family of coding schemes belong-
ing to the general serial turbo scheme, generalizing Repeat-Accumulate codes and
which is a family of linear-time encodable and decodable LDPC codes. We discuss

6

1 – Introduction

average-based analysis, and we note that in order to find a design parameter for the
inner encoder we need to consider a smaller sub-ensemble. We compare theoretical
predictions, which are average-based and obtained for maximum likelihood decod-
ing, with simulation results which use iterative decoding: we find that in some cases
a bad behaviour of the decoder strongly deteriorates performance. We conjecture
that this is related to the high number of cycles in the structured part of the graph.
We propose a different decoding algorithm, which runs on a modified graph where
some nodes are gathered together, in such a way to destroy structured cycles: this
both improves performance and allows a density-evolution analysis.

Thesis outline

In Chapter 2, we describe the channel model we are considering (memoryless G-
symmetric channels) and group codes. Particularly, we focus on convolutional codes
over Abelian groups, which are the constituent elements of turbo concatenations.
We give here some properties of convolutional codes which will be instrumental to
the derivations in the next chapters; some of them are classical, and some are new.

In Chapter 3, we introduce a general serial turbo coding ensemble and we analyze
its average word and symbol error probability, providing an upper and a lower bound,
which are asymptotically tight when the length goes to infinity.

In Chapters 4 and 5 we restrict our attention to two particular cases of the very
general ensemble of Chapter 3, both of them binary.

Chapter 4 is joint work with Giacomo Como. It presents a detailed analysis of
classical binary uniform interleaver serial ensemble, for which we find precise esti-
mations of the minimum distance distribution and then, by expurgation techniques,
the typical behaviour of error probability.

Chapter 5 is joint work with Daniele Capirone and Giacomo Como. It deals with
a family of codes that generalize Repeat-Accumulate codes, and can be seen both as
particular systematic serial turbo codes and as structured LDPC codes. We discuss
average-based analysis, including an expurgated sub-ensemble, and we compare ML
and average-based predictions with simulation results using message passing. We
propose a new decoding algorithm which both improves performance and allows a
density-evolution analysis, and we describe some directions on encoders design.

Finally, in Chapter 6, we summarize the results presented in this thesis, and we
describe future research directions that arise naturally from this work.

This thesis is partly based on the following papers:

• F. Fagnani, F. Garin, “Analysis of serial concatenation schemes for non-binary
modulations”, in Proceedings of ISIT 2005, pp. 745-749 (Adelaide, SA, Aus-
tralia), September 5-9, 2005.

7

1 – Introduction

• G. Como, F. Garin, F. Fagnani, “ML performances of serial turbo codes do
not concentrate!”, in Proceedings of 4th International Symposium on Turbo
Codes (Munich, Germany), April 3-7, 2006.

• F. Fagnani, R. Garello, F. Garin, “Average ML Asymptotic Performances of
Different Serial Turbo Ensembles”, in Proceedings of ISIT 2006, pp. 572-576
(Seattle, WA, USA), July 9-14, 2006.

• F. Garin and F. Fagnani, “Analysis of serial turbo codes over Abelian groups
for geometrically uniform constellations”, submitted to Siam Journal on Dis-
crete Mathematics, April 2007. Pre-print available on-line:
http://calvino.polito.it/rapporti/2007/pdf/20_2007/art_20_2007.pdf

• F. Garin, G. Como, F. Fagnani, “Staircase and other structured linear-time
encodable LDPC codes: analysis and design”, in Proceedings of ISIT 2007,
pp. 1226-1230, (Nice, France), June 25-29, 2007.

• D. Capirone, G. Como, F. Fagnani, F. Garin, “Nonbinary decoding of struc-
tured LDPC codes”, to appear in Proceedings of 2008 International Zurich
Seminar on Communications, (Zurich, CH), March 12-14, 2008.

• D. Capirone, G. Como, F. Fagnani, F. Garin, “Density Evolution of Nonbinary
Decoding Applied to Structured LDPC Codes”, submitted, ISIT 2008.

• F. Garin, G. Como, F. Fagnani, “Typical minimum distance and ML error
probability of serial turbo codes”, in preparation.

8

Chapter 2

Group codes

In this chapter, we introduce the channel model which we will be considering
throughout this thesis and we introduce group codes, whose algebraic properties
are perfectly matching the symmetries of the channel. After some general prop-
erties of all group codes, we focus on convolutional group codes: we gather here
many properties, some classical and some new, which will be instrumental to the
derivations in next chapters.

2.1 Notation

We fix here some notation that will be used throughout this thesis.

Given a set Ω and A ⊆ Ω, the symbol 1A : Ω → {0,1} will denote the indicator
function of A, i.e. 1A(x) = 1 if and only if x ∈ A. |A| will denote the cardinality of
A.

We will denote by N the set of non-negative integers, and by N∗ the set of positive
integers.

Vectors will always be column vectors, and will be denoted by boldface letters.
We will denote by ej a vector of the appropriate length (clear by the context or
explicitly stated) made by all zeros except a one in position j. Given two sets A,B,
BA will denote vectors with entries in B, having length |A| and components indexed
by elements of A instead of integers 1, . . . ,|A|.

By log and exp we will denote logarithm and exponential with respect to the
same basis b > 1.

Given groups G and H , Hom(G,H) will denote the group of all homomorphisms
from G to H , while Aut(G) will be the group of automorphisms of G.

9

2 – Group codes

2.2 Symmetric channels and block encoders over

Abelian groups

2.2.1 Weights

In this thesis, we will deal different kinds of weight. We propose here a general
definition. First a notation: for any w ∈ Nk, we put |w| =

∑

j wj.

Definition 2.1 A weight on an Abelian group Z consists of a positive integer ρ and
of a map w : Z → Nρ satisfying the following properties:

1. w(0) = 0;

2. |w(z1 + z2)| ≤ |w(z1)| + |w(z2)| for every z1,z2 ∈ Z;

3. {e1, . . . ,eρ} ⊆ w(Z) (here ej ∈ Nρ).

A few considerations on the above definition:

• Item 2. simply says that summation in Z can not create any extra weight;

• Item 3. is a simple minimality assumption which ensures that the full semi-
group structure of Nρ is used.

Whenever we have a weight w we will consider its natural extension to vectors
by componentwise sum

w : ZN → Nρ , w(z) =
∑

j

w(zj) .

Given h ∈ Nρ, we will use the following notation

ZN
h

= {z ∈ ZN : w(z) = h}

Moreover, if h ∈ Nρ we will use the notation

(

N

h

)

=

{ N !
h1!···hρ!(N−|h|)! if |h| ≤ N

0 otherwise

The following result will be useful later

Lemma 2.1 Suppose w is a weight on Z. For every h ∈ Nρ we have that
(

N

h

)

≤ |ZN
h
| ≤

(

|Z|N
)|h|

�

10

2 – Group codes

Proof: For i = 1, . . . ,ρ, let ηi ∈ Z be such that w(ηi) = ei ∈ Nρ (they surely exist
by point 3. of definition of weight). The lower bound is trivially true if |h| > N .
Otherwise, consider the words in ZN with support cardinality |h| made by exactly hj

times ηj, for j = 1, . . . ,ρ: there are
(

N
h

)

such words, and all of them have invariants
vector weight h.

The upper bound is clearly true if h = 0. Assume therefore that h 6= 0 For any
z ∈ ZN

h
consider the subset J of indices j ∈ {1, . . . ,N} for which zj 6= 0. Clearly,

1 ≤ |J | ≤ |h|. It thus follows that the number of elements in ZN
h

can be upper
bound considering all possible subsets J of cardinality 1 ≤ |J | ≤ |h| and all the
possible elements of Z in the positions in J . In other words

|ZN
h
| ≤

|h|
∑

j=1

(

N

j

)

|Z|j ≤ |Z||h|
|h|
∑

j=1

(

N

j

)

It is now sufficient to use the inequality
|h|
∑

j=1

(

N
j

)

≤ N |h| to obtain the result. �

Two examples of weights, always available on any set Z, are the following:

• Hamming weight: ρ = 1, wH(z) = 1 − 10(z);

• Type weight: ρ = |Z| − 1, or better wT(z) ∈ NZ\{0}, because we prefer
indexing the components of wT(z) directly by the elements in Z \ {0} instead
of by integers 1, . . . ,|Z| − 1; define wT(z)a = 1a(z) for every a ∈ Z \ {0}.

With this notation, we clearly have |wT(z)| = wH(z) . Notice moreover, that for
any weight on Z, it necessary holds

wH(z) ≤ |w(z)| ≤ wmaxwH(z) .

where wmax = max
z∈Z

|w(z)| .
On Abelian groups, it will be particularly important to consider the weights

compatible with the algebraic structure, as defined below.

Definition 2.2 Given an Abelian group U , a distance d on U is called compatible
with the group structure of U if d(u,v) = d(u+ w,v + w) for all u,v,w ∈ U .

A weight w : U → N is called compatible with the group U if there exists a
distance d compatible with U such that, for all u ∈ U , w(u) = d(u,0).

Notice that if d is a compatible distance on U , the natural extension (by compo-
nentwise summation) on Uk remains compatible: it will be denoted with the same
symbol d, as well as the associated weight w.

Notice that the Hamming and the type weights are always compatible with any
fixed group U .

11

2 – Group codes

2.2.2 Symmetric channels

A memoryless channel is described by: an input alphabet X (which we will always
assume is finite), an output alphabet Y , endowed with a σ-algebra B ⊆ 2Y and
a probability measure µ; a family of transition probability densities W (·|x) on Y ,
indexed by the inputs x ∈ X . Such a channel will be denoted by (X ,Y ,W). In most
applications, either Y is finite, and µ is the counting measure, so W (·|x) are simply
probability vectors, or Y = Rn and µ is the Lebesgue measure.

To give a formal definition of symmetric memoryless channels, we need to recall
some definitions of group actions. Given a group (G,+) with neutral element 0, and
given a set A, G acts on A if for every g ∈ G there exists a map a 7→ ga from A to
A, such that (h+ g)a = h(ga) for all h,g ∈ G, and a ∈ A, and 0a = a for all a ∈ A.
For finite A, the group action of G on A is said to be (simply) transitive if for every
a,b ∈ A, there exists a (unique) element g ∈ G such that ga = b. If G acts simply
transitively on A, G and A are in bijection, through the map θ : G→ A defined by
θ(g) = ga0 for any fixed a0 ∈ A.

Given a probability space Y , with σ-algebra B and probability measure µ, we say
that a group G acts isometrically on Y if there exists an action of G on Y consisting
of measurable bijections such that µ(gA) = µ(A)∀A ∈ B,∀g ∈ G. If Y is finite, then
all group actions on Y are isometric. If Y = Rn, then an action is isometric when
all maps y 7→ gy are isometries of Rn.

Given a group G, a memoryless channel (X ,Y ,W) is called G-symmetric if:

1. G acts simply transitively on X ;

2. G acts isometrically on Y ;

3. W (y|x) = W (gy|gx) for every g ∈ G, x ∈ X , y ∈ Y .

In this case, the bijection θ : G → X defined by θ(g) = gx0 for some fixed x0 ∈ X
is called an isometric labeling.

The most common examples of G-symmetric channels are the following.

Binary-input output-symmetric channels. Z2-symmetric channels are known
in the coding literature as binary-input output-symmetric (BIOS) channels.
Well-known examples are binary symmetric channel (BSC), binary erasure
channel (BEC), and binary-input AWGN (BIAWGN) channel.

Geometrically uniform AWGN channels. A n–dimensional constellation is a
finite subset S ⊂ Rn that spans Rn; we denote with Γ (S) its symmetry group,
i.e. the group of the Euclidean isometries of Rn mapping S into S itself.
A constellation S is said to be geometrically uniform (GU) with generating
group G if G is a subgroup of Γ (S) whose action on S is simply transitive.

12

2 – Group codes

The simplest example of GU constellation is the 1-dimensional antipodal con-
stellation {−1,1} (a.k.a. 2-points Pulse Amplitude Modulation, 2–PAM). A
bi-dimensional example is the m-PSK constellation

S = {e 2πil
m : l = 0, . . .m− 1} ⊆ C ≃ R2

which always has the generating group Zm (seen as rotations of angles multiple
of 2π/m) and for even m also has the non-Abelian generating group Dm/2. For
a complete theory of GU constellations and generating groups, see [29] and
[45].

Given a GU constellation S ⊂ Rq with generating group G, define the S–
AWGN channel as the memoryless channel (S,Rn,W) where the family W of
n-dimensional transition densities is given by, for every x ∈ S,

W (y|x) = N(y − x) ,

where N(·) is the density of a n-dimensional diagonal Gaussian random vari-
able:

N(y) =
1

(2πσ2)n/2
e−

||y||2

2σ2 .

The interpretation is that, if x ∈ S is the transmitted symbol, the received
symbol is given by x+Z where Z is a Gaussian random variable of density N .

Other examples of G-symmetric channels can be obtained from the S-AWGN
by suitable symmetric quantizations of the channel output, e.g. quantizing
with respect to the Voronoi regions of the same constellation S.

m-ary symmetric channels. This is a simple generalization of the BSC: X = Y =
{0,1, . . . ,m − 1} and W (y|x) = ǫ/(m − 1) if y 6= x, W (y|x) = 1 − ǫ if y = x.
This channel is G-symmetric for any group G with |G| = m; in particular, for
G = Zm.

In the study of G-symmetric channels, a key element is the pairwise equivocation
probability of a word c ∈ Gn, P(0 → c), defined as the probability that, for some
fixed decoding rule, the decoder will prefer c to 0, given that θ(0) was transmitted.
In this thesis, we consider maximum likelihood decoding, with the choice to break
ties uniformly at random (or with any given rule on channels such as S-AWGN
where ties occur with probability zero), so that

P(0 → c) =

∫

Yn
Wn(·|θ(0))1Wn(·|θ(c))>Wn(·|θ(0)) dµn

+ 1
2

∫

Yn
Wn(·|θ(0))1Wn(·|θ(c))=Wn(·|θ(0)) dµn

13

2 – Group codes

where Wn, µn and θ are the natural extensions to multiple uses of the channel of
W , µ and θ. Note that, under this decoding rule, P(0 → c) depends only on the
type wT(c), and given a type w we will use the notation Q(w) to denote P(0 → c)
for any c with wT(c) = w.

The well-known Bhattacharyya bound is the following upper bound for pairwise
equivocation probability:

P(0 → c) ≤
∫

Yn
Wn(·|θ(0))1Wn(·|θ(c))≥Wn(·|θ(0)) dµn

≤
n
∏

i=1

∫

Y

√

W (·|θ(0))W (·|θ(ci)) dµ

≤ γwH(c)

where γ is the (worse) Bhattacharyya noise parameter of the channel defined as:

γ = max
g 6=0

∫

Y

√

W (·|θ(0))W (·|θ(g)) dµ

On the other side, a lower bound for pairwise equivocation probability is easily
obtained:

P(0 → c) ≥
∫

Yn
Wn(·|θ(0))1Wn(·|θ(c))>Wn(·|θ(0)) dµn

≥
n
∏

i=1

∫

Y
W (·|θ(0))1W (·|θ(ci))>W (·|θ(0)) dµ

≥ pwH(c)

where p is the (worse) equivocation probability of the channel, defined as:

p = min
g 6=0

∫

Y
W (·|θ(0))1W (·|θ(ci))>W (·|θ(0)) dµ

Let’s see what these definitions give in the examples of G-symmetric channels
we have presented.

BIOS channels. The names Bhattacharyya parameter and equivocation probabil-
ity for γ and p are mostly used only in this context, where there is only one
non-zero g ∈ G and so there is no maximization (resp. minimization) in the
definition of γ (p).

For BSC with cross-over probability ǫ, if wH(c) = w is odd, P(0 → c) =
Q(w) =

∑w
r=⌈w/2⌉

(

w
r

)

ǫr(1 − ǫ)w−r, while if wH(c) = w is even, P(0 → c) =

14

2 – Group codes

Q(w) =
∑w

r=1+w/2

(

w
r

)

ǫr(1−ǫ)w−r+ 1
2

(

w
w/2

)

ǫw/2(1−ǫ)w/2 (the last term because

of breaking ties). The Bhattacharyya parameter is γ = 2
√

ǫ(1 − ǫ), while the
equivocation probability is p = ǫ.

For BEC with erasure probability ǫ, the only terms in P(0 → c) come from
breaking ties: if wH(c) = w, P(0 → c) = Q(w) = 1

2
ǫw. Here γ = ǫ, while

p = 0.

For BIAWGN channel, see below.

S-AWGN channels. Here, with S ⊂ Rd and codewords of length n,

P(0 → c) =

∫

Rdn

Wn(·|θ(0))1Wn(·|θ(c))>Wn(·|θ(0)) dµn

=

∫ +∞

‖θ(c)−θ(0)‖
2

1

2πσ2
e−y

2/(2σ2)dy

=
1

2
erfc

(‖θ(c) − θ(0)‖
2
√

2σ2

)

where erfc(x) = 2√
π

∫ +∞
x

e−t
2
dt and ‖ · ‖ denotes Euclidean norm.

It is well-known that all points of a geometrically uniform constellation lie on
a sphere and it is usually assumed that constellations have barycenter in the
origin, so the radius of the sphere, squared, is the signal energy per transmitted
symbol Es: this remark allows to find explicit dependence of P(0 → c) on the
re-scaled Euclidean distance and on the SNR:

P(0 → c) =
1

2
erfc

(

‖θ(c) − θ(0)‖
2
√
Es

√

Es
N0

)

where Es/N0 is the signal-to-noise ratio per transmitted symbol.

You can compute

γ = max
g 6=0

e−‖θ(g)−θ(0)‖2/(8σ2) = (e−Es/(4N0))ming 6=0 ‖θ(g)−θ(0)‖2/Es

Often, γ is defined in a slightly different way, as γ = e−Es/(4N0), in order to
underline the role of the re-scaled squared Euclidean weights in the exponent.

Finally,

p = min
g 6=0

1

2
erfc

(‖θ(g) − θ(0)‖
2
√

2σ2

)

=
1

2
erfc

(

maxg 6=0 ‖θ(g) − θ(0)‖√
Es

√

Es
4N0

)

15

2 – Group codes

m-ary symmetric channels. A symmetric channel with alphabet size m and mis-
take probability ǫ has

P(0 → c) =
w
∑

s=1

(

w
s

)

[(1 − 1
m−1

)ǫ]w−s
s
∑

r=⌊s/2⌋+1

(

s
r

) (

ǫ
m−1

)r
(1 − ǫ)s−r

+ 1
2

⌊w/2⌋
∑

s=0

(

w
2s

)

[(1 − 1
m−1

)ǫ]w−2s
(

2s
s

)

(

ǫ(1−ǫ)
m−1

)s

In this case, γ =
√

ǫ
m−1

(

2
√

1 − ǫ+ (m− 2)
√

ǫ
m−1

)

and p = ǫ
m−1

.

2.2.3 Block codes over Abelian groups

We fix an Abelian group Γ and we consider transmission on a memoryless Γ -
symmetric channel. Given another Abelian group U , we define a block encoder
of rate k/n, over Γ with inputs in U , to be any injective group homomorphism
φ : Uk → Γ n; we define the corresponding code to be the image of the encoder.

We let ξ to be a r.v. uniformly distributed on Uk (ξ is the word to be sent) and
independent from the channel noise. We let ξ̂ to be the ML estimate of ξ from the
received word y. In this setting, we can clearly define the word error probability of
our code in the usual way:

Pw(e|u) = P(ξ̂ 6= u|ξ = u)

and

Pw(e) = P(ξ̂ 6= ξ) =
1

|U |k
∑

u∈Uk
Pw(e|u) .

Our assumptions ensure that the Uniform Error Property holds, i.e. the word error
probability does not depend on which word has been sent and, in particular, we can
assume that the all-zero word has been sent: Pw(e) = Pw(e|0)

Another interesting property of a code (or, more precisely, of an encoder) is its
bit error rate. In our abstract setting, it is more convenient to consider a symbol
error rate, where symbols can be, for example, the elements of U or, as we will see,
also something ‘smaller’. We propose the following definition.

Given a distance d compatible with U and such that d(u,0) 6= 0 for all u 6= 0, we
define a symbol error rate with respect to d as

Ps(e|u) =
∑

û∈Uk

d(û,u)

kρU
P(ξ̂ = û|ξ = u)

where ρU is the diameter of U with respect to d. Moreover, we put

Ps(e) =
1

|U |k
∑

u∈Uk
Ps(e|u) .

16

2 – Group codes

The compatibility of the distance with U , together with the previous assumptions,
ensures that also for Ps(e) the Uniform Error Property holds true:

Ps(e) = Ps(e|0) =
∑

û∈Uk

w(û)

kρU
P(ξ̂ = û|ξ = 0) ,

where w is the weight associated with the distance d. In this case, ρU = maxu∈U w(u),
and we have the inequality

Ps(e) ≥
1

N

min
u∈U,u 6=0

w(u)

max
u∈U

w(u)
Pw(e)

When d and w are Hamming distance and weight respectively, the above defi-
nition simply gives the usual Symbol Error Rate, where symbols are elements in U ,
and if U = Z2 this is the classical Bit Error Rate. When U = Za

2, in addition to
the Symbol Error Rate, we can find also the Bit Error Rate taking as distance the
number of different bits (Hamming weight in (Za

2)
k identified with Zak

2) instead of
the number of different symbols.

2.3 Convolutional encoders over Abelian groups

In this section we will recall some basic facts of the theory of convolutional codes
over Abelian groups which will be needed for the sequel. Further details can be
found in [40, 25, 26, 27] and the reference therein.

2.3.1 State maps and error events

Let U and Y be two Abelian groups. Consider the spaces of sequences UN and Y N,
respectively, both equipped with the componentwise group structure. Convolutional
codes will be for us homomorphic maps φ : UN → Y N satisfying certain properties
which are introduced below. In coding theory the only maps between sequence
spaces which are really relevant are those which admit a realization through finite
state maps.

A (homomorphic) state map η from UN to Y N consists in another Abelian group
X and in four homomorphisms

F : X → X , L : U → X
R : X → Y , S : U → Y

X is called the state space of the state map and if X is finite, then the state map
is said to be a finite state map. A state map is formally denoted by the quadruple

17

2 – Group codes

η = (F,L,R,S). A finite state map can be pictorially described by a trellis, in the
usual way: at each time step, we draw vertices corresponding to the elements of X,
then we draw an edge from vertex x at time t to vertex x′ at time t+ 1, with input
tag u and output label y if and only if x′ = Fx+ Lu and y = Rx+ Su.

Given a homomorphic state map η and a state x ∈ X, we can define a map
ηx : UN → Y N mapping u ∈ UN into y = ηx(u) computed recursively starting from
the initial condition x0 = x, as follows:

{

xt+1 = Fxt + Lut
yt = Rxt + Sut

∀t ∈ N. (2.1)

Explicitly, we can write

yt = RF tx+R

t
∑

j=1

F jLut−j + Sut . (2.2)

Notice that η0 is a homomorphism.
A homomorphic map φ : UN → Y N is said to be a convolutional encoder if there

exists a homomorphic finite state map η = (F,L,R,S) such that φ = η0. In this case
η is said to be a state space realization of φ. Given a convolutional encoder φ : UN →
Y N, there may exist many homomorphic finite state maps realizing φ. A state map
η is said to be a minimal realization of φ if it has the state space with the minimal
number of states among the possible realizations of φ. An important consequence
of minimality ([20, pag. 48] or [42, pag. 192]) are the following properties:

• Observability: Let u′,u′′ ∈ UN and x′,x′′ ∈ XN be such that both pairs (u′,x′)
and (u′,x′) satisfy the first relation of (2.1). Let y′,y′′ be the corresponding
output sequences. Then, if u′

t = u′′
t and y′

t = y′′
t for all t = 0, . . . ,|X| − 1,

necessarily, it must hold x′
0 = x′′

0.

• Reachability: For any x, x′ ∈ X there exist t ≤ |X|−1, u ∈ UN and x ∈ XN

satisfying the first relation in (2.1) such that x0 = x and xt = x′. The smallest
t for which this condition holds for any x, x′ ∈ X is called the reachability
index of η and denoted by ν.

From now on, whenever we are considering a convolutional encoder φ : UN → Y N,
we will assume that an underlying minimal state space representation η has been
fixed once and for all: in particular, to any given u ∈ UN, and initial state x we
can unambiguously associate a state sequence x ∈ XN. Whenever the initial state
x is not explicitly mentioned, we assume that x = 0. Notice moreover that xt only
depends on u up to time t− 1.

We now define the key concept of error event.

18

2 – Group codes

Definition 2.3 Let u ∈ UN be an input sequence with associated state sequence
x. u is said to be an input error event for φ if there exist t1 ≤ t2 such that

(i) ut = 0 for all t < t1 and t > t2.

(ii) xt = 0 for all t ≤ t1 and t > t2.

(iii) xt 6= 0 for all t ∈]t1,t2].

The corresponding codeword y = φ(u) is said to be an error event. We call [t1,t2]
the active window and t2 − t1 the length of the (input) error event and we denote it
by l(u) or by l(y).

The following property shows that the length of an error event cannot grow un-
bounded. We omit the proof since it is a straightforward generalization of Lemma
20 in [23] (binary case) using the observability property of the minimal realization.

Proposition 2.1 Given a convolutional encoder φ : UN → Y N, there exists a con-
stant L > 0 such that any error event u has length l(u) ≤ L (wH(u) +wH(φ(u)) �

The support of a sequence u ∈ UN is defined by

supp(u) = {t ∈ N : ut 6= 0} .

u is said to have finite support if its support has finite cardinality. Notice that the
cardinality of the support of a sequence coincide with the Hamming weight.

2.3.2 Laurent series formalism

In many situations the description of a convolutional encoder through a state repre-
sentation or the corresponding trellis is sufficient and quite appropriate. As in the
classical binary case there are also more algebraic but equivalent ways to describe
convolutional codes which, on the other hand, turn out to be quite useful in inves-
tigating concepts like recursiveness, non-catastrophicity etc. This is what we are
going to do next.

Given a group U , we consider the group of Laurent series

U((D)) =
{

∑

ukD
k : uk ∈ U ,∃ k0 ∈ Z uk = 0 ∀k < k0

}

.

Inside U((D)) there are two relevant subgroups: the polynomials U [D] and the usual
formal power series U [[D]].

19

2 – Group codes

Relation (2.2), for x = 0, can be interpreted as a multiplicative operator (product
being defined in the Cauchy style) from U((D)) to G((D)) with the multiplicative
symbol given by

φ(D) =

∞
∑

j=1

(RF jL)Dj + S ∈ Hom(U,Y)[[D]] . (2.3)

φ(D) is called the transfer function associated with φ. Conversely, given a generic
φ(D) ∈ Hom(U,Y)[[D]], we can ask if it is the transfer function of a convolutional
encoder. The answer is that this is true if and only if φ(D) is rational. Rationality
is defined similarly to the field case. Consider the ring Z((D)) of Laurent series
with coefficients in Z. The invertible elements in Z((D)) are those Laurent series
whose trailing coefficient is equal to 1 or −1: we denote this subset with the symbol
Z((D))∗. Given any Abelian group U , U((D)) is naturally a Z((D))–module. We
define the submodule of rational elements of U((D)) as

U(D) = {u(D) ∈ U((D)) : ∃p(D) ∈ Z[D] ∩ Z((D))∗ , p(D)u(D) ∈ U [D]} .

Notice that rational Laurent series can always be represented in the usual fraction
style

u(D) =
1

p(D)
v(D)

for some suitable polynomials p(D) ∈ Z[D] ∩ Z((D))∗ and v(D) ∈ U [D]. The
assumption on p(D) is exactly to make sure that 1/p(D) is a meaningful element

of Z((D)). It can be proven that φ(D) =
∞
∑

k=0

φkD
k ∈ Hom(U,Y)[[D]] is the transfer

function of a convolutional encoder if and only if it is rational (see Proposition 5.2
in [25]). Rationality has a useful characterization at the level of the underlying
sequence φk: it is equivalent to the fact that φk is periodic for sufficiently large k.
A special type of convolutional encoders are the polynomial ones, namely those for
which φ(D) ∈ Hom(U,Y)[D].

In the sequel we will often ‘confuse’ the group sequence UN with the formal power
series U [[D]] through the one-to-one correspondence

(ut)t∈N ↔
∑

t

utD
t .

In particular u0D
t0 will often be used to denote the sequence u which is equal to

u0 at time t0 and equal to 0 otherwise. Notice that finite support sequences are
in this way represented by polynomials in D and polynomial encoders transform
polynomials into polynomials.

20

2 – Group codes

2.3.3 Properties of convolutional encoders

In this section we describe how some classical properties can be generalized to our
setting; we will need them in analyzing our concatenated schemes. Some further
properties, specific for the case when the input and output groups are free Zm–
modules, will be given in the Appendix 2.4.

Non-catastrophicity

The classical definition of non-catastrophic encoders is the following.

Definition 2.4 A convolutional encoder φ : UN → V N is non-catastrophic if, for all
u ∈ UN

wH(φ(u)) <∞ ⇒ wH(u) <∞
An useful remark is that systematic encoders are surely non-catastrophic. Also,

non-catastrophic encoders have the following nice characterization (direct conse-
quence of [27, Coroll. 1, p. 41])

Proposition 2.2 Let φ : UN → V N be a convolutional encoder. The following
conditions are equivalent:

1. φ is non-catastrophic;

2. φ admits a polynomial left inverse.

3. there exists a constant ζ > 0 such that, for all u ∈ UN

wH(u) ≤ ζ wH(φ(u)) .

�

Notice that condition 2. gives a practical tool for testing if an encoder is non-
catastrophic, and it also shows that non-catastrophicity is a property stronger than
injectivity. Instead condition 3. is a sort of continuity reformulation.

Recursiveness

Binary convolutional encoders are defined to be recursive when no input word with
Hamming weight one can give a finite-weight output; this property can be easily
generalized to our setting.

Definition 2.5 Given a weight w : U → Nρ, a convolutional encoder φ : UN → Y N

is w–recursive if, for all u ∈ UN,

|w(u)| = 1 ⇒ wH(φ(u)) = +∞ .

21

2 – Group codes

When w is the Hamming weight, this is the usual definition of recursiveness.
See Appendix 2.4 for a characterization of recursive encoders on free Zm–modules

which allows to easily test for recursiveness.

Small input-weight codewords

All convolutional encoders, including the recursive ones, admit non-zero finite sup-
port input sequences whose image also has finite support. This fact is obvious from
the rationality property. Indeed, if the transfer function φ(D) is of type

φ(D) =
1

p(D)
φ′(D)

where p(d) ∈ Z((D))∗ ∩ Z[D] and φ′(D) ∈ Hom(U,Y)[D], we can observe that any
polynomial input of type u(D) = p(D)v(D) for some v(D) ∈ U [D] is transformed
into another polynomial φ(D)u(D) = φ′(D)v(D).

We now present a sharper result which shows how to construct input sequences
with support of cardinality 2, whose image has finite support: this will be useful
later on.

Proposition 2.3 Let φ : UN → Y N be e a convolutional encoder and let u1, . . . ,ur ∈
U be such that

∑

ui = 0. We can find time instants t1, . . . tr such that given
u =

∑

ujD
tj we have that φ(u) has finite support. �

Proof:

Consider the transfer function φ(D) =
∑

k φkD
k. By rationality we know that

there exists k0 ∈ N and T ∈ N such that φk = φk+T for every k ≥ k0. Consider now
the input sequence u =

∑

j ujD
(j−1)T . We have that

φ(u)t =

r
∑

j=1

φt−(j−1)Tuj

Notice that if we choose t ≥ k0 + (r − 1)T , we easily obtain that φt−(j−1)T = φt for
every j so that, φ(u)t = 0. This proves the result. �

From the above result we obtain as an immediate corollary the following property,
well-known at least for the binary case.

Proposition 2.4 Given a recursive convolutional encoder φ : UN → Y N, there
exists δ ∈ N such that, for any u ∈ U the input sequence u = u − uDδ is an error
event. �

22

2 – Group codes

Free distance

In the classical analysis by Benedetto et al. [3], an essential design parameter is
the free distance of the outer encoder. When the concatenating group is not the
group of all permutations (the classical uniform interleaver), we have to consider a
slightly different parameter: instead of taking the minimum Hamming weight among
non-zero outer codewords, we minimize some other proper weight.

Definition 2.6 Given a convolutional encoder φ : UN → Y N and a weight w :
Y N → Nρ, we define the w–free distance of φ to be

df (φ,w) = min{|w(c)| : c = φ(u),u ∈ UN,u 6= 0}

The classical free distance is the wH–free distance.

2.3.4 Terminated convolutional encoders

Suppose φ : UN → Y N is a convolutional encoder with minimal state space X. We
now define the terminated block codes associated with φ as follows.

Fix N ∈ N∗. Given a vector u = (u0, . . . ,uN−1) ∈ UN , let xN be the correspond-
ing state at time N . Because of the reachability condition it is possible to find input
elements ũN , . . . ,ũN+ν−1 such that the state at time N + ν − 1 is equal to 0. This
input string may not be unique and we assume we have fixed a specific one as a
function of the terminal state xN we had reached in such a way that the mapping

xN 7→ (ũN , . . . ,ũN+ν−1)

is a homomorphism. It is a straightforward algebraic verification that this is always
indeed possible. Given u = (u0, . . . ,uN−1) ∈ UN we now consider the associated
input sequence

ũ = (u0, . . . ,uN−1,ũN , . . . ,ũN+ν−1,0,0, . . .)

We then define the N -terminated block encoder as

φN : UN → Y N+ν , φN(u) = φ(ũ)|[0,N+ν−1] .

For the assumptions made, φN is also a homomorphism. CN = ImφN is called the
N -block code associated to φN .

An input vector u ∈ UN is an input error event for φN if ũ ∈ UN is an input
error event for φ. In this case c = φN(u) is called an error event for φN . Suppose
the active window of ũ is equal to [t1,t2]. Then, the (input) error event is said to
be regular if t2 ≤ N , otherwise it is called terminated. For a terminated error event,
we call N − t1 its length.

23

2 – Group codes

Notice that any codeword c ∈ CN can be written as c =
∑n+1

j=1 cj where cj are
regular error events for j = 1, . . . ,n and cn+1 is either zero or a terminating error
event and the active windows of all these events are disjoint. We will use the notation
n(c) to denote the number of regular error events in the above decomposition of c.
Also notice that the above decomposition is unique, up to a permutation of the
regular error events.

Some codewords have a decomposition in error events which is the same up to
shifts of their error events, and for this reason share many important properties.
More formally, we propose the following definition:

• two error events c = φN(u) and c′ = φN
′
(u′) (notice that possibly N 6= N ′)

are said to be shift equivalent if the corresponding extended inputs ũ, ũ′ ∈ UN

differ only by a shift.

• two codewords c = φN(u) and c′ = φN
′
(u′) are said to be shift equivalent if

there exist error event decompositions c =
∑n+1

j=1 cj and c′ =
∑n′+1

i=1 c′
i such

that ci and c′
i are shift equivalent for all i.

Notice that, given two shift equivalent codewords c and c′, clearly n(c) = n(c′) and
moreover, given a weight w on the alphabet Y , w(c) = w(c′).

Remark 2.1 Now we want to underline a property which is somehow similar to
an inclusion of CN in CN ′

for N ≤ N ′ (while strictly speaking an inclusion cannot
occur, as the two codes are subsets of different spaces). If N ≤ N ′, for all c ∈ CN we
can construct c′ ∈ CN ′

such that c and c′ are shift equivalent, by properly adding
zeros. �

2.3.5 Enumerating functions and growth estimates

A fundamental concept for all encoders is the so called weight enumerating function,
since it is well known to play a basic role in all performance evaluations. While in
the binary case, there is only one possible weight to be considered, namely the
Hamming one, in our setting many choices are possible and we will need to consider
different possibilities in later sections. We start defining the basic one based on the
Hamming weights in the input and output groups.

Definition 2.7 Given a convolutional encoder φ : UN → Y N, consider its associated
N -terminated block encoder φN : UN → Y N+ν . Define its input/output support
enumerating coefficients as:

ΛNw,d,n = |{u ∈ UN : wH(u) = w,wH(φN(u)) = d, n(φN(u)) = n}|

�

24

2 – Group codes

In some cases, we will need to replace the Hamming weight with other possible
weights in the input and in the output. We will use the notation AN

w,d,n to de-
note enumerating coefficients relative to some specified input weight w and output
weight d.

The following proposition gives a growth estimation for input/output support
enumerating coefficients: this will allow us to have general bounds (even if quite
loose) on all the different weight enumerators. We omit the proof, which is a straight-
forward generalization of Proposition 10 in [23].

Proposition 2.5 There exists two positive constants a and b such that

ΛNw,d,n ≤
(

N + n

n

)

awbd

�

2.4 Properties of free Zm convolutional encoders

In this Section, we consider convolutional encoders φ : ZkN

m → ZnN

m which can be
represented as matrices φ ∈ Zk×n

m (D) ≃ Zm(D)k×n. We will call them free Zm

convolutional encoders. They are the most straightforward generalization of classical
binary convolutional encoders, and they have some interesting properties. Let us
start with a simple algebraic remark: we know that φ can be represented as φ =
p(D)−1q(D) for some p(D) ∈ Z[D] ∩ Z((D))∗ and q(D) ∈ Zm[D]k×n. Since all the
algebraic structures involved are also Zm-modules, it turns out that we can as well
assume that p(D) ∈ Zm[D] ∩ Zm((D))∗ which in practice means that p(D) has all
coefficients in Zm and the trailing coefficient is in Z∗

m.
In Sect. 2.3.3, we gave a general definition of recursiveness. In the binary case

(for simplicity consider scalar input, i.e. φ : ZN

2 → ZnN

2), there are well-known
characterizations of wH–recursive encoders: φ is recursive when its shift-register
state representation has a feedback, or equivalently if φ = 1

q(D)
[p1(D), . . . ,pn(D)],

with gcd{q,p1, . . . ,pn} = 1 has non-trivial denominator, i.e. q(D) 6= Dh. This latter
characterization allows to check very easily if an encoder is recursive and we will
now generalize it to recursiveness of free Zm encoders with respect to Hamming or
equivalently to type weight in Zm (not the Hamming weight in Zk

m).
First of all, without loss of generality we can restrict ourselves to considering

scalar encoders φ : ZN

m → ZN

m: if not so, notice that φ : ZkN

m → ZnN

m is w–recursive
(w being the Hamming or the type weight in Zm) if and only if each column of its
matrix has at least one entry which is a scalar w–recursive encoder.

Then, if m is a prime (so that Zm is a field), φ = p(D)/q(D) with p(D),q(D) ∈
Zm[D] and gcd(p,q) = 1 is w–recursive if and only if q(D) 6= Dt: as in the binary

25

2 – Group codes

case, we can identify recursive encoders at a glance, just looking at their denomina-
tor.

If m is not a prime, let m = pα1
1 . . . pαll be its prime factors decomposition and

let φi : ZN

pi
→ ZN

pi
be obtained by taking the restriction of φ to inputs in m

pi
Zm and

then identifying m
pi

Zm with Zpi through the natural fields isomorphism mapping.

Proposition 2.6 φ is w–recursive if and only if φ1, . . . ,φl are w–recursive. �

Proof: The first implication is trivial. Conversely, knowing that φ1, . . . ,φl are
recursive, we want to show that wH(φ(D)u) = +∞ for any u ∈ Zm \ {0}. Since
u < m, there exists i ∈ {1, . . . ,l} and r ∈ N such that pri |u, pr+1

i ∤ u, and pr+1
i |m.

Consider ũ = (p−1
i m)(p−ri u) = (p−r−1

i m)u. Clearly, ũ 6= 0 and, by the assumptions
made, wH(φ(D)ũ) = ∞. This clearly implies that also wH(φ(D)u) = ∞. �

The characterization given by Prop. 2.6 is helpful because the encoders φ1, . . . ,φl
can be obtained very easily from φ: if you write φ(D) = p(D)/q(D) with p(D),q(D) ∈
Zm[D], you have φj(D) = p̃(D)/q̃(D) where p̃(D),q̃(D) are polynomials in Zpj ob-
tained multiplying each coefficient of p(D) (resp. q(D)) by m/pj (modulo m) and
then identifying the corresponding element in Zpj .

For example, the encoder φ : ZN

8 → ZN

8 defined by φ(D) = 1+3D2

1+7D
is not recursive.

You cannot tell it simply looking at the denominator, which is non-trivial. You can
see it using the definition given in Sect. 2.3.3: notice that φ(D) = (1+3D2)

∑

t≥0 D
t

and then input u(D) = 2 produces output 2φ(D) = 2 + 2D ∈ Z8[D]. You can also
check the recursiveness of φ using Prop. 2.6: as m = 8 has only one prime divisor
p1 = 2, you need to check only one encoder φ1 = 1+D2

1+D
= 1 + D which clearly isn’t

recursive.

By the same technique of looking at the encoders φ1, . . . ,φl defined above, we
can obtain a characterization of the free distance of φ with respect to Hamming or
type weight in Zm. This characterization is not interesting under a computational
point of view, as the computation of the free distance of encoders over fields or rings
does not have a different complexity, but it is essential to find tight bounds for the
interleaver gain of free Zm serial schemes (Prop. 3.12 and Coroll. 3.1).

Proposition 2.7 Let df be the w–free distance of φ and df(φj) be the w–free dis-
tance of φj, where w is the Hamming or the type weight in Zm and Zpj respectively.
Then:

df = min
j=1,...,l

{df(φj)}

Proof: Clearly, for all j = 1, . . . ,l, df(φj) = df(
m
pj
φ) ≥ df . Now we will prove

that there exists at least one j such that df(φj) = df .

26

2 – Group codes

Let C = φ
(

Zk
m((D))

)

and let x ∈ C be a codeword such that wH(x) = df . The
key remark is that wH(x) = df implies that all non-zero symbols (i.e. elements of
Zm) of x have the same annihilator. In fact, wH(x) = df means that ∀y ∈ C \ {0}
wH(y) ≥ wH(x), which implies that

∄a ∈ Zm such that 0 < wH(ax) < wH(x)

and so, for all a ∈ Zm, either ax = 0 or wH(ax) = df i.e. axi 6= 0 for all xi 6= 0.
This remark implies that there exists d|m (possibly d = 1) and there exists

pj a prime factor of m such that wH(dx) = wH(x) and pj dx = 0. Now, choosing
c = dx we have a codeword c ∈ m

pj
C such that wH(c) = df , so that we can conclude:

df(φj) = df(
m
pj
φ) = df . �

Finally, when proving Prop. 3.12 we need also the following simple lemma, even
though it is just a property of Zm and not of convolutional codes.

Lemma 2.2 Given a1, . . . ,am ∈ Zm\{0}, there exist indexes {i1, . . . ,in} ⊆ {1, . . . ,m}
such that ai1 + . . .+ ain = 0 mod m. �

Proof: By contradiction, assume that
∑

i∈I ai 6= 0 mod m for all non-empty
I ⊆ {1, . . . ,m}. Then, in particular,

∑n
i=1 ai 6= 0 mod m for all n = 2, . . . ,m and

so a1 /∈ {−a2, −a2−a3, . . . ,−
∑m

j=2 ai}, which, being a set of m−1 distinct non-zero
elements of Zm is Zm \ {0} itself, contradicting a1 ∈ Zm \ {0}. �

27

Chapter 3

Generalized serial turbo ensemble

In this chapter we introduce a wide class of generalized serial turbo schemes, coupling
two convolutional encoders over groups through an interleaver respecting the group
structure; these codes are designed to be used on symmetric channels, where the
group structure of the encoder and the channel is matching. A particularly relevant
example is the case when the convolutional codes are modules on Zm, the interleaver
is a permutation and the channel is AWGN with m–PSK input constellation.

We introduce an ensemble of coding schemes, and we study its average ML
performance: we obtain the exact asymptotic decay of the average symbol and
word error probability when the interleaver length goes to infinity and also the
behavior when the SNR goes to infinity. The performance is characterized by two
parameters, the interleaver gain µ and the effective distance q∗, which are defined
as the solution of an optimization problem and in general jointly depend on both
constituent encoders, differently from the binary case. To make clear the meaning of
these parameters, we have explicitly computed them in some examples encompassing
most of the relevant scenarios.

3.1 Ensemble description

3.1.1 Serial interconnections

We now precisely define the serial interconnected schemes we are going to consider.
We start with a Γ -symmetric channel. We also fix the input Abelian group U . All
encoders we will consider will be driven by words on U and will output symbols
in Γ . The interconnection will take place through a third Abelian group, say Y
called the interconnection group. We now fix two convolutional encoders denoted,
respectively, the outer and inner encoder:

φo : UN → (Y r)N , φi : (Y s)N → (Γ l)N .

28

3 – Generalized serial turbo ensemble

Denote by νo and νi the reachability indices of φo and φi respectively, and define the
set

N = {N ∈ N∗ : s|r(N + νo)} .
Consider now the terminations, for N ∈ N :

φNo : UN → Y r(N+νo) , φNi : Y sMN → Γ l(MN+νi) ,

where sMN = r(N + νo). We now fix, for every N ∈ N∗, a subgroup GN ⊆
Aut(Y r(N+νo)). The triple (φo,φi,(GN)N∈N) is said to be a serial interconnected
ensemble. The asymptotic rate of the serial interconnected ensemble above is defined
by the product

R =
log |U |
r

s

l
bits per channel use .

To the serial interconnected ensemble above we can associate a random sequence
of encoders and codes as follows. Define ΠN to be a r.v. uniformly distributed over
GN and consider the corresponding homomorphic encoder ΦN = φNi ◦ΠN ◦ φNo and
group code CN = Im(ΦN): they are called, respectively, the random encoder and the
random code associated with the given ensemble.

The following picture describes the above construction.

UN−→ φNo
Y r(N+νo)

−→ πN
Y sMN−→ φNi

Γ l(MN+νi)−→
In the sequel we will denote by P and E probability and expected value, respec-

tively, made with respect to the probabilistic space underlying the sequence ΠN .
We will also use the notation Pw(e) and Ps(e), respectively, for the average word
and symbol error probabilities.

3.1.2 Regular ensembles

Our aim is to give asymptotic results for Pw(e) and Ps(e) when N → ∞, keeping
fixed the constituent encoders. To do so, we need to make further assumptions on
the groups GN : roughly, we need to enforce some compatibility among the groups
as N varies and that the number of invariants of the group action does not grow
with N . Following [23] we propose the following definition.

Definition 3.1 The sequence of groups GN (and the corresponding ensemble) is
said to be regular if there exists a weight wG : Y → Nρ such that, for every N and
for all y, z, ∈ Y r(N+ν0), it holds

wG(y) = wG(z) ⇔ ∃σ ∈ GN : σy = z

wG(y) will be called the invariants weight vector of y ∈ Y r(N+ν0).

29

3 – Generalized serial turbo ensemble

Property of regularity simply says that all actions of the groups GN on the sets
Y r(N+ν0) can be described through a finite (constant) family of invariants: the ρ
components of the weight wG. We will use the notation Y L

h
= {x ∈ Y L : wG(x) =

h}. Moreover we denote by GN(y, z) the subset of elements in GN mapping y to z.
Using standard results on group actions (the class formula) [36], we can show that

Remark 3.1

|GN(u,v)|
|GN |

=

{

0 if wG(u) 6= wG(v)

1/|Y r(N+ν0)
h

| if wG(u) = wG(v) = h

�

This technical result will be needed later.

Lemma 3.1 Assume that y,z ∈ Y r(N+νo) are such that for every index i ∈ {0, . . . ,N+
νo−1}, yi 6= 0 yields zi = 0. Then, given any σ ∈ GN and given any i we have that

(σy)i 6= 0 ⇒ (σz)i 6= (σy)i .

Proof: Notice that

|wG(σy + σ(−z))| = |wG(y − z)| = |wG(y)| + |wG(−z)| .

On the other hand, if σy and σz were equal in an index where they are not equal
to 0, by point 2. of Definition 2.1, we would have

|wG(σy + σ(−z))| < |wG(σy)| + |wG(σ(−z))| = |wG(y)| + |wG(−z)| .

This ends the proof. �

We now present two fundamental examples of regular actions.

1. Symbol permutation In this case we simply take GN = Sr(N+ν0) the full sym-
metric group acting on Y r(N+ν0) by standard permutation. In this case the in-
variant weight is the type weight: ρ = |Y | − 1 and wG(y) ∈ Nρ by (wG(y))a =1a(y) as a varies in Y \ {0}. Notice that

∣

∣

∣
Y
r(N+νo)
h

∣

∣

∣
=

(

r(N + νo)

h

)

.

2. Separate channels symbol permutation Assume Y = Y1 × Y2 and assume GN,1

and GN,2 are sequences of groups acting regularly on Y
r(N+ν0)
1 and Y

r(N+ν0)
2

30

3 – Generalized serial turbo ensemble

respectively with invariant weights w1
G : Y1 → Nρ1 and w2

G : Y2 → Nρ2 respec-
tively. Then, we can consider a regular action given by GN = GN,1×GN,2 act-
ing componentwise on Y1×Y2. Its invariant weight is given by wG : Y1×Y2 →
Nρ1+ρ2 , wG(y1,y2) = (w1

G(y1),w
2
G(y2)). Notice that in this case

∣

∣

∣
Y
r(N+νo)
h1,h2

∣

∣

∣
=

(

r(N + νo)

h1

)(

r(N + νo)

h2

)

.

3.1.3 Examples of serial ensembles

In the examples below we assume Γ = Zm.

Repeat-Convolute codes We choose U = Y = Zm and φo = Repr : ZN

m → (Zr
m)N

to be the r-repetition encoder

Repr(u)t = (ut, . . . ut) .

We let φi : (Zs
m)N → (Zs

m)N be a rate-1 non-catastrophic convolutional encoder.
Finally we choose for the coupling interleavers the symbol permutation groups
GN = SrN . The corresponding invariant weight is thus the type weight wT :
Zr
m → Nm−1, where (wT(y))j is the number of elements equal to j in the

vector y ∈ Zr
m. The rate of the scheme is

R =
logm

r
bits/ch. use.

For this ensemble, we will need the assumption that φi is w-recursive, which
is the same as asking it is wH-recursive.

Structured LDPC codes We choose U = Zm, Y = Zc
m × Zm and φo as the

systematic encoder

φo : ZN

m → (Zc
m × Zm)N , φo(u) = (Repc(u),u) .

Instead φi is itself the serial interconnection of two encoders. We consider
Sumd : (Zd

m)N → ZN

m defined by

Sumd(y) = (y1 + · · ·+ yd,yd+1 + · · ·+ y2d, . . .) ,

and a wH-recursive non-catastrophic rate-1 convolutional encoder ψ : ZN

m →
ZN

m. Finally we take φi : (Zd
m × Zm)N → (Zm × Zm)N defined by

φi(y
1,y2) = ((ψ ◦ Sumd)(y

1),y2) .

31

3 – Generalized serial turbo ensemble

When taking the truncated versions of these encoders, we must make sure
to have suitable lengths, so we take: φNo : ZdN

m → ZcdN
m × ZdN

m and φNi :

ZcdN
m × ZdN

m → ZcN+νψ
m × ZdN

m = Γ (c+d)N+νψ . So, the design rate of the serial
encoder φN = φNi ◦ΠN ◦ φNo is R = logm d

c+d
.

As interconnection group, we chose the separated channels symbol permuta-
tion GN = ScdN × SdN .

This family of codes is a generalization of Repeat-Convolute codes: the ad-
ditional summator Sums is the same as the grouping factor introduced in
Irregular Repeat Accumulate codes.

If we construct the parity check matrix for the code CN = Im(ΦN) ⊆ Z(c+d)N+νψ
m ,

we can see that it is sparse, and it has a structured and a random part, so that
we have a structured LDPC ensemble, generalizing staircase LDPC codes. In
fact, notice that

(c1,c2) ∈ CN ⇔ c1 = ψN ◦ Sumd ◦ π1
N ◦ Repc ◦ (π2

N)−1(c2)

⇔ (ψN)−1(c1) = Sumd ◦ π1
N ◦ Repc ◦ (π2

N)−1(c2)

It is clear that the permutation π2
N does not play any essential role: we needed

it only to fit this scheme in our assumptions, but we can take it out without
changing the performance of the scheme.

Note that the non-catastrophicity of φi is needed to make the syndrome matrix
‘low density’ , i.e. with a number of non-zero elements per row and per column
which is small and does not grow with N . More precisely, the matrix H2 =
Sumdπ

1
NRepd is a random low density matrix with entries in {0,1}, depending

only on c, d and πN , with at most c elements equal to 1 in each column and
at most d on any row. Instead H1 = (ψN)−1 depends on the choice of ψ, and
is also low density, having a number of non-zero elements per row and per
column at most equal to the degree of the polynomial ψ−1(D).

3.2 Main result: interleaver gain

The well-known analysis by Benedetto et al. [3] showed an interleaver gain, in the
sense that average error probability is asymptotically vanishing when the interleaver
length grows, and their result was true under the assumption that both constituent
encoders where systematic recursive convolutional encoders and that the free dis-
tance of the outer encoder was dof ≥ 2 to ensure Pb(e) → 0 and dof ≥ 3 to have also

Pw(e) → 0.
In this section, we will comment on how the classical assumptions on the con-

stituent encoders can be adapted to our setting, and we will state our results about
the interleaver gain. All the proofs will be given in Section 3.3.

32

3 – Generalized serial turbo ensemble

From now on, we will be always considering a regular serial ensemble (see Defini-
tion 3.1), with outer encoder φo : UN → (Y r)N and inner encoder φi : (Y s)N → (Γ l)N,
and with a family of interconnection groups (GN) with invariants weight wG. The
symbol error probability will be with respect to a fixed weight on the input group
U , denoted win, with the requirement that win(u) 6= 0 for all u 6= 0.

First of all, we have to generalize the assumptions about the constituent encoders
introduced in [3].

When considering one single convolutional encoder, non-catastrophicity is usu-
ally needed to ensure good asymptotic properties. However, when dealing with a
concatenated scheme the assumption that all constituent encoders are non-catastrophic
can be slightly weakened, as it was already recognized for example in [23] and in
[35] (in the latter, the authors consider serial schemes where the inner encoder is
heavily punctured and becomes not injective). The essential assumption is that the
overall scheme is non-catastrophic, and this can be obtained by asking classical non-
catastrophicity of the outer encoder and a weaker property of the inner encoder: φi
must be non-catastrophic when restricted to the inputs he will actually receive, i.e.
the permuted outer codewords.

When we are dealing with ensembles of concatenated codes, each code of the
ensemble must be non-catastrophic, in the sense specified above. This leads to the
following definition.

Definition 3.2 A regular serial ensemble with constituent encoders φo : UN →
(Y r)N and φi : (Y s)N → (Γ l)N and regular group family (GN) is concatenatedly non-
catastrophic if there exist two positive constants ζo and ζi such that, for all N ∈ N∗

and for all u ∈ UN :

1. wH(u) ≤ ζo
∣

∣wG

(

φNo (u)
)∣

∣;

2. for all π ∈ GN ,
∣

∣wG

(

φNo (u)
)∣

∣ ≤ ζiwH

(

φNi ◦ π ◦ φNo (u)
)

.

Notice that the requirement (1) is equivalent to asking that the convolutional en-
coder φo is non-catastrophic (see Prop. 2.2). In the examples introduced in previous
section, we have an example where both encoders are non-catastrophic (Repeat-
Convolute), and an example where only concatenated non-catastrophicity is true
(Structured LDPC). In fact, in this second example, non-catastrophicity of ψ en-
sures sparsity of the parity-check matrix, but due to non-injectivity of Sums the
inner encoder is indeed catastrophic; overall non-catastrophicity of the concatenated
scheme is ensured by the systematic branch.

About the other classical assumptions on the constituent encoders (dof ≥ 3 and
recursiveness of φi), they clearly must be re-stated considering the suitable con-
necting weight wG instead of Hamming weight, using the definitions introduced in

33

3 – Generalized serial turbo ensemble

Sect. 2.3. However, we will comment later in this section why these assumptions are
sufficient and not necessary to obtain some interleaver gain, and how they can be
weakened.

Now we will introduce some useful definitions, and then state the interleaver gain
result, which will answer to the question: ‘Is the average error probability asymp-
totically vanishing when the interleaver length grows to infinity? And if so, how
fast is the decay?’. From now on, we will always assume that we are considering a
concatenatedly non-catastrophic ensemble.

Let CNo = φNo (UN)) ⊆ Y r(N+νo) be the outer block code, and let

H = {wG(c) : c ∈ CNo for some N , c 6= 0} .

Notice that with this notation the requirement (2) in Definition 3.2 is equivalent
to the following:

∀N ∈ N∗, ∀h ∈ H, ∀c ∈ Y r(N+νo) such that wG(c) = h, |h| ≤ ζi|wT

(

φNi (c)
)

|

Given h ∈ H , we look at the decomposition of codewords in error events, as
defined in Sections 2.3.1 and 2.3.4, and we define:

• no(h) = max{n(c) such that ∃N,∃c ∈ CNo : wG(c) = h}

• ni(h) = max{n(x) s.t. ∃N,∃u ∈ Y r(N+νo) : x = φNi (u),wG(u) = h}

• f(h) = 1 + |h| − no(h) − ni(h)

Remark 3.2 Both maxima in the above definition are well defined, since we clearly
have n(c) ≤ |h|, n(x) ≤ |h|. Moreover, notice that, because of Remark 2.1 in 3.4,
the sequence of sets

{n(c) such that ∃c ∈ CNo : wG(c) = h}

is increasing in N and so there exists N̄(h) such that

no(h) = max{n(c) such that ∃c ∈ CN̄(h)
o : wG(c) = h}

An analogous statement holds true for ni(h).
It is also clear that for what no(h) is concerned, maximum can always be obtained

with a codeword which only admits regular error events, while this is not necessarily
true for ni(h). �

34

3 – Generalized serial turbo ensemble

Finally, we define:
µ = inf{f(h),h ∈ H} . (3.1)

Notice that the function f takes values in Z and H is non-empty, so either µ = −∞
or µ = min{f(h),h ∈ H}. We will use the assumptions about the constituent
encoders to ensure that we are in the interesting case when µ is positive.

Our main result (formally stated in Theorem 3.1) is that, for sufficiently good
channels, if µ ≥ 1,

Ps(e) ≍ N−µ and Pw(e) ≍ N−µ+1 for N → ∞

In addition to this interleaver gain result, we want to underline also the depen-
dence of the error probability on the channel, following the steps of Benedetto et al.
[3] and looking for an analogous of the classical effective free distance.

We define the set of the vectors h minimizing f(h):

H = {h ∈ H : f(h) = µ}

and we define:

• q∗(h)= max{P(0 → x) : ∃N,∃u ∈ Y r(N+νo) : x=φNi (u),wG(u)=h,n(x)=ni(h)}

• q∗ = max
h∈H

{q∗(h)}.

Remark 3.3 • We can prove that maxima in the definitions of q∗(h) and q∗ are
well-defined. In principle the number of x involved in the maximum defining
q∗(h) is infinite. However, we can always restrict the search to a finite set, in
the following way. As a first step, we can find an upper bound on the values of
P(0 → x) to consider, trivially by computing q̄ = P(0 → x̄) for one admissible
x̄. Then we restrict our search to the set:

X = {x : P(0 → x) ≥ q̄ and ∃N,∃u ∈ Y r(N+νo) : x=φNi (u),wG(u)=h,n(x)=ni(h)}

Now note that P(0 → x) ≥ q̄ implies γwH(x) ≥ q̄, i.e. wH(x) ≤ log q̄/ log γ.
Now, by Prop. 2.1, we can bound the length of all error events in the decom-
position of x ∈ X . This implies that, up to shift equivalence, the family of all
possible error events appearing in x ∈ X is finite. Therefore, also X , up to
shift equivalence, is finite. The same argument applies also to q∗.

• Later, we will also see that under suitable assumptions H is a finite set
(Prop. 3.2). �

Using the definition of q∗, we can state the interleaver gain result in a stronger
way that underlines, additionally to the decay with N , also the dependence on the
channel.

35

3 – Generalized serial turbo ensemble

Theorem 3.1 Consider a regular and concatenatedly non-catastrophic serial en-
semble (φo,φi,(GN)N∈N), corresponding to the encoding scheme

UN−→ φNo
Y r(N+νo)

−→ πN
Y sMN−→ φNi

Γ l(MN+νi)−→

If µ ≥ 1, there exist positive constants c,c1,c2 and γ0 (depending only on φo,φi
and (GN)) such that, for all Γ -symmetric channels with Bhattacharyya parameter
γ < γ0:

c′ q∗N−µ ≤ Pw(e) ≤ c1q
∗c(log q

∗/ log γ)
2 N−µ +O(N−µ−1)

Moreover, for a given input weight win (compatible with U and satisfying win(u) 6= 0
for all u 6= 0),

c′
wmax

in

wmin
in

q∗N−µ+1 ≤ Ps(e) ≤ c1
wmax

in

wmin
in

q∗c(log q
∗/ log γ)

2 N−µ+1 +O(N−µ)

where wmax
in = max

u∈U
win(u) and wmin

in = min
u∈U\{0}

win(u). �

The terms q∗ in the lower bound and q∗ log q∗

log γ
in the upper bound describe the be-

haviour of Ps(e) and Pw(e) with respect to the channel’s noise. Note that q∗ =
P(0 → c) for some word c, so that if you denote w∗ = wH(c), q∗ ≤ γw

∗
and

log q∗

log γ
≤ w∗. Hence, for a family of channels where you let γ → 0 in such a way that

the decreasing noise does not affect which words minimize P(0 → c) (e.g. BSC,
BEC, S-AWGN channel for fixed S, m-symmetric channel), all the information on
how fast Pw(e) and Ps(e) tend to zero is contained in q∗.

Now we will show how the free distance of φo and the recursiveness of φi come
into the picture. First of all, we generalize the classical assumptions in the most
natural way, simply replacing Hamming weight with the interconnection weight wG:
this will ensure that there is an interleaving gain (namely that µ ≥ 1). From now
on, let’s denote by dof the wG–free distance of φo.

Proposition 3.1 Assume that dof ≥ 2 and φi is wG–recursive. Then

⌊(dof + 1)/2⌋ ≤ µ ≤ dof .

In particular, µ ≥ 1 and if dof ≥ 3 then µ ≥ 2. �

In some particular cases we will give tighter upper bounds on µ (see Sect. 3.4).
The strong assumptions used in Prop. 3.1 have also another interesting conse-

quence:

Proposition 3.2 If dof ≥ 3 and φi is wG–recursive, then H is a finite set. �

36

3 – Generalized serial turbo ensemble

However, these assumptions are not necessary to obtain an interleaver gain. For
example, in the case of parallel concatenations with multiple branches, those as-
sumptions would mean that all constituent encoders are recursive, while it is known
that there is an interleaver gain, even if smaller, also when only some of them are
recursive. Also, a relaxation of the classical assumptions will allow us to give re-
sults about very interesting examples, such as the heavily punctured serial schemes
considered in [35], or the class of structured LDPC interpreted as serial schemes
that we introduced as Example (E2). Thus, we are interested in a generalization of
Prop. 3.1.

Proposition 3.3 Assume that the interconnection weight has the structure wG =
(w1,w2) : Y sM → Nρ1×Nρ2 (possibly ρ2 = 0, but ρ1 ≥ 1); denote by dof,1 the w1–free
distance of φo. Assume that dof,1 ≥ 2 and φi is w1–recursive. Then,

⌊(dof,1 + 1)/2⌋ ≤ µ ≤ dof .

In particular, µ ≥ 1, and if dof,1 ≥ 3 then µ ≥ 2. �

Notice that Prop. 3.1 is a particular case of Prop. 3.3, where ρ2 = 0 and so dof = dof,1.

3.3 Proofs of the main results

In this section, we prove our main results, i.e. Theorem 3.1 and Proposition 3.3. We
prove the upper bound for Ps(e) and the lower bound for Pw(e); the whole result
stated in Theorem 3.1 is then obtained by the simple remark

Ps(e) ≥
1

N

wmin
in

wmax
in

Pw(e) .

3.3.1 Upper bound

This proof is based on the union-Bhattacharyya bound (see e.g. [39]) and on esti-
mations of the weight enumerating coefficients of the constituent encoders.

We will consider only the case when the symbol error rate Ps(e) is defined with
respect to Hamming input weight (win = wH); however this will give results true for
every other compatible weight, up to a positive constant factor.

The well-known union bound gives

Ps(e) ≤
∑

w

∑

d

w

N
Aw,d

N
Q(d) (3.2)

where Aw,d
N

is the average number of codewords of a serial ensemble with input
Hamming weight w and output type weight d.

37

3 – Generalized serial turbo ensemble

The standard technique (see [39, 3]) is to express Aw,d
N

as a function of suitable
enumerating coefficients of the constituent encoders. Here, we need:

• Ao,Nw,h the number of codewords of φNo with input Hamming weight w and
output invariants vector weight h;

• Ai,N
h,d the number of codewords of φNi with input invariants vector weight h

and output type weight d.

Proposition 3.4 Aw,d
N

=
∑

h∈H

Ao,Nw,hA
i,N
h,d

|Y r(N+νo)
h

|
. �

Proof:
Aw,d

N
=

∑

u:wH(u)=w

∑

v:wT(φNi (v))=d

P(ΠN(φNo (u)) = v)

By Remark 3.1,

P(ΠN(φNo (u)) = v) =
|GN(φNo (u),v)|

|GN |
=

{

0 if wG(φNo (u)) 6= wG(v)
1

|Y r(N+νo)
h

|
if wG(φNo (u)) = wG(v) = h

Substituting in the expression above, we obtain the thesis. �

By Lemma 2.1, we know that |Y r(N+νo)
h

| ≥
(

r(N+νo)
h

)

. Thus, by the inequality
(3.2) and Prop. 3.4 we have

Ps(e) ≤
∑

w,h,d

w

N

1
(

r(N+νo)
h

)A
o,N
w,hA

i,N
h,dQ(d) (3.3)

We have some inequalities involving the indexes w,h,d which are necessary con-
ditions to have non-zero Ao,Nw,hA

i,N
h,d. They are listed in Definition 3.3 and Prop. 3.5.

Definition 3.3 Let I ⊆ N∗×H×NΓ\{0} be the set of triples (w,h,d) satisfying the
following conditions:

• 1 ≤ w ≤ N ;

• |d| ≤ l (MN + νi);

• w ≤ ζo|h| and |h| ≤ ζi|d| (ζo and ζi as in Def. 3.2).

�

Proposition 3.5 If (w,h,d) /∈ I, then Ao,Nw,hA
i,N
h,d = 0. �

38

3 – Generalized serial turbo ensemble

Proof: The first two inequalities are trivial remarks about the length of the input
and code words and the definition of free distance; the last one is the concatenated
non-catastrophicity of the ensemble (see Def. 3.2). �

Now, we need to estimate the product Ao,Nw,hA
i,N
h,d when it is non-zero. We start

with the following inequalities deriving from Prop. 2.5.

Proposition 3.6 There exist some positive constants ao,ai,bo,bi such that, for every
(w,h,d) ∈ I:

1. Ao,Nw,h ≤
no(h)
∑

no=1

(

N + no
no

)

awo b
|h|
o

2. Ai,N
h,d ≤

nmax
i
∑

ni=0

(

N + ni
ni

)

a
|h|
i b

|d
i , where nmax

i =

{

ni(h) if Q(d) ≤ q∗(h)

ni(h) − 1 if Q(d) > q∗(h)

Proof: Let wmax = max{|wG(v)| : v ∈ Y r}, so that |wG(v)|/wmax ≤ wH(v) ≤
|wG(v)| for all v ∈ Y r(N+νo). Then:

Ao,Nw,h ≤
no(h)
∑

no=1

|h|
∑

h′=⌊|h|/wmax⌋
Λo,Nw,h′,no

where Λo,Nw,h′,no is the input/output support enumerating coefficient of φNo , as defined
in Sect. 2.3.5. The conclusion now follows in a straightforward way from Prop. 2.5.

The proof for the inner encoder is similar, but we want to exploit the fact that,
by definition of q∗(h), there are no codewords of input weight h, output weight d

such that Q(d) > q∗(h) having ni(h) error events in their decomposition. To do so,
we need to define Ai,N

h,d,n to be the number of codewords of φNi with input invariants
vector weight h, output type weight d, and n error events in the decomposition, so
that

Ai,N
h,d =

ni(h)
∑

ni=0

Ai,N
h,d,ni

=

nmax
i
∑

ni=0

Ai,N
h,d,ni

because Ai,N
h,d,ni(h) = 0 if Q(d) > q∗(h). Then we conclude the proof as for the outer

encoder, with ŵmax = max{|wT(g)| : g ∈ Γ l}:

Ai,N
h,d ≤

nmax
i
∑

ni=1

|h|
∑

h′=⌊ |h|
wmax

⌋

|d|
∑

d′=⌊ |d|
ŵmax

⌋
Λi,Nh′,d′,ni

39

3 – Generalized serial turbo ensemble

�

We now prove the following combinatorial inequality.

Proposition 3.7 There exists a constant C > 0 such that, for all h ∈ H with
|h| ≤ wmax r(N + νo) (where wmax = max{|wG(v)| : v ∈ Y r}):

1
(

r(N+νo)
h

)

no(h)
∑

no=1

nmax
i
∑

ni=0

(

N + no
no

)(

N + ni
ni

)

≤
{

C |h| |h|f(h)−1

Nf(h)−1 if nmax
i = ni(h)

C |h| |h|f(h)

Nf(h) if nmax
i = ni(h) − 1

Proof: First, we have
(

r(N+νo)
h

)

≥
[

r(N+νo)
e|h|

]|h|
.

This gives 1

(r(N+νo)
h

)
≤ C |h|

[

|h|
N

]|h|
for some constant C > 0.

For the other terms, we use the following combinatorial inequalities:

•
(

N+n
n

)

≤
[

s
N

]s−n (N+s
s

)

for all n ≥ 0, s,N ≥ 1 satisfying s ≥ n;

• there exists a constant c > 0 such that
(

N+n
n

)

≤ c
[

N+n
N

]N [N+n
n

]n
for all

n,N ≥ 1;

•
[

N+n
N

]N ≤ en for all n ≥ 0, N ≥ 1.

As no(h) ≤ |h|, these inequalities give

no(h)
∑

no=1

(

N + no
no

)

≤
no(h)
∑

no=1

[|h|
N

]|h|−no
ce|h|

[

N + |h|
|h|

]|h|

≤ c|h|o

no(h)
∑

no=1

|h|−noNno

≤ C |h|
o |h|−no(h)Nno(h)

(for some positive constants co and Co). The second inequality is true thanks to the
assumption that |h| ≤ wmax r(N + νo). Similar estimation can be obtained for the
summation relative to the inner part and this yields the result. �

If we substitute the estimations given by Propositions 3.6 and 3.7 into the ex-
pression (3.3) and we use Prop. 3.5, we get, for some positive constants C1,C2,C3:

Ps(e) ≤
∑

(w,h,d)∈I:
Q(d)≤q∗(h)

|h|f(h)−1

Nf(h)
Cw

1 C
|h|
2 C

|d|
3 Q(d) +

∑

(w,h,d)∈I:
Q(d)>q∗(h)

|h|f(h)

Nf(h)+1
Cw

1 C
|h|
2 C

|d|
3 Q(d)

(3.4)

40

3 – Generalized serial turbo ensemble

Now, we split the first summation into two terms, separating h ∈ H from h /∈ H.
Define:

• Iµ = {(w,h,d) ∈ I : f(h) = µ,Q(d) ≤ q∗(h)},
• I> = {(w,h,d) ∈ I : f(h) > µ,Q(d) ≤ q∗(h)},
• I∗ = {(w,h,d) ∈ I : Q(d) > q∗(h)}.

Eq. (3.4) can be re-written as follows:

Ps(e) ≤
1

Nµ

∑

(w,h,d)∈Iµ

|h|µ−1Cw
1 C

|h|
2 C

|d|
3 Q(d)

+
1

Nµ+1

∑

(w,h,d)∈I>
Cw

1

(|h|
N

)f(h)−µ−1

|h|µC |h|
2 C

|d|
3 Q(d)

+
1

Nµ+1

∑

(w,h,d)∈I∗
Cw

1

(|h|
N

)f(h)−µ
|h|µC |h|

2 C
|d|
3 Q(d)

In the following we show that the first summation is bounded by cq∗ exp(log q∗/ log p)
(Prop. 3.8), while the second and the third one are bounded by c′(γ) (Prop. 3.9),
thus ending the proof of the upper bound.

Proposition 3.8 There exist some positive constants γ0 and c such that, for all
BIOS channel with γ < γ0,

∑

(w,h,d)∈Iµ
|h|µ−1Cw

1 C
|h|
2 C

|d|
3 Q(d) ≤ cq∗ exp(log q∗/ log p)

�

Proof: Recall that (w,h,d) ∈ Iµ implies that w ≤ ζo|h|, |h| ≤ ζi|d| and Q(d) ≤
q∗(h) ≤ q∗. So:

∑

(w,h,d)∈Iµ

|h|µ−1Cw
1 C

|h|
2 C

|d|
3 Q(d)

≤
∑

d∈NΓ\{0}

Q(d)≤q∗

∑

h∈N
ρ

|h|≤ζid

|h|µ−1C
|h|
2

(

∑

w≤ζo|h|
Cw

1

)

C
|d|
3 Q(d)

≤
∑

d∈NΓ\{0}

Q(d)≤q∗

∑

h∈Nρ

|h|≤ζid

|h|µ−1C
|h|
2 ζo|h|C |h|

1 C
|d|
3 Q(d)

≤
∑

d∈N
Γ\{0}

Q(d)≤q∗

K |d|Q(d) (for some suitable K > 0).

41

3 – Generalized serial turbo ensemble

Now, we split the summation, recalling the Bhattacharyya bound Q(d) ≤ γ|d|:

∑

d∈N
Γ\{0}

Q(d)≤q∗

K |d|Q(d) =
∑

d∈N
Γ\{0}

Q(d)≤q∗,γ|d|>q∗

K |d|q∗ +
∑

d∈N
Γ\{0}

γ|d|≤q∗

K |d|γ|d|

Now let’s find a bound for the number of d’s involved in the first summation: Q(d) ≤
q∗ implies γ|d| ≤ q∗, so |d| ≤ log q∗/ log γ and so there are less than (|Γ |−1)log q∗/ log p

type weights satisfying this inequality:

∑

d∈NΓ\{0}

Q(d)≤q∗,γ|d|≥q∗

K |d|q∗ ≤ ((|Γ | − 1)K)log q∗/ log pq∗

For the second term, note that, for γ < 1/K , the series is convergent, and bounded
by a constant times its first term, which has |d| = log γ/ log q∗, i.e.

∑

d∈NΓ\{0}

γ|d|≤q∗

K |d|γ|d| ≤ CK(log γ/ log q∗)q∗

�

Proposition 3.9 There exists a constant γ0 > 0, depending on φo,φi and (GN) and
there exists c′(γ) > 0 depending only on γ such that, for all γ < γ0

∑

(w,h,d)∈I>
Cw

1

(|h|
N

)f(h)−µ−1

|h|µC |h|
2 C

|d|
3 Q(d)

+
∑

(w,h,d)∈I∗
Cw

1

(|h|
N

)f(h)−µ
|h|µC |h|

2 C
|d|
3 Q(d) ≤ c′(γ)

Proof: Notice that, for (w,h,d) ∈ I>, 0 ≤ f(h) − µ − 1 ≤ |h| ≤ cN , where
the first inequality holds true because h ∈ H \ H, the second immediately follows
from the definitions of f(h) and µ, the third is true, for a suitable c > 1, because
|h| ≤ r(N + νo) for all h ∈ H . These inequalities imply that

(|h|/N)f(h)−µ−1 ≤ c|h|

Analogously, for all (w,h,d) ∈ I∗, 0 ≤ f(h) − µ ≤ |h| ≤ cN and so

(|h|/N)f(h)−µ ≤ c|h|

42

3 – Generalized serial turbo ensemble

This gives:

∑

(w,h,d)∈I>
Cw

1

(|h|
N

)f(h)−µ−1

|h|µC |h|
2 C

|d|
3 Q(d)

+
∑

(w,h,d)∈I∗
Cw

1

(|h|
N

)f(h)−µ
|h|µC |h|

2 C
|d|
3 Q(d)

≤
∑

(w,h,d)∈I
Cw

1 c
|h|C |h|

2 C
|d|
3 Q(d)

Noticing also that
∑

w≤ζo|h|C
w
1 ≤ ζo|h|C |h|

1 , we have:

∑

(w,h,d)∈I
Cw

1 c
|h|C |h|

2 C
|d|
3 Q(d) ≤

∑

d∈NΓ\{0}

∑

h:|h|≤ζi|d|
ζo|h|C |h|

1 c|h||h|µC |h|
2 C

|d|
3 Q(d)

Now notice that, for some K > 1,

∑

h:|h|≤ζi|d|
ζo|h|C |h|

1 c|h||h|µC |h|
2 ≤ K |d|

Finally, we use the Bhattacharyya bound.

∑

d∈NΓ\{0}

(KC)
|d|
3 Q(d) ≤

∑

d∈N

∑

d∈NΓ\{0}:|d|=d
(KC3γ)

d = c′(γ) <∞

if γ is sufficiently small to ensure convergence. �

3.3.2 Lower bound

The lower bound is based on the following simple remark involving the equivocation
probability.

Remark 3.4 If c ∈ CN , then Pw(e) ≥ P(0 → c). So, if you define Qmax(πN) :=
max{P(0 → c),c ∈ φNi ◦ πN ◦ φNo (UN)}, for any q,

Pw(e) ≥ q P
(

Qmax(ΠN) ≥ q
)

�

We focus our attention on the value q = q∗, and we find the following lower bound
to P

(

Qmax(ΠN) ≥ q
)

, thus ending the proof of the lower bound in Theorem 3.1.

43

3 – Generalized serial turbo ensemble

Proposition 3.10 If µ ≥ 1, there exists a constant C > 0 such that

P
(

Qmax(ΠN) ≥ q
)

≥ CN−µ+1 .

�

In the remainder of this section, we will prove Prop. 3.10. To do so, we need to
define some particular codewords which are essential for the bound. We start fixing
once and for all the following objects:

1. A weight vector h ∈ H such that q∗(h) = q∗.

2. An outer codeword c∗ ∈ φNo (UN) such that wG(c∗) = h and n(c) = no(h). Let
no = no(h) and let c∗ = c∗

1 + . . .+c∗
no+1 be an error event decomposition of c∗

(see Sect. 2.3.4). Denote by lk the length of c∗
k and let lmax = max{l1, . . . ,lno}.

If µ = 1, we need the different definition

lmax = max{l1, . . . ,lno ,2e|h|nor
(no

√

1 + (2e|h||Y ||h|)−1/2 − 1)−1}

(the reason will be clear at the end of the proof).

3. An input word u∗ for the inner encoder, such that wG(u∗) = h and such that
x∗ = φNi (u∗) has equivocation P(0 → x∗) = q∗(h) and n(x∗) = ni(h). Let
ni = ni(h) and let x∗ = x∗

1+ . . .+x∗
ni+1 be an error event decomposition of x∗.

Denote by u∗
k the input error event corresponding to x∗

k and by λk its length
(with λni+1 = 0 if there is no terminating event). Let λmax = max{λ1, . . . ,λni},
modified as λmax = max{λ1, . . . ,λni,

2e|h|
nor

(ni

√

1 + (2e|h||Y ||h|)−1/2−1)−1} when
µ = 1.

Notice that c∗ can be chosen in such a way that it doesn’t have any terminating
event and that it does not depend on N , while this may not be possible for u∗.
However, we can assume that the error events x∗

k and their inputs u∗
k remain the

same apart from some possible translations (see Remark 2.1). Also remember that
no ≥ 1, ni ≥ 0.

Now, we select a sufficiently big set of shift equivalent words for both c∗ and x∗,
choosing many positions for the error events of c∗ and for the input error events of
u∗, across all the time axis [0,N + νo − 1] for c∗ and [0,MN − 1] for u∗.

Let’s start with c∗. Define A = [0,
⌊

N
nolmax

⌋

− 1]. Given a ∈ Ano , we define

c∗
a

to be the outer codeword which, for every k = 1, . . . ,no, contains exactly one
shifted copy of the error event c∗

k starting at time aklmax + (k − 1)|A|lmax. Clearly
by construction all error events in c∗

a
have disjoint support.

In the same way, we consider the inner input word u∗. For ni ≥ 1, define

B = [0,
⌊

MN−λni+1

niλmax

⌋

− 1]. Given b ∈ Bni we define u∗
b

to be the inner input word

44

3 – Generalized serial turbo ensemble

which, for every k = 1, . . . ,ni, contains exactly one translated copy of the input error
event u∗

k starting at time bkλmax +(k−1)|B|λmax, while the terminating event u∗
ni+1

(if there is one) remains fixed in its position in the interval [MN −λni+1−1,MN −1].
Let x∗

b
be the output x∗

b
= φNi (u∗

b
).

Given a ∈ Ano and b ∈ Bni , if ni ≥ 1 we define the event

Ea,b = {ΠN(c∗
a
) = u∗

b
} = GN(c∗

a
,u∗

b
)

and we also define
Ea =

⋃

b∈B
Ea,b

(notice that this is an union of disjoint events). If ni = 0, we simply let Ea =
{ΠN(c∗

a
) = u∗} = GN(c∗

a
,u∗).

Remark 3.5 Clearly πN ∈ Ea,b implies Qmax(πN) ≥ P(0 → x∗
b
) = q∗. Hence,

P
(

Qmax(ΠN) ≥ q∗
)

≥ P
(

⋃

a∈Ano
Ea

)

.

�

Our aim is now to estimate this last probability, using:

P
(

⋃

a∈Ano
Ea

)

≥
∑

a∈Ano
P(Ea) −

∑

a,a′∈Ano
a6=a

′

P(Ea ∩ Ea′)

We will prove a lower bound for the first term (Lemma 3.2) and an upper bound
for the second term (Lemma 3.3).

Lemma 3.2 With the convention |B| = 1 if ni = 0,

∑

a∈Ano
P(Ea) ≥ |A|no |B|ni 1

[|Y |r(N + νo)]|h|

�

Proof:

P(Ea) =
|Ea|
|GN |

=
|B|ni |GN(c∗,u∗)|

|GN |
By Remark 3.1 and Lemma 2.1,

|GN(c∗,u∗)|
|GN |

=
1

|Y r(N+νo)
h

|
≥ 1

[|Y |r(N + νo)]|h|

�

45

3 – Generalized serial turbo ensemble

Lemma 3.3 If µ ≥ 2:

∑

a,a′∈Ano
a6=a′

P(Ea ∩ Ea′) ≤ |A|2no|B|2ni
(

2e|h|
r(N + νo)

)2|h|

while if µ = 1:
∑

a,a′∈Ano
a6=a′

P(Ea ∩ Ea′) <
1

|Y r(N+νo)
h

|
�

Proof: We have

Ea ∩ Ea′ =
⋃

b,b′∈Bni
(Ea,b ∩Ea′,b′) .

Consequently, by the union bound,

∑

a,a′∈Ano
a6=a′

P(Ea ∩Ea′) ≤
∑

a,a′∈Ano
a6=a′

∑

b,b′∈Bni
P(Ea,b ∩Ea′,b′)

Now we need to deal with P(Ea,b ∩ Ea′,b′). First of all note that if there is an
incomplete error event in u∗, surely P(Ea,b ∩ Ea′,b′) = 0 for all a 6= a′ and for all
b,b′. Now consider the case of only regular events. Fix any a 6= a′ and b,b′ such
that there exists π ∈ Ea,b∩Ea′,b′. By the definition of c∗

a
and c∗

a′, we can find outer
codewords c̃∗, c̃∗

a
, c̃∗

a′ (possibly c̃∗ = 0) having disjoint supports, each consisting
of some of the error events c∗

k, such that c∗
a

= c̃∗ + c̃∗
a

and c∗
a′ = c̃∗ + c̃∗

a′. More
precisely, letting ño = dH(a,a′), i.e. the number of i’s such that ai 6= a′

i, c̃∗ consists
of no − ño error events, and c̃∗

a
consists of ño error events and is shift equivalent to

c̃∗
a′. Clearly, wG(c̃∗

a
) = wG(c̃∗

a′) = h − wG(c̃∗).
Similarly, we can find inner input words ũ∗, ũ∗

b
, ũ∗

b′ (possibly ũ∗ = 0 or ũ∗
b

=
ũ∗

b′ = 0) having disjoint supports, each consisting of some of the input error events
u∗
k, such that u∗

b
= ũ∗ + ũ∗

b
and u∗

b′ = ũ∗ + ũ∗
b′. Letting ñi = dH(b,b′), ũ∗ has

ni− ñi error events and ũ∗
b

has ñi error events and is shift equivalent to ũ∗
b′. Clearly,

wG(ũ∗
b
) = wG(ũ∗

b′) = h − wG(ũ∗).
As a consequence of Lemma 3.1, if π ∈ Ea,b ∩ Ea′,b′, then π(c̃∗) = ũ∗, π(c̃∗

a
) =

ũ∗
b

and π(c̃∗
a′) = ũ∗

b′. This implies that wG(ũ∗) = wG(c̃∗) and that wG(ũ∗
b
) =

wG(ũ∗
b′) = wG(c̃∗

a
) = wG(c̃∗

a′) = h−wG(c̃∗). We will use the notation h̃ = wG(ũ∗
b
).

Note that if P
(

Ea,b ∩ Ea′,b′

)

6= 0 and (a,b) 6= (a′,b′) then surely both a 6= a′ and
b 6= b′. Also note that

P
(

Ea,b ∩Ea′,b′

)

≤ P
(

ΠN(c̃∗ + c̃∗
a

+ c̃∗
a′) = ũ∗ + ũ∗

b
+ ũ∗

b′

)

=
1

Y
r(N+νo)

h+h̃

46

3 – Generalized serial turbo ensemble

In the simple case when h̃ = h, this gives

P(Ea,b ∩ Ea′,b′) ≤=
1

|Y r(N+νo)
2h

|
≤
(

2e|h|
r(N + νo)

)2|h|

where the last line comes from Lemma 2.1.
Now notice that h̃ ∈ H and h − h̃ ∈ H ∪ {0}, so that

1 + |h̃| − ño − ñi ≥ f(h̃) ≥ µ = 1 + |h| − no − ni (3.5)

and, if h̃ 6= h,

1 + |h − h̃| − (no − ño) − (ni − ñi) ≥ f(h − h̃) ≥ µ = 1 + |h| − no − ni . (3.6)

Equations (3.5) and (3.6) together are possible only in the case when µ = 1. So, for
µ ≥ 2, surely h = h̃, and this ends the proof:

∑

a,a′∈Ano ,a6=a′

∑

b,b′∈Bni ,b6=b′

P(Ea,b ∩ Ea′,b′) ≤ |A|2no |B|2ni
(

2e|h|
r(N + νo)

)2|h|

For µ = 1, instead, note that in this case ñ0 + ñi = |h̃| and n0 + ni = |h|. We can
estimate:

∑

a,a′∈Ano
a6=a

′

P(Ea ∩ Ea′) =
∑

1≤ño≤no

∑

a,a′∈Ano
1≤dH(a,a′)≤ño

∑

1≤ñi≤ni

∑

b,b′∈Bni
1≤dH(b,b′)≤ñi

P(Ea,b ∩ Ea′,b′)

≤
∑

1≤ño≤no

(

no
ño

)

|A|no+ño
∑

1≤ñi≤ni

(

ni
ñi

)

|B|ni+ñi
(

e(|h| + ño + ñi)

r(N + νo)

)|h|+ño+ñi

≤ |A|no |B|ni
r(N + νo)|h|

2e|h|
[(

1 +
|A|2e|h|
r(N + νo)

)no

− 1

] [(

1 +
|B|2e|h|
r(N + νo)

)ni

− 1

]

<
|A|no |B|ni
r(N + νo)|h|

1

|Y r(N+νo)
h

|

where the last line is due to the suitable choice of lmax and λmax for the case µ = 1,
ensuring that |A| and |B| are small enough. �

Now we can conclude the proof of Prop. 3.10. Using Lemmas 3.2 and 3.3, for
µ ≥ 2 we get

∑

a∈Ano
P(Ea) −

∑

a,a′∈Ano
a6=a′

P(Ea ∩Ea′) ≥ |A|no |B|ni
[r(N + νo)]|h|

(

1

|Y ||h| − |A|no |B|ni (2e|h|)2|h|

[r(N + νo)]|h|

)

47

3 – Generalized serial turbo ensemble

For N → ∞, as |A| ≍ N and |B| ≍ N , we have |A|no |B|
[r(N+νo)]|h| ≍ N−µ+1. We conclude

the proof by noticing that |A|no |B|ni (2e|h|)2|h|

[r(N+νo)]|h| ≍ N−µ+1 → 0.

For µ = 1, Lemmas 3.2 and 3.3, together with the remark that no + ni = |h|,
give that

∑

a∈Ano P(Ea)−∑a,a′∈Ano
a6=a′

P(Ea∩Ea′) is bounded from below by a strictly

positive constant.

3.3.3 Proof of Propositions 3.1, 3.2 and 3.3

We prove here Prop. 3.2 and Prop. 3.3; clearly the latter one also implies the weaker
Prop. 3.1, which can be obtained as a special case just taking ρ2 = 0 so that wG = w1

and dof = dof,1.

Lemma 3.4 Under the same assumptions as in Prop. 3.3, for all h = (h1,h2) ∈
H ⊆ Nρ1 × Nρ2:

• 1 ≤ no(h) ≤ ⌊|h1|/dof,1⌋;

• 0 ≤ ni(h) ≤ ⌊|h1|/2⌋ + |h2|;

• 1 + |h1| − ⌊|h1|/dof,1⌋ − ⌊|h1|/2⌋ ≤ f(h) ≤ |h| �

Proof: The upper bounds for no(h) and ni(h) are an immediate consequence of
the definition of dof,1 and of the w1–recursiveness of φi. For the lower bounds, see
Remark 3.2. Then, the estimations for f(h) directly follow. �

The definitions of dof and H now clearly imply that µ ≤ dof , while the lower
bound for µ comes from the following property.

Proposition 3.11 Given any constant c ≥ 2, the function g : N → N defined by
gc(h) = 1+h−⌊h/c⌋−⌊h/2⌋ and restricted to h ≥ c has minimum value ⌊(c+1)/2⌋
and

arg min
h≥c

gc(h) =



















2N∗ if c = 2;

{c, c+ 1, 2c} if c = 3;

{c, c+ 1} if c is odd, c ≥ 5;

{c} if c is even, c ≥ 4.

�

Proof:

48

3 – Generalized serial turbo ensemble

Step 1: consider gc(h) restricted to multiples of c: h = ac where a varies in N∗. Then

gc(h) =

{

1 +
(

c
2
− 1
)

a if ac is even
3
2

+
(

c
2
− 1
)

a if ac is odd

The minimum is obtained:

– for any a ∈ N∗ if c = 2;

– for a = 1 and a = 2 if c = 3;

– only for a = 1 if c > 3.

Step 2: for any fixed a ∈ N∗, consider gc(h) restricted to h ∈ [ac,(a + 1)c). In this
case, gc(h) = 1 − a + ⌊(h + 1)/2⌋. The minimum is then obtained for h = ac
if ac is even, for h = ac and also for h = ac+ 1 if ac is odd.

Step 3: combine steps 1 and 2 to obtain the complete list of h’s minimizing gc(h);
notice that this always includes h = c and then

min
h≥g

gc(h) = gc(c) = ⌊(c+ 1)/2⌋ .

�

The estimations for f(h) in Lemma 3.4 can be re-written as f(h) ≥ gdof,1(|h1|).
For all h ∈ H , clearly |h1| ≥ dof,1 and so, by Prop. 3.11,

µ = min
h∈H

f(h) ≥ ⌊(dof,1 + 1)/2⌋ .

Clearly this lower bound for µ immediately means that dof,1 ≥ 2 gives µ ≥ 1 and
dof,1 ≥ 3 gives µ ≥ 2.

Finally we prove that H is a finite set, under the assumption that ρ2 = 0 and
dof ≥ 3. For any h ∈ H, i.e. such that f(h) = µ, by Lemma 3.4 we get:

µ = f(h) ≥ 1 + |h| − ⌊|h|/dof⌋ − ⌊|h|/2⌋ ≥ 1 + |h|
(

1
2
− 1

dof

)

which gives |h| ≤ (µ− 1)
2dof
dof−2

, ending the proof.

3.4 Examples

In this section we consider particular cases, where we can characterize µ and q∗

exactly or we can give tighter bounds than the general ones. We will particularly
focus on the relevant examples introduced in Sect. 3.1.3. Throughout this section, we
will consider Γ = Zm; in some cases we will restrict our attention to m-PSK–AWGN
channels.

49

3 – Generalized serial turbo ensemble

3.4.1 Classical free Zm serial scheme

We call this scheme classical, because it is the simplest and the most natural gener-
alization of the classical binary serial concatenations introduced in [3].

In the general scheme, take U = Zk
m, Y = Zm, Γ = Zm, and consider constituent

encoders which are rational matrices φo ∈ Zm(D)k×r and φi ∈ Zm(D)s×l. See
Appendix 2.4 for properties of convolutional encoders in this particular setting.

Consider symbol error probability with respect to Hamming weight on Zm (ex-
tended component-wise). Take as interconnection group GN = Sr(N+νo), i.e. all the
permutations moving around the elements of Zm. Clearly the invariant weight wG

will be the type weight wT on Zm (extended component-wise). Notice that in this
scheme, we can think ‘symbols’ in the most intuitive way, i.e. to be the elements
of Zm, both in input, in the interconnection and at the output. Clearly, if you
take m = 2, symbols are just bits, type weight and Euclidean weight are equal to
Hamming weight and so we get the classical binary schemes introduced in [3].

For this ensemble, we have an explicit expression for µ if m is a power of 2,
and tight bounds for µ for general m; we also have simple examples showing that,
without more information about the constituent encoders, nothing tighter than these
bounds can be found.

Let m = pα1
1 . . . pαll be the prime factors decomposition of m and let φj,o : ZkN

pj
→

ZrN
pj

be obtained by taking the restriction of φo to inputs in m
pj

Zk
m and then identifying

m
pj

Zm with Zpj through the natural fields isomorphism. With this notation, the

following bounds for µ hold true.

Proposition 3.12 For the classical free Zm ensemble,

⌊(dof + 1)/2⌋ ≤ µ ≤ dof − ⌊dof/pmin⌋

where pmin = min{pj : dof = df(φj,o)}. �

Proof: We already have the bound ⌊(dof + 1)/2⌋ ≤ µ ≤ dof (Prop. 3.1), so we just
need to prove the tighter upper bound.

Notice that, by Prop. 2.7, P := {pj : dof = df(φj,o)} 6= ∅. We want to prove that

µ ≤ dof − ⌊dof/p⌋ for all p ∈ P. So, fix any p ∈ P; consider a word c ∈ m
p
φNo (ZkN

m)

such that wH(c) = dof ; let h = wT(c).
Let a1, . . . ,adof ∈ m

p
Zm \ {0} be the non-zero symbols of the word c (possi-

bly with the same symbol repeated many times). Consider a1, . . . ,ap: by Lemma
2.2 (applied to Zp), there exist indexes {j1, . . . ,jn} ⊆ {1, . . . ,p} such that aj1 +
. . . ,ajn = 0 mod m. Then, by Prop. 2.3, there exist distinct times t1, . . . ,tn such
that φi(aj1D

t1 + . . . + ajnD
tn) has finite support, i.e. is formed by some (at least

one) error events. By applying the same argument to ap+1, . . . ,a2p and so on up to
a(⌊dof /p⌋−1)p+1, . . . ,a⌊dof /p⌋p, we obtain that ni(h) ≥ ⌊dof/p⌋. Clearly no(h) = 1 and so

50

3 – Generalized serial turbo ensemble

we can conclude: µ ≤ f(h) ≤ 1 + dof − 1 − ⌊dof/p⌋. �

From Prop. 3.12, together with Prop. 2.7 (see Appendix 2.4), we get the exact
value of µ for the case when m is a power of 2:

Corollary 3.1 For the classical free Zm ensemble, if m is a power of 2,

µ =
⌊

(dof + 1)/2
⌋

.

�

It is more difficult to get an explicit formula for q∗. We can just notice that
whenever µ = ⌊(dof + 1)/2⌋ (so in particular for the classical free Zm ensemble
when m is a power of 2), the inequalities no(h) ≤ ⌊|h|/dof⌋ and ni(h) ≤ ⌊|h|/2⌋
(Lemma 3.4) and Prop. 3.11, make simpler the description of H. When m = 2,
the description of H gets even simpler, because the type weight is a scalar, equal
to the Hamming weight, and for all h ∈ H , ni(h) = ⌊h/2⌋. This allows to find
the following explicit formula q∗ = Q(d∗) in the binary classical ensemble (d∗ was
already described by Benedetto et al. [3], but here our result is more precise for odd
values of dof). Define dif,2 and dif,3 to be the minimum output Hamming weight of
a regular error event of the inner encoder constrained to input Hamming weight 2
and 3 respectively (df,3 = +∞ if such an event does not exist). Also define di1,term
to be the minimum output Hamming weight of a terminated error event with input
Hamming weight 1.

Proposition 3.13 For the binary classical ensemble, q∗ = Q(d∗), where:

• if dof is even, d∗ = 1
2
dofd

i
f,2;

• if dof is odd (dof ≥ 5),

d∗ =

{

dof−3

2
dif,2 + min

{

dif,2 + di1,term,d
i
f,3,2d

i
f,2

}

if dof + 1 ∈ H
dof−3

2
dif,2 + min

{

dif,2 + di1,term,d
i
f,3

}

if dof + 1 /∈ H

• if dof = 3,

d∗ =

{

min
{

dif,2 + di1,term,d
i
f,3,2d

i
f,2

}

if 4 ∈ H

min
{

dif,2 + di1,term,d
i
f,3,3d

i
f,2

}

if 4 /∈ H

�

Now we give three examples of simple choices of the constituent encoders, for
which we consider general m. We compute µ and then, for the computation of q∗,
we consider the specific case of the m-PSK–AWGN channel, for which we can find

51

3 – Generalized serial turbo ensemble

an explicit expression. Recall that for S–AWGN channel, given a type d, Q(d) =
1
2
erfc

√

(
∑

g dgωg)Es/N0 where ωg = ‖θ(g)− θ(0)‖2/(4Es); when S is m-PSK, ωj =

sin2(jπ/m).

Example 3.1 [Repeat-Accumulate codes] The encoders are φo = Repr (with
r ≥ 2) and φi = 1

1−D . We assume that the termination rule for the accumulator is
the one that always brings to the zero state in one trellis step (using the input −a
if we are in state a).

We obtain µ = min{r − 1, r − ⌊r/p⌋}, where p is the smallest prime divisor of
m, and q∗ = 1

2
erfc

√

d∗Es/N0 where:

• for m = 2, d∗ = ⌊(r + 1)/2⌋;

• for even m ≥ 4,

d∗ =

{

rω1 if r = 2 or r = 3

⌊(r + 1)/2⌋ if r ≥ 4

• for odd m ≥ 3, let p be the smallest prime divisor of m and let n = m/p.
Define

d∗(r,m) =
⌊

r
p

⌋

p−1
∑

i=1

ωin + min
1≤j≤p−1

r mod p
∑

i=1

ωijn mod p

Then:

d∗ =











rω1 if r < p

d∗(r,m) if r ≥ 2p

min{rω1, d∗(r,m)} if p ≤ r < 2p

Sketch of how to get this result:

• m = 2:
We can use the explicit expressions we have for µ and d∗ in the binary case.
For Repr, d

o
f = r and dof + 1 /∈ H; for the accumulator, dif,2 = di1,term = 1 and

dif,3 = +∞.

• even m ≥ 4:
Notice that df(

m
pi

Repr) = r for all prime pi|m, so that, if 2|m, by Prop. 3.12

µ = ⌊(r + 1)/2⌋. Then compute:

– H = (rN)m−1 \ {0}.
– If r ≥ 4, H = {h ∈ H : |h| = r,no(h) = 1,ni(h) = ⌊|h|/2⌋} = {k} where

km/2 = r and ki = 0 for all i 6= m/2. This gives d∗ = ⌊(r + 1)/2⌋ωm/2.
Notice that ωm/2 = 1.

52

3 – Generalized serial turbo ensemble

– If r = 3, we have H = {k,2k,k(1), . . . ,k(m/2−1)} with k as above and k(j)

defined by k
(j)
j = k

(j)
m−j = r and k

(j)
i = 0 for all i /∈ {j,m− j}. Then:

d∗ = min{⌊(r + 1)/2⌋ωm/2, rω1, . . . ,rωm} = min{2ωm/2, 3ω1}

Then m ≥ 4 implies ω1 ≤ 1/2 = ωm/2/2, so d∗ = 3ω1.

– If r = 2, H = {h ∈ H : hi = hm−i∀i = 1, . . . ,m/2 − 1} and, with the
same reasonings as above, we find again: d∗ = ⌊(r+ 1)/2⌋ for m = 2 and
d∗ = d∗((2,0, . . . ,0,2)) = 2wE(φi(1 −D)) = 2ω1 for m ≥ 4.

• odd m ≥ 3:

– H = (rN)m−1 \ {0}.
– Compute:

min
h∈H:|h|=kr

=

{

1 + kr − k − k
2
r if k even

1 + kr − k − k−1
2
r − ⌊r/p⌋ if k odd

Notice that both expressions are non decreasing in k, and increasing in k
if r ≥ 3, so that µ = min{r − 1, r − ⌊r/p⌋}

– if r = 2, µ = 1 and H = {h ∈ H : hi = hm−i∀i = 1, . . . ,m/2 − 1}, so
that d∗ = d∗(re1 + re−1) = rω1;

– if 2 < r < p, µ = r− 1 and H = {k(1), . . . ,k((m−1)/2)}, the kj’s defined as
for even m. So again d∗ = d∗(re1 + re−1) = rω1.

– if r ≥ 2p , µ = r − ⌊r/p⌋ and H = {rem,re2m/p, . . . ,re(p−1)m/p}, from
which comes the expression for d∗

– if p ≤ r < 2p, µ = r − 1 = r − ⌊r/p⌋, so H is the union of the set H
computed for r < p and the one computed for r ≥ 2p; thus, d∗ is the
minimum of the two values obtained before. �

The Repeat-Accumulate on Z3 (r ≥ 3) is an example where the upper bound
µ ≤ dof − ⌊dof/3⌋ is reached with equality. Now, we show another simple Repeat-
Convolute code on Z3 such that the lower bound µ ≥ ⌊(dof + 1)/2⌋ is reached with
equality, showing that the bounds in Prop. 3.12 are the best possible for general m.

Example 3.2 Consider m = 3 and φo = Repr (r ≥ 2) and φi = 1/(1 + D) =
∑

t≥0D
2t + 2D2t+1, with the termination rule that always bring to the zero state in

one trellis step (i.e. if at time t the codeword has ct = a, we terminate using the
input ut+1 = −a if t is even, a if t is odd).

Then, as for the Repeat-Accumulate, H = rN2 \{(0,0)} and given h = (rh1,rh2)
we have no(h) = h1 + h2. But now, when we look at the inner encoder to compute

53

3 – Generalized serial turbo ensemble

ni(h), we find ni(h) = ⌊|h|/2⌋, because all the following inputs produce a complete
error event of φi: u = Dt + Dt+1, u = 2Dt + 2Dt+1 u = Dt + 2Dt+2 and u =
2Dt +Dt+2.

As a consequence,

µ = ⌊(r + 1)/2⌋
Let’s compute q∗ = 1

2
erfc

√

d∗Es/N0 for this example. First of all we need H:

H =











H if r = 2

{(r,0), (0,r), (r,r), (2r,0), (0,2r)} if r = 3

{(r,0), (0,r)} if r > 3

Now consider that: wE(φi(D
t+Dt+1)) = wE(Dt) = ω1 = 3/4; analogously wE(φi(2D

t+
2Dt+1)) = ω2 = 3/4; while wE(φi(D

t + 2Dt+2)) = wE(Dt + 2Dt+1) = ω1 + ω2 = 3/2
and the same for wE(φi(2D

t + Dt+2)) = 3/2. Assuming that termination is always
done in one single step, we also have that wE(φNi (DN−1)) = wE(φNi (2DN−1)) = 3/4.
Finally, we get d∗ = 3

4

⌊

r+1
2

⌋

. �

Notice that for Repeat-Accumulate codes (Example 3.1) µ = ⌊(r + 1)/2⌋ for all
even m. This is true for all Repeat-Convolute codes, by Prop. 3.12 together with
the remark that df(

m
pi

Repr) = r for all prime pi|m. However, for a general outer
encoder φo this is not true: the assumption that m is a power of two is essential in
Coroll. 3.1, as shown by the following example.

Example 3.3 Let m = 6. Consider φo which is the following slight variation of
a Repeat code: φo = [1, 1, 1, 1, 3]T . Let the inner encoder be the Accumulator
φi = 1

1−D . For p1 = 2 we have φo,1 = [1, 1, 1, 1, 1]T , which has df(φo,1) = 5, while for

p2 = 3 we have φo,2 = [1, 1, 1, 1, 0]T , which has df(φo,2) = 4, and so dof = df(φo,2) = 4.
The bounds given in Prop. 3.12 give us 2 ≤ µ ≤ 3 and now we will show that µ = 3.
Notice that f(h) = µ implies that 1 + |h| − |h|

dof
− |h|

2
≤ µ ≤ 3 and then |h| ≤ 8, so

H ⊆ {h ∈ H : |h| ≤ 8}. There are seven elements in H with |h| ≤ 8. By computing
f(h) for the all of them, we get µ = 3 and H = {(0,4,0,0,0),(0,0,5,0,0),(0,0,0,4,0)}
and finally q∗ = 1

2
erfc

√

d∗Es/N0 with d∗ = 2ω2 + ω4 = 9/4, reached when h =
(0,4,0,0,0) and h = (0,0,0,4,0). �

3.4.2 Subgroups of permutations for the Zm scheme

In the previous section, we have considered Zm-schemes

Z
kN
m−→ φNo

Z
r(N+νo)
m−→ πN

Z
sMN
m−→ φNi

Z
l(MN+νi)
m−→

54

3 – Generalized serial turbo ensemble

by taking U = Zk
m, Y = Zm, Γ = Zm in the general serial scheme. However, we

can also obtain some Zm schemes by taking Y = Za
m. Then, if we consider on

Za
m a weight given by the component-wise extension of the type weight on Zm, we

get again the same scheme as above. However, in this case we can also consider
permutations moving around not single elements of Zm, but only the vectors in Za

m,
so that the invariant weight is the type weight on Za

m. Or, on the contrary, we can
consider a ‘separate channels permutation’: the invariant weight is w ∈ (Nm−1)a

given by the type weight on each separate component of Za
m.

Even though these schemes are quite similar to the classical one, differing only for
a restriction of the permutations to a subgroup of Sr(N+νo), Prop. 2.7 and Coroll. 3.1
do not hold true. We give here a simple example, for the binary case m = 2, and
for the ‘separate channels’ permutation, where µ > ⌊(dof + 1)/2⌋.

Example 3.4 Consider the following outer and inner binary encoders:

φo =
[

1, 1
1+D+D3

]T
φi =

[1
1+D

0

0 1
1+D

]

and consider the ‘separate channels permutation’ ensemble (here m = 2 and a = 2
and so w ∈ N2 is the Hamming weight of the two streams). The outer encoder has
free distance dof = 4 and all the words c of the outer code such that dH(c) = dof are
obtained when input is 1 +D +D3 or its shifts and have w(c) = (3,1). The inner
encoder is simply the rate-1 Accumulator, but acting separately on the two input
streams.

We claim that for this scheme µ = 3 > ⌊(dof + 1)/2⌋ = 2. In fact, we know that
µ ≥ ⌊(dof +1)/2⌋ = 2, where equality could be reached only if there was h ∈ H such
that |h| = 4, no(|h|) = 1, ni(h) = 2, but this is not possible, as the only h ∈ H
such that |h| = 4 is h = (3,1), which has no(h) = 1 but ni(h) = 1, giving f(h) = 3
and so µ = 3.

By an exhaustive listing of all small-weight codewords, we can also find H, noting
that h ∈ H implies |h| ≤ 8, and then we can find q∗ = Q(3). �

Remark 3.6 The ‘separate channels’ ensemble is particularly interesting because
it allows to include in our generalized serial concatenations also the most traditional
parallel turbo codes (as it was already noticed e.g. in [2]): a turbo code with a
parallel branches, each with an encoder ψj of rate kj/nj , can always be seen as
Repeat-Convolute scheme, where φo = Repr and r =

∑

kj, the interleaver acts
separately on the a streams of ki ×N bits and φi is a block diagonal matrix, where
the blocks are the ψj ’s. �

55

3 – Generalized serial turbo ensemble

3.4.3 Structured LDPC ensemble

For a description of these schemes, see Section 3.1.3. Here we give some statements
about the parameters µ and d∗.

First of all, we have the following tight bounds for µ.

Proposition 3.14 For the structured LDPC ensemble,

⌊(c+ 1)/2⌋ ≤ µ ≤ c− ⌊c/pmin⌋

where pmin = min{pj ≥ 2 : pj |m}. �

By Prop. 3.3, we have µ ≥ ⌊(dof,1+1)/2⌋ = ⌊(c+1)/2⌋. The proof of the upper bound
is similar to the proof of Prop. 3.12. Notice that here pmin is computed considering
all prime factors of m because the outer encoder is a simple repetition code. �

In particular, this Proposition implies that for all even m the interleaver gain is:

µ = ⌊(c+ 1)/2⌋ .

In the binary case (m = 2), we can also characterize q∗. In fact, we can easily
describe H:

H =











{(2w,w) : w ∈ N∗} if c = 2

{(3,1), (6,2)} if c = 3

{(c,1)} if c ≥ 4

and then compute q∗ = Q(d∗):

d∗ =











1 if c is even

2 if c = 3

1 + min {d1,term(ψ),df,3(ψ)} if c is odd, c ≥ 5

where d1,term(ψ),df,3(ψ) are defined as di1,term,d
i
f,3 in Prop. 3.13 but referring here to

ψ instead of φi. If the inner encoder is truncated instead of terminated, d∗ = 2 for
all odd c.

Notice that the choice of ψ has almost no influence on d∗. This happens because
pairs of bits which are repetition of a same information bit can be permuted by
some interleaver in such a way that they are summed up by Sumd, producing a zero
output. The value of d∗ is given by this worse case scenario. This remark suggests
to consider interleavers with a better spread, enforcing the fact that 1’s coming
from the same error event of Repc cannot end up in positions where they would be
summed up by Sumd. However, the analysis of such a smaller ensemble, with a set
of interleavers which is not a group, requires some different proof techniques, and

56

3 – Generalized serial turbo ensemble

will be presented in Chapter 5.

For general m there is no explicit simple characterization of q∗, and neither there
is one for all even m. We can just notice that, on m-PSK–AWGN channels, by the
same argument used for m = 2, if both m and c are even then q∗ = 1

2
erfc

√

d∗Es/N0

with d∗ ≤ ωm/2 = 1. This upper bound is achieved, for example, simply taking
ψ = 1/(1 − D). To see that this upper bound is not always achieved, take for
example m = 6 and ψ = 1/(1 + D): we have that ψ(1 + D) = 1 which is an
error event of Euclidean weight ω1 = 1/4, so that for c = 2 or c = 4 we have
d∗ = 1

4
+ c

2
1
4
< 1.

57

Chapter 4

Binary serial turbo ensembles:
typical performance analysis

In this chapter we focus on the classical binary setting (binary serial turbo codes for
binary-input output-symmetric channels) in order to find more refined probabilistic
results in addition to the average error probability.

We investigate the typical behaviour of minimum distance and ML word error
probability of a serial turbo concatenation with random interleaver, when the inter-
leaver length N goes to infinity. Since the average-based analysis seemed to agree
with simulation results in the sense that hierarchies of the design parameters were
respected, it could be expected that a typical serial turbo code has an analogous
behaviour, i.e. there is a concentration phenomenon. In this chapter we will show
that in fact there is no concentration of the ML error probability around its av-
erage value, since the ratio P (e)/E[P (e)] converges to zero with probability one,
thus showing that the average error probability is dominated by an asymptotically
negligible fraction of bad interleavers. More precisely we shall prove that a typical
sequence of serial turbo codes has error probability subexponentially decreasing to
zero in N : with probability one the sequence log(− log(P (e)))/ logN approaches an
interval [α,β] ⊂ (0,1). The parameters α and β are increasing functions of the free
distance of the outer encoder, which is thus confirmed as the main design parameter
for these coding schemes, as was already suggested by the average-based analysis.

Our analysis is based on a precise estimation of the probability distribution of
minimum distances, inspired both by the the tail estimations of [41] and the deter-
ministic upper bounding techniques devised in [2]. A closer look to these bounds,
with a careful estimation of the constants involved, allows to find also a design
parameter for the inner encoder: its effective free distance, i.e. smallest weight of
codewords corresponding to input weight two. This confirms the importance of this
parameter that showed up in the analysis of the average error probability, but up
to now had not been noticed in the study of minimum distance.

58

4 – Binary serial turbo ensembles: typical performance analysis

Our result has to be considered as analogous of the well known behaviour of
ML-decoded LDPC codes (see [33], [48]): for the (c,d)-regular LDPC ensemble the
average error probability is known to decrease to zero as N1−c/2 for even c and N2−c

for odd c, while the error probability of a typical code goes to zero exponentially
fast.

Our proofs rely on estimations of the weight enumerating coefficients of the
constituents encoders which are tighter than those given in Section 2.3.5 in the case
when the output weight is not constant with respect to N . We will discuss these
bounds in Section 4.2; their proofs, based on techniques from [41], are specific for
the binary case.

4.1 Problem setting

In this chapter, we consider the ensemble described in Section 3.1, but specialized
to the most classical case: binary encoders and interleaver uniformly drawn among
all permutation of the suitable length.

For the sake of clarity, we recall here the scheme, in the particular case we are
now considering:

ZkN2−→ φNo
Z
r(N+νo)
2−→ πN

Z
sMN

2−→ φNi
Z
l(MN+νi)
2−→

where

• φo : Zk
2(D) → Zr

2(D);

• φi : Zs
2(D) → Zl

2(D);

• φo is terminated after N trellis steps, with N such that s divides r(N + νo),
obtaining

φNo : ZkN
2 → Zr(N+νo)

2

• φi terminated after MN trellis steps, with MN such that sMN = r(N + νo)

φNi : ZsMN
2 → Zl(MN+νi)

2

• the interleaver is a permutation πN ∈ SsMN

In addition, we will also use the notation:

• LN := r(N + νo) = sMN the interleaver length

• KN := l(MN + νi) = l(r
s
(N + νo) + νi) the blocklength.

59

4 – Binary serial turbo ensembles: typical performance analysis

From this binary serial scheme we get the classical binary ‘uniform interleaver’
ensemble by letting the interleaver ΠN be a random variable uniformly distributed
on SLN .

In order to avoid extremely cumbersome notation, we will at first expose our
results in full detail under some simplifying assumptions, and later (Section 4.5) we
will discuss how most of the assumptions can be weakened.

So, from now on, we will assume:

• φo is non-catastrophic;

• φi is non-catastrophic and recursive;

• dof is even;

• φi has scalar input (s = 1) and is proper rational, i.e. φi = 1
q(D)

[p1(D), . . . ,pl(D)]T

with deg(pi) < deg(qi) for all i

although the only essential assumptions are non-catastrophicity (at least the con-
catenated non-catastrophicity of the serial scheme described in Section 3.2) and
recursiveness of φi.

In most results we will assume dof ≥ 3, and in some also dof ≥ 5, we will comment
on the way on this requirement.

Throughout the chapter we will have quantities depending on many parameters:
w,d,N,n We will implicitly assume that the all the parameters are depending on
N , but we will avoid heavy notation wN ,dN So a statement such as ‘f(w,d,N) =
o(Na) for N → ∞, d = o(N) and w ≤ d’ means that if d = dN , w = wN satisfying
wN ≤ dN and dN/N → 0 when N → ∞, then limN→∞ f(wN ,dN ,N)/N = 0. When
we say ‘w is constant’ we mean it does not depend on N .

4.2 Estimations of the weight enumerating coef-

ficients of the constituent encoders

In this section, we present the bounds on the weight enumerating coefficients. As
the proofs are long, we postpone them to Section 4.2.4.

4.2.1 Preliminaries

We recall here some notation and properties, adding some new definitions.
First of all, we remind two very important parameters:

• dof is the free distance of the outer encoder, i.e. the minimum Hamming weight
of its non-zero codewords

60

4 – Binary serial turbo ensembles: typical performance analysis

• di2 is the effective free distance of the inner encoder, i.e. the minimum Hamming
weight among its codewords corresponding to input weight two.

We give here a slightly different version of Propositions 2.2 and 2.1 (from which
it follows immediately).

Lemma 4.1 Given a non-catastrophic convolutional encoder, there exists a con-
stant η such that any error event with output weight w has length not greater than
ηw trellis steps

We will denote ηo such constant for φo and ηi the one for φi, or, more precisely,
we will define ηo and ηi in such a way that any regular or terminating error event
of φNo and φNi respectively has length bounded by ηo (resp. ηi) times the output
weight. We will also use the notation µo = kηo and µi = sηi, so that any regular or
terminating error event of φNo and φNi respectively has input weight bounded from
above by µo (resp. µi) times the output weight.

In the following sections, we will give estimations of some weight enumerating
coefficients of φNo , and φNi , using techniques from [41]. We will use the notation:

• Ao,Nd = number of codewords of φNo with (output) weight d;

• Ai,Nw,≤d = number of codewords of φNi with input weight w and output weight
not greater than d;

• Ri,N
w,≤d,n = number of codewords of φNi with input weight w and output weight

not greater than d, consisting of exactly n regular error events, and no termi-
nating event;

• T i,Nw,≤d,n = number of codewords of φNi with input weight w and output weight
not greater than d, consisting of exactly n − 1 regular error events, plus one
terminating event

4.2.2 Outer encoder

For the outer encoder, we need only the following simple upper bound, which holds
true for all non-catastrophic terminated convolutional encoders

Lemma 4.2 ([41], Lemma 3) If ⌊d/dof⌋ < N/2,

Ao,Nd ≤ 2(kηo+ηo+1)d+1

(

N

⌊d/dof⌋

)

In the particular case when d = dof , also the following tighter estimation is true:

Ao,Ndof
≤ mo

fN

61

4 – Binary serial turbo ensembles: typical performance analysis

where mo
f is the number of different error events producing output weight dof (all

starting at time 0) �

Note: we know two estimations for mo
f . One is the same used in the proof of this

lemma, mo
f ≤ 2kd

o
fηo , the other (usually tighter) is mo

f ≤
(rηodof

dof

)

≤ (erηo)
dof .

4.2.3 Inner encoder

Using the recursiveness of φi, tighter bounds can be obtained, exploiting the limita-
tion on the number of error events given by the restriction that each of them must
have input weight at least two.

First of all we need the following well-known property, which is the binary version
of Propositions 2.3 and 2.4

Lemma 4.3 Given φ a convolutional encoder with scalar input, there exists a con-
stant δ ∈ N∗ such that wH(φ(1 +Dδ)) < ∞. Moreover, if you denote by D the set
of all such constants, and define δ̄ = minD , you have D = δ̄N∗.

Moreover, the following inequality holds true wH(φ(1 + Daδ̄)) ≤ awH(1 + Daδ̄)
and equality is guaranteed if φ(D) is proper, i.e. its numerator has strictly smaller
degree than its denominator. In this case, if you define d2 to be the smallest output
weight when input weight is forced to be 2, you also have d2 = wH(1 +Dδ̄). �

Note that this property is trivially true, with δ = 1, if φ is polynomial, and is inter-
esting only when φ is recursive.

We will use the notation δi to denote δ̄ for the encoder φi and di2 to denote the
effective free distance d2 of φi.

Now, for scalar-input φi, define:

Ii = inf
j

wH

(

φi(1 +Djδi)
)

j

Remarks:

• As φi is recursive and has scalar-input, wH

(

φi(1 + Dt)
)

< ∞ if and only if
t = jδi, j ∈ N.

• If φi(D) = p(D)
q(D)

with deg p < deg q, then wH

(

φi(1+Djδi)
)

= jwH

(

φi(1+Dδi)
)

.
Proof:

(1 + Djδi)
p(D)

q(D)
=

j−1
∑

t=0

Dtδi(1 + Dδi)
p(D)

q(D)
. As deg p < deg q ≤ δi, the er-

ror events Dtδi(1 + Dδi)p(D)
q(D)

have disjoint supports, so that the weight of

62

4 – Binary serial turbo ensembles: typical performance analysis

∑j−1
t=0 D

tδi(1 + Dδi)p(D)
q(D)

is the sum of the individual weights of the j error

events, which are all equal to wH

(

φi(1 +Dδi)
)

.

• Clearly, the same holds also for φi(D) = 1
q(D)

[p1(D), . . . ,pl(D)]T with deg pj <

deg q ∀j (φi has scalar input and is proper rational)

• As a consequence, if φi has scalar input and is proper rational, then

Ii = wH

(

φi(1 +Dδi)
)

= di2

Lemma 4.4 ([41], Lemma 1) Let 1 ≤ w ≤ µid, 1 ≤ d ≤ KN .

• If w is even,

Ri,N
w,≤d,w/2 ≤

(2e)w

ww
M

w/2
N

⌊

d

di2

⌋w/2

• If w is even, for N → ∞, if d = o(N),

Ai,Nw,≤d = Ri,N
w,≤d,w/2 + o

(

Cw

ww
M

w/2
N

⌊

d

di2

⌋w/2
)

where C = 2e3
√

e(l + 1)ηi.

• If w is odd, for N → ∞, if d = o(N),

Ai,Nw,≤d = O

(

Cw

ww
N ⌊w/2⌋

⌊

d

di2

⌋⌊w/2⌋−1

d2

)

where C = max
(

2e3
√

(l + 1)ηi, µ
2
i

√
e,2e2ηi

)

�

Lemma 4.5 ([41], Lemma 2) If w is even, 2 ≤ w ≤ N
ηo

and
di2w

2
≤ d ≤ di2MN

2δi

Ri,N
w,≤d,w/2 ≥

(

MN − δi⌊d/di2⌋
w/2

)(⌊d/di2⌋
w/2

)

which implies also

Ri,N
w,≤d,w/2 ≥

2w/2

ww
M

w/2
N

⌊

d

d2

⌋w/2

�

Clearly Ai,Nw,≤d ≥ Ri,N
w,≤d,w/2, so this lemma gives also a lower bound for Ai,Nw,≤d; looking

at Lemma 4.4 you see that asymptotically it is a tight bound.

63

4 – Binary serial turbo ensembles: typical performance analysis

4.2.4 Proofs

Proof of Lemma 4.2 ([41], Lemma 3):

Ao,Nd = Ro,N
d + T o,Nd

For the regular events, use the estimation

Ro,N
(d1,...,dn) ≤ 2kdηo

(

N

n

)

In fact, we are considering n error events, with lengths at most d1ηo, . . . , dnηo re-
spectively, so that the sum of their lengths is bounded by dηo: if you consider the
codewords restricted to these at most dηo trellis steps (removing the zeros corre-
sponding to state zero–state zero transitions in between), you have at most 2kdηo

words (the number of possible inputs for dηo trellis steps). Then, the starting posi-
tion for n error events in between less then N − n zero state–zero state transitions
can be chosen in at most

(

N
n

)

ways. So finally

Ro,N
d =

⌊d/dof ⌋
∑

n=1

∑

d1,...,dn:
∑

i di=d,di≥1

Ro,N
(d1,...,dn)

≤
d
∑

n=1

(

d

n

)

2kdηo
(

N

⌊d/dof⌋

)

≤ 2(kηo+1)d

(

N

⌊d/dof⌋

)

where the last line uses the simple remark that
d
∑

n=0

(

d
n

)

= 2d.

For the terminated events,

T o,N(d1,...,dn) ≤ 2kdηo
(

N

n− 1

)

dηo

with a proof analogous to the previous, but considering that the (n + 1)-th event,
being terminated and having length at most dηo, starts in a position between N−dηo

64

4 – Binary serial turbo ensembles: typical performance analysis

and N − 1 on the trellis. So,

T o,Nd =

⌈d/dof ⌉
∑

n=1

∑

d1,...,dn:
∑

i di=d,di≥1

T o,N(d1,...,dn)

≤ 2d2kdηo
(

N

⌈d/dof⌉ − 1

)

dηo

≤ 2(kηo+ηo+1)d

(

N

⌊d/dof⌋

)

In the case when d = dof we can get a tighter estimation by noticing that the only
two possibilities are to have one single regular error event of output weight dof or no
regular event at all and just one terminating event also of weight dof , then being the
same as some regular event. �

Proof of Lemma 4.4 ([41], Lemma 1).
We study Ai,Nw,≤d, separating the case when w is even or odd. Throughout the proof
we will use the following simple but useful estimations:

nm

mm
≤
(

n

m

)

≤ (en)m

mm
(4.1)

(

n−m

m

)

≤ en+m (4.2)

tt(w − t)w−t ≥ (w/2)w for all t ∈ [0,w] (4.3)

1

(t− 1)(t−1)
≤ e t

tt
(4.4)

Proof when w is even:

Ai,Nw,≤d = Ri,N
w,≤d + T i,Nw,≤d

Ri,N
w,≤d =

w/2
∑

n=1

Ri,N
w,≤d,n

where Ri,N
w,≤d,n is the number of words of ZLN

2 with weight w, producing codewords of

φNi of weight ≤ d made by exactly n regular error events and no terminating event
(the events possibly spaced with zeros in between).

First we find an estimation for Ri,N
w,≤d,w/2. Having w/2 error events and input

weight w, by recursiveness of φi gives input weight 2 for each event. So the input

65

4 – Binary serial turbo ensembles: typical performance analysis

words we are counting can be written as u(D) =

w/2
∑

t=1

Dbt(1+Dδiat), with bt > δiat−1

(so that the error events have disjoint support). We also have the restriction
wH (φi(D)u(D)) ≤ d, but we can obtain an upper bound on the number of such words

by imposing a weaker condition: notice that wH



φi(D)

w/2
∑

t=1

Dbt(1 +Dδiat)



 =

w/2
∑

t=1

wH

(

φi(D)(1 +Dδiat)
)

≥ Ii

w/2
∑

t=1

at so we will ask only Ii

w/2
∑

t=1

at ≤ d.

There are
(⌊d/Ii⌋
w/2

)

choices for a1, . . . ,aw/2 satisfying at ≥ 1 for all t and
∑w/2

t=1 at ≤
⌊d/Ii⌋. Then, there are at most

(

MN
w
2

)

choices for the beginnings b1, . . . ,bw/2 of the

error events, so finally

Ri,N
w,≤d,w/2 ≤

(⌊d/Ii⌋
w
2

)(

MN
w
2

)

≤ 1

ww
(2MN)w/2⌊d/Ii⌋w/2ew

Remember that MN = r
s
(N + νo) ≤ (r + 1)N for all N ≥ νo.

Then we have to estimate

w/2−1
∑

n=1

Ri,N
w,≤d,n.

Ri,N
w,≤d,n =

∑

w=(w1,...,wn):
wj≥2,

∑

wj=w

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

Ri,N
w,b,≤d,n

where Ri,N
w,b,≤d,n is the number of codewords of weight ≤ d that are the concatena-

tion of n error events, with input weights w1, . . . ,wn and beginning at time b1, . . . ,bn
respectively. The constraint wj ≥ 2 for all j comes from the recursiveness of φi.

Claim:

Ri,N
w,b,≤d,n ≤

(

dηi
w − n

)

(4.5)

Proof of the claim:
Ri,N

w,b,≤d,n is smaller than the number of binary words of length dηi with exactly
w − n ones, because it is possible to exhibit an injective map from the words we
want to count and such words. Given an input word (of length MN) producing
n error events having input weights w1, . . . ,wn and fixed beginnings b1, . . . ,bn, and
total output weight ≤ d, map it in a word of length dηi in the following way: re-
move all the zeros corresponding to zero state-zero state transitions on the trellis of
φi, and furthermore remove the bit corresponding to the first zero state-other state

66

4 – Binary serial turbo ensembles: typical performance analysis

transition of each error event (which is surely a one, because a zero would give a
zero state-zero state transition). The word obtained in such a way has surely length
< dηi, then add dummy zeros at the end to get a word of length dηi; the number
of ones is w − n, having removed many zeros and n ones from a word of weight w.
Clearly this map is injective (remember that the beginning time of the error events
is fixed and known).

Now, using the claim (4.5), we estimate

Ri,N
w,≤d,n =

∑

w=(w1,...,wn):
wj≥2,

∑

wj=w

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

Ri,N
w,b,≤d,n ≤

(

w − n− 1

n− 1

)(

MN

n

)(

dηi
w − n

)

so that

w/2−1
∑

n=1

Ri,N
w,≤d,n ≤

w/2−1
∑

n=1

(

w − n− 1

n− 1

)(

MN

n

)(

dηi
w − n

)

≤
w/2−1
∑

n=1

ew+n−1 (eMN)n

nn
(dηi)

w−n

(w − n)w−n
by (4.1) and (4.2)

≤ e5w/2η
w/2
i

(w/2)w

w/2−1
∑

n=1

Mn
Nd

w−n by (4.3)

≤ e5w/2η
w/2
i

(w/2)w
w

2
[(l + 1)MN]

w
2
−1d

w
2

+1 as d ≤ (l + 1)MN

≤ Cw

ww
M

w
2
−1

N d
w
2

+1

= o

(

Cw

ww
M

w
2
N d

w
2

)

if N → ∞ and d/N → 0

Finally, we have to consider the case of terminating events:

T i,Nw,≤d =

w/2
∑

n=1

T i,Nw,≤d,n =

w/2
∑

n=1

∑

w=(w1,...,wn):
∑

wj=w
wj≥2∀j<n,wn≥1

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

bn≥MN−dηi

T i,N
w,b,≤d,n

where T i,Nw,≤d,n is the number of words of ZLN
2 with weight w, producing codewords

of φNi of weight ≤ d made by exactly n− 1 regular error events and one terminating
event (the events possibly spaced with zeros in between) and T i,N

w,b,≤d,n is the same
with the constraint that the error events have input weights w1, . . . ,wn and beginning

67

4 – Binary serial turbo ensembles: typical performance analysis

times b1, . . . ,bn respectively. Everything is similar to the regular case, except the ad-
ditional condition bn ≥MN−dηi which comes from the remark that the terminating
event has clearly output weight < d and so length < dηi, and being terminating it
cannot start before MN − dηi. Moreover, the recursiveness imposes wj ≥ 2 for the
regular events, while for the terminating event only wn ≥ 1 is required.

With the same proof as for the estimation (4.5) of Ri,N
w,b,≤d,n, we have also

T i,N
w,b,≤d,n ≤

(

dηi
w − n

)

(4.6)

so that

T i,Nw,≤d ≤
w/2
∑

n=1

∑

w=(w1,...,wn):
∑

wj=w
wj≥2∀j<n,wn≥1

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

bn≥MN−dηi

(

dηi
w − n

)

≤
w/2
∑

n=1

(

w − n

n− 1

)(

MN

n− 1

)

dηi

(

dηi
w − n

)

≤ e5w/2η
w/2
i d

w/2
∑

n=1

Mn−1
N dw−n

(n− 1)(n−1)(w − n)(w−n)
by (4.1) and (4.2)

≤ e5w/2η
w/2
i

d

MN

w/2
∑

n=1

Mn
Nd

w−n

nn(w − n)(w−n)
en by (4.4)

≤ e5w/2+1η
w/2
i

(w/2)w
d

MN

w/2
∑

n=1

[(l + 1)MN]ndw−n n by (4.3)

≤ w
e5w/2+1[(l + 1)ηi]

w/2

(w/2)w
d

MN

(MNd)
w/2 by (4.3) and d ≤ (l + 1)MN

= o

(

Cw

ww
M

w
2
N d

w
2

)

if N → ∞ and d/N → 0

Proof when w is odd: As in the even case, we use

Ai,Nw,≤d = Ri,N
w,≤d + T i,Nw,≤d

We start with the concatenations of regular events

Ri,N
w,≤d =

⌊w/2⌋
∑

n=1

Ri,N
w,≤d,n

68

4 – Binary serial turbo ensembles: typical performance analysis

and we separate the term Ri,N
w,≤d,⌊w/2⌋, which now is made of w/2 − 1 events with

input weight 2 and one event with input weight 3, i.e. the input has the form
u(D) =

∑⌊w/2⌋−1
t=1 Dbt(1 + Dδiat) + Db(1 + Da + Da′). All the error events have

disjoint support, which implies the weaker condition that b1 < . . . b⌊w/2⌋−1 and
b 6= b1, . . . ,b⌊w/2⌋−1. The overall output weight is ≤ d, and this implies the weaker

condition Ii
∑⌊w/2⌋−1

t=1 at ≤ d and a < a′ < µid. There are

(

µid

2

)

choices for such

a,a′,

(⌊d/Ii⌋
⌊w/2⌋ − 1

)

choices for a1, . . . ,a⌊w/2⌋−1, less then ⌊w/2⌋
(

MN

⌊w/2⌋

)

choices for

b1, . . . ,b⌊w/2⌋−1,b, where the factor ⌊w/2⌋ comes from the choice of the position where
to put the error event of weight 3 in between the other events. Summarizing:

Ri,N
w,≤d,⌊w/2⌋ ≤

⌊w

2

⌋

(

MN

⌊w/2⌋

)(

µid

2

)(⌊d/Ii⌋
⌊w/2⌋ − 1

)

≤ µ2
i

16
√
e

√
e
w

ww
M

⌊w/2⌋
N d2

⌊

d

Ii

⌋⌊w2 ⌋−1

Then the terms with n < ⌊w/2⌋ regular error events are estimated exactly as in
the case when w is even:

⌊w/2⌋−1
∑

n=1

Ri,N
w,≤d,n =

⌊w/2⌋−1
∑

n=1

∑

w=(w1,...,wn):
wj≥2,

∑

wj=w

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

Ri,N
w,b,≤d,n

≤
⌊w/2⌋−1
∑

n=1

(

w − n− 1

n− 1

)(

MN

n

)(

dηi
w − n

)

≤
⌊w/2⌋−1
∑

n=1

ew+n−1 (eMN)n

nn
(dηi)

w−n

(w − n)w−n
by (4.1) and (4.2)

≤ e5w/2η
w/2
i

(w/2)w

⌊w/2⌋−1
∑

n=1

Mn
Nd

w−n by (4.3)

≤ e5w/2η
w/2
i

(w/2)w
w

2
[(l + 1)MN]⌊

w
2
⌋−1d⌈

w
2
⌉+1 as d ≤ (l + 1)MN

≤ (2e3
√

(l + 1)ηi)
w

ww
M

⌊w
2
⌋−1

N d⌈
w
2
⌉+1

Now differently from the even case, when estimating T i,Nw,≤d we have to separate

the main term T i,Nw,≤d,⌈w/2⌉, which will not be o
(

Ri,N
w,≤d,⌊w/2⌋

)

. We have to count inputs

producing ⌊w/2⌋ regular error events each with input weight 2 and one terminating

69

4 – Binary serial turbo ensembles: typical performance analysis

event with input weight 1, with overall output weight ≤ d. We count inputs of
the kind u(D) =

∑⌊w/2⌋
t=1 Dbt(1 + Dδiat) + DMN−l satisfying the weaker conditions:

0 ≤ b1 < · · · < b⌊w/2⌋ < MN , l ≤ ηid, Ii
∑

t at ≤ d . We get:

T i,Nw,≤d,⌈w/2⌉ ≤
(

MN

⌊w/2⌋

)

dηi

(⌊d/Ii⌋
⌊w/2⌋

)

≤ ηi

(

2e

w − 1

)w−1

M
⌊w/2⌋
N d

⌊

d

Ii

⌋⌊w/2⌋
(4.7)

Finally, the same as in the even case,

T i,Nw,≤d ≤
⌊w/2⌋
∑

n=1

∑

w=(w1,...,wn):
∑

wj=w
wj≥2∀j<n,wn≥1

∑

b=(b1,...,bn):
0≤b1≤···≤bn≤MN−1

bn≥MN−dηi

(

dηi
w − n

)

≤
⌊w/2⌋
∑

n=1

(

w − n

n− 1

)(

MN

n− 1

)

dηi

(

dηi
w − n

)

≤ e5w/2η
⌊w/2⌋
i d

⌊w/2⌋
∑

n=1

Mn−1
N dw−n

(n− 1)(n−1)(w − n)(w−n)
by (4.1) and (4.2)

≤ e5w/2η
w/2
i

d

MN

⌊w/2⌋
∑

n=1

Mn
Nd

w−n

nn(w − n)(w−n)
en by (4.4)

≤ e5w/2+1η
w/2
i

(w/2)w
d

MN

⌊w/2⌋
∑

n=1

[(l + 1)MN]ndw−n n by (4.3)

≤ w
e5w/2+1[(l + 1)ηi]

w/2

(w/2)w
d

MN
M

⌊w/2⌋
N d⌈w/2⌉ by (4.3) and d ≤ (l + 1)MN

This ends the proof of Lemma 4.4 �

Proof of Lemma 4.5 ([41], Lemma 2):
We count only some words consisting of w/2 regular error events (clearly each of
input weight 2): we count input words of the form

w/2
∑

t=1

Dit+ht−1δi +Dit+htδi

with:

1. 0 ≤ i1 < i2 < · · · < iw/2 < MN − δi⌊d/di2⌋;

2. h0 = 0 and 1 ≤ h1 < h2 < · · · < hw/2 ≤ ⌊d/di2⌋.
Note that these input words are defined in such a way that:

70

4 – Binary serial turbo ensembles: typical performance analysis

• they are all distinct (and so, by injectivity of φi, they give different codewords)

• they have weight w;

• they are inputs of w/2 disjoint error events;

• they produce output weight ≤ d. In fact: the t-th error event has input
Dit+ht−1(1 +Dδi(ht−ht−1)) (fixing the notation h0 = 0), so that the output has
weight wH

(

φi((1 + Dδi(ht−ht−1)))
)

≤ di2 (ht − ht−1), and then the total output

weight of the w/2 events is less then di2
∑w/2

t=1 (ht − ht−1) = di2hw/2 ≤ d.

How many such input words are there? There are
(

MN−δi⌊d/di2⌋
w/2

)

choices for the

indexes i1, . . . ,iw/2 and
(⌊d/di2⌋
w/2

)

choices for h1, . . . ,hw/2, so finally:

Ri,N
w,≤d,w/2 ≥

(

MN − δi⌊d/di2⌋
w/2

)(⌊d/di2⌋
w/2

)

≥
[

MN − δi⌊d/di2⌋
w/2

⌊d/di2⌋
w/2

]w/2

The last remark is that MN − δi⌊d/di2⌋ ≥ MN

2
as d ≤ di2MN

2δi
by assumption. �

4.3 Minimum distance

In this section we state and prove our results on the minimum distance: an es-
timation of the left tail of its distribution, based on techniques from [41], and a
deterministic upper bound based on ideas from [2].

Define (dof even):

α := 1 − 4

dof
, β := 1 − 2

dof
. (4.8)

Notice that both α and β are increasing functions of dof . If dof ≥ 4, we have 0 ≤ α <
β < 1, and dof ≥ 6 implies also α > 0.

4.3.1 Left tail of the minimum distance distribution

The upper bound for the left tail of the distribution of dmin
N has been obtained in

[41], as follows. The precise statement given in [41], Theorem 2.a is here the last
item in Corollary 4.1.

Lemma 4.6 ([41], Lemma 6) For all d ≤ KN ,

P(dmin
N ≤ d) ≤

µid
∑

w=dof

1
(

LN
w

) AN,ow Ai,Nw,≤d

�

71

4 – Binary serial turbo ensembles: typical performance analysis

Proof: Simply notice that

{dmin
N ≤ d} =

{

∃x ∈ φNo (Zk
2N) : wH(φNi ◦ΠN(x)) ≤ d

}

=
⋃

w

⋃

x∈φNo (Zk2N):
wH(x)=w

{

wH(φNi ◦ΠN(x)) ≤ d
}

so that, by the union bound,

P(dmin
N ≤ d) ≤

∑

w

∑

x∈φNo (Zk2N):
wH(x)=w

P
(

wH(φNi ◦ΠN(x)) ≤ d
)

=
∑

w

Ao,Nw
Ai,Nw,≤d
(

LN
w

)

Finally notice that Ao,Nw = 0 if w < dof and Ai,Nw,≤d = 0 if w > µid. �

Theorem 4.1 ([41], Theorem 2.a) For N → ∞, if d = o(Nβ), then

P(dmin
N ≤ d) ≤ mo

f

(

2e√
r

)dof

N1−dof/2
⌊

d

di2

⌋dof/2

+ o
(

N1−dof /2dd
o
f/2
)

�

Proof: It follows immediately from Lemma 4.6, estimating the enumerating co-
efficients of the constituent encoders with Lemmas 4.2 and 4.4, so that you get:

P(dmin
N ≤ d) ≤ mo

f

(

2e√
r

)dof

N1−dof /2
⌊

d

di2

⌋dof/2

+

µid
∑

w=dof+1

CwN ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉

for some C > 0 depending on φo and φi but not growing with N and d. The
conclusion comes from separating odd and even w:

∑

w>dof
w odd

CwN ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉ ≤
(

d

N

)1/2
∑

w≥dof+1

[

CN1/dof

(

d

N

)1/2
]w

and
∑

w>dof
w even

CwN ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉ ≤
∑

w≥dof+2

[

CN1/dof

(

d

N

)1/2
]w

and finally noticing that if d = o(Nβ) then CN1/dof
(

d
N

)1/2 → 0, so that the sums
are convergent; also notice that, being dominated by their first term, they are both

72

4 – Binary serial turbo ensembles: typical performance analysis

o
(

N1−dof/2dd
o
f/2
)

. �

It is possible to obtain also a lower bound for the left tail of the minimum
distance distribution, showing that asymptotically the upper bound in Thm. 4.1 is
tight. This lower bound is new; its proof uses techniques from the proof of Thm. 2b
in [41] and the inclusion-exclusion principle.

First of all, fix some particular outer codewords. Let c∗ be a word of the outer
code which has wH(c∗) = dof and is one error event, starting at time 0 and ending
after T trellis steps for some constant T . Note that 2 ≤ T ≤ dofηo.

Consider N > T . Define c∗
j as the shift to the right of c∗ for j trellis steps;

clearly, if |i− j| ≥ T , then c∗
i and c∗

j have non-overlapping supports. Define the set
of indexes J := {dofηo i , i ∈ Z+} ∩ {0,1, . . . ,N − 1 − dofηo}, so that i,j ∈ J clearly
ensures |i − j| ≥ dofηo ≥ T . For j ∈ {0,1, . . . ,N − 1 − dofηo} and d ∈ N, define the
events

E∗
j (d) :=

{

wH(φNi (ΠN(c∗
j))) ≤ d

}

∩ {φNi (ΠN(c∗
j)) has dof/2 regular error events}

Clearly, for any j, E∗
j (d) implies dmin

N ≤ d, so that

P(dmin
N ≤ d) ≥ P

(

⋃

j∈J
E∗
j (d)

)

We will get our lower bound by estimating the probability of this union with
the union-intersection bound. The following lemma, whose proof follows part of
the proof of Thm. 2.b in [41], gives us the expression for P

(

E∗
j (d)

)

and shows that
asymptotically these events are almost pairwise independent.

Lemma 4.7

• for all j ∈ [0, . . . ,N − T − 1], P(E∗
j (d)) =

Ri,N
dof ,≤d,dof/2
(

LN
dof

) .

• if i and j are such that |i− j| ≥ T , i 6= j,

P(E∗
i (d) ∩ E∗

j (d)) ≤
(

LN
dof

)

(LN−dof
dof

)
P(E∗

i (d))P(E∗
j (d))

�

73

4 – Binary serial turbo ensembles: typical performance analysis

Note that 1 ≤
(LNdo

f
)

(
LN−do

f
do
f

)
≤
(

1 +
dof

LN−2dof+1

)dof
, so that lim

N→∞

(

LN
dof

)

(LN−dof
dof

)
= 1; also note

that
(LNdo

f
)

(
LN−do

f
do
f

)
is decreasing with LN , and so also with N .

Proof of Lemma 4.7: The first statement is immediate, let’s prove the second

one. Let c∗
i =

∑dof
m=1D

tm . Given dof indexes τ1, . . . ,τdof each in [LN] := {0, . . . ,LN −
1}, define the event Eτ1,...,τdo

f
= {Π(Dth) = Dτh∀h = 1, . . . ,dof}. Clearly

P
(

E∗
i (d) ∩ E∗

j (d)
)

=
∑

τ1,...,τdo
f
∈[LN]

P
(

E∗
i (d) ∩Eτ1,...,τdo

f

)

P
(

E∗
j (d)

∣

∣E∗
i (d) ∩Eτ1,...,τdo

f

)

Then note that

P
(

E∗
j (d)

∣

∣E∗
i (d) ∩ Eτ1,...,τdo

f

)

= P
(

E∗
j (d)

∣

∣Eτ1,...,τdo
f

)

≤
Ri,N
dof ,≤d,dof/2
(LN−dof

dof

)
= P

(

E∗
j (d)

)

(

LN
dof

)

(LN−dof
dof

)

so that

P
(

E∗
i (d) ∩E∗

j (d)
)

≤
∑

τ1,...,τdo
f
∈[LN]

P
(

E∗
i (d) ∩ Eτ1,...,τdo

f

)

P
(

E∗
j (d)

)

(

LN
dof

)

(LN−dof
dof

)

which ends the proof, as
∑

τ1,...,τdo
f
∈[LN]

P
(

E∗
i (d) ∩Eτ1,...,τdo

f

)

= P
(

E∗
i (d)

)

. �

Theorem 4.2 For all N ≥ dofηo and d ≥ 1
2
dofd

i
2,

P(dmin
N ≤ d) ≥ C1N M

−
dof
2

N

⌊

d

di2

⌋

dof
2



1 − C2N M
−
dof
2

N

⌊

d

di2

⌋

dof
2





where C1 = 2
dof /2

e
do
f dofηo

and C2 = (2e)
dof

2dofηo

Proof: We use the inclusion-exclusion principle:

P(dmin
N ≤ d) ≥ P

(

⋃

j∈J
E∗
j (d)

)

≥
∑

j∈J
P(E∗

i (d)) −
∑

i,j∈J
i<j

P(E∗
i (d) ∩ E∗

j (d))

74

4 – Binary serial turbo ensembles: typical performance analysis

From this, we use Lemma 4.7 and then we estimate Ri,N
dof ,≤d,dof/2

with Lemmas 4.4

and 4.5. Also remember that |J | = ⌊N/(dofηo)⌋. We get:

P

(

⋃

j∈J
E∗
j (d)

)

≥ |J |
Ri,N
dof ,≤d,dof/2
(

LN
dof

) −
(|J |

2

)

(

LN
dof

)

(LN−dof
dof

)





Ri,N
dof ,≤d,dof/2
(

LN
dof

)





2

≥ N

dofηo

2d
o
f/2

ed
o
f
M

−dof /2
N

⌊

d

di2

⌋dof/2
[

1 − 1

2

N

dofηo
(2e)d

o
fM

−dof /2
N

⌊

d

di2

⌋dof/2
]

�

We highlight here an immediate consequence of Theorems 4.1 and 4.2 that we
will need later.

Corollary 4.1 For N → ∞, if d = o(Nβ), then there exist two positive constants
C1 and C2 (depending on the constituent encoders, but neither on N nor on d) such
that

C1N
1−dof /2dd

o
f/2 ≤ P(dmin

N ≤ dN) ≤ C2N
1−dof /2dd

o
f/2

and so, in particular, P(dmin
N ≤ dN) → 0. �

4.3.2 Deterministic upper bound

The picture of dmin
N given in Corollary 4.1 was completed in [41] by proving that

if d/Nβ → ∞, then P(dmin
N ≤ d) → 1 ([41], Thm. 2.b). Their proof, based on a

second-order method, did not underline how fast was the convergence. However a
much stronger result holds true: deterministically (i.e. for any given permutation
π as interleaver), dmin

N cannot grow more than C logN Nβ for some constant C.
This deterministic upper bound was obtained by Bazzi, Mahdian and Spielman for
Repeat-Convolute codes ([2], Thm. 2), but it is easy to generalize it to our setting
including a general outer encoder. Actually Bazzi et al. also study serial turbo codes,
not only Repeat-Convolute, but they do so in an even more general setting allowing
growing memory and obtain a result ([2], Thm. 4) which specialized to the constant
memory case gives a less tight bound. In addition to considering a general outer
encoder, we also underline the role that di2 plays in the bound, by slightly modifying
the proof.

The result we get is the following.

Theorem 4.3 For all N ≥ max(dofηo,
1
2
dofδ)

dmin
N ≤ 1

2
(dof)

2di2 log b

⌊

N

b

⌋

where b =

(

1

4

⌈

1

δd
o
f

⌊

N

dofηo

⌋⌉)2/dof

75

4 – Binary serial turbo ensembles: typical performance analysis

This also implies that, for sufficiently big N ,

dmin
N ≤ 2di2d

o
fδ

2
(

4(dofηo + 1)
)2/dofNβ logN

�

We give now the proof of this theorem, which requires some preliminary lemmas.
Let c∗, J , c∗j be defined as in Section 4.3.1. The aim is to show that, for any

interleaver, it is possible to find a suitable subset of the c∗
js, with cardinality grow-

ing at most as c logN , such that the corresponding output has weight smaller than
KNβ logN .

Define σ : J → Z
dof
δ by associating to an index j ∈ J a vector (σ1(j), . . . ,σdof (j))

in the following way: if c∗
j =

∑dof
m=1D

tm and π(c∗j) =
∑dof

m=1D
τm then σm(j) = τm

mod δ, i.e. σ(j) shows the positions where the ones of the codeword c∗
j end up after

the permutation, only considered mod δ. By the pigeonhole principle, clearly there

exists U ⊆ J with |U | ≥
⌈

|J |
δ
do
f

⌉

such that σ(i) = σ(j) for all i,j ∈ U .

From now on, we will consider only c∗
j with j ∈ U . The idea is that as all the

ones in these words are permuted to positions at a distance multiple of δ, when ap-
plying φi any pair of them gives a bounded output weight. Now we need to bound
the distance within these pairs, for a subset of indexes S ⊆ U , in order to bound
the output weight (see Lemma 4.3).

Now look at [MN] = {0, . . . ,MN − 1} and consider it as divided in b intervals
I1, . . . ,Ib, each of length ⌊MN/b⌋ (except a possibly longer one at the end); b is a
parameter depending on N that will be properly chosen later.

Define an hypergraph H = (V,E) in the following way. Take a dof -partite vertex
set V being the union of dof disjoint copies of W = {I1, . . . ,Ib}. The set of hyper-

edges E has cardinality |U | and is dof -regular in the sense that E ⊆ W dof , i.e. every
hyperedge contains exactly one vertex from each of the dof copies of W . Any edge in

E corresponds to an index j ∈ U , and is defined as e = (Ih1, . . . ,Ihdo
f
) ∈W dof where,

denoting c∗
j =

∑dof
m=1D

tm , hm is the index in [b] such that π(Dtm) ∈ Ihm.
Define the degree of a vertex in the hypergraph as the number of hyperedges

that contain that vertex. The following lemma holds true:

Lemma 4.8 ([2], Lemma 3) If 4bd
o
f/2 ≤

⌈

1

δ
do
f

⌊

N
dofηo

⌋⌉

, then there exists a non-

empty subset S ⊂ E, with |S| ≤ dof log b and such that in the induced subhypergraph
(V,S) every vertex has even degree (possibly zero).

We first clarify how this lemma implies Theorem 4.3, then we will prove it using
a few intermediate results. As S ⊂ E, there is a bijection from S to a subset S̃ ⊂ U :

76

4 – Binary serial turbo ensembles: typical performance analysis

any s ∈ S corresponds to a codeword c∗
j , j ∈ S̃. If you define c =

∑

j∈S̃ c∗
j it is

clearly a feasible outer codeword so that φi,N(π(c)) will be a codeword of the serial
scheme. Now notice that every vertex having even degree in (V,S) means that π(c)
has an even number of ones in any interval I1, . . . Ib. This also implies that π(c)
is made of pairs of ones falling in the same interval and so having a distance at

most the length N/b; more precisely, if you let π(c) =
∑|S|dof

m=1 D
tj , for any even m

tm+1 − tm ≤ N/b. As S̃ ⊂ U we also know that tm+1 − tm is a multiple of δ, so:

wH

(

φNi (π(c))
)

≤
|S|dof/2
∑

m=1

wH

(

φNi (Dt2m−1 +Dt2m)
)

≤ di2

|S|dof/2
∑

m=1

(t2m−t2m−1) ≤ di2|S|
dof
2

N

b

Finally use the bound on |S| which is the most important part of Lemma 4.8:
|S| ≤ dof log b, which ends the proof because of the upper bound on b.

Now we proceed to prove Lemma 4.8. From the hypergraph H = (V,E), con-
struct a bipartite graph G = (V ′,E ′) in the following way. Let V ′ be the union
of two disjoint copies (say W ′

1,W
′
2) of W dof/2, and then put and edge connecting

vertices (v1, . . . ,vdof /2) ∈ W ′
1 and (w1, . . . ,wdof/2) ∈ W ′

2 if and only if there is an

hyperedge (v1, . . . ,vdof/2,w1, . . . ,wdof/2) ∈ E. Note that |E ′| = |E| = |U | while

|V ′| = 2|W |dof/2 = 2bd
o
f/2. The next step is to apply the following lemma to prove

that there is a ‘small’ cycle in G (i.e. a cycle with length growing at most loga-
rithmically in N). Then we will conclude showing how this cycle in G gives the
subhypergraph of H promised in Lemma 4.8.

Lemma 4.9 ([2], Lemma 4) Let G be a graph with n vertices and m edges. If
m ≥ 2n, then G has a cycle of length at most 2 log2 n. �

Proof: First notice that surely G is not a tree, as m > n − 1. Let l be the
length of the smallest cycle: clearly l ≥ 3 (there are no self-loops and no parallel
edges), now we want to prove that l ≤ 2 logn. The first part of the proof is for
the case when deg v ≥ 3 for all vertex v. In this case, notice that if you look at
any vertex, take its neighbours, then their neighbours and so on you can proceed
for at least ⌈l/2⌉ − 1 steps without touching again a previously visited vertex, and
thanks to the assumption deg v ≥ 3, you have built a tree, subgraph of G, with
at least 1 + 3

∑⌈l/2⌉−1
i=1 2i−1 vertices. This implies that n ≥ 1 + 3

∑⌈l/2⌉−1
i=1 2i−1 =

1 + 3(2⌈l/2⌉−1 − 1) = 2⌈l/2⌉ + 2⌈l/2⌉−1 − 2 ≥ 2l/2 (as l ≥ 3). This gives l ≤ 2 log2 n.

Now the proof for general graphs (i.e. removing the previous assumption on the
degrees) is by induction on n. As initial step, you can take n = 5 where the only
graph satisfying the assumption is the complete graph, which has cycles of length
3 ≤ 2 log2 5 (or even more simply you can notice that for n < 5, no graph with

77

4 – Binary serial turbo ensembles: typical performance analysis

m ≥ 2n exists so the statement of this Lemma trivially holds true). For the induc-
tion step, assume the statement of this Lemma is true for graphs with n−1 vertices.
When you look at a graph G with n vertices, either every vertex has degree ≥ 3,
and so the statement has already been proved true, or there is a vertex, say w, with
degree degw < 3, so that if you look at G′ subgraph of G obtained by removing
w (and removing edges connected to w), you have G′ with n − 1 vertices and a
number of edges ≥ m− 2 ≥ 2n− 2 = 2(n− 1). So G′ has a cycle of length at most
2 log2(n− 1) ≤ 2 log2 n which is clearly also a cycle in G. �

Now apply Lemma 4.9 to the graph G obtained from the hypergraph H , which
has 2bd

o
f/2 vertices and |U | edges, where |U | ≥ ⌈|J |/δdof ⌉ and |J | = ⌊N/(dofηo)⌋. So if

b is such that ⌊N/(dofηo)⌋ ≥ 4bd
o
f /2 the graph G has a cycle of length l ≤ 2 log b. Note

that G could also have some parallel edges: in this case, we cannot use Lemma 4.9
but clearly G has a cycle of length 2. Now let’s see what a cycle C of length l in G
means on the hypergraph H : if you take in H exactly the hyperedges corresponding
to edges of C, you have that every hyperedge has in common with the previous
hyperedge half of the vertices, alternatively on the left or right side, so that in the
end every vertex is touched an even number of times. So this construction gives the
subset of hyperedges S claimed in Lemma 4.8 and ends the proof of the deterministic
upper bound.

4.4 Probabilistic consequences

In this section we derive probabilistic results for the sequence of minimum distances
based on the estimations of the previous section. Roughly speaking, we show that
minimum distances almost grow as N to some positive exponent which is less then
one and converges in a weak way to β, while in a strong way the sequence densely
covers the whole interval [α,β], α and β being defined in (4.8). Finally we show
how these results can be transferred to ML word error probabilities. We show that
typically P (e|ΠN) is subexponentially decreasing to zero, again with a speed densely
covering the interval [α,β] with probability one and weakly converging to β.

Remember that our probabilistic space is the serial turbo ensemble generated by
a sequence of independent r.v.s (ΠN)N∈N, with each ΠN uniformly distributed over
SLN . The main probabilistic tool we will use in our derivation is the Borel-Cantelli
lemma (see e.g. [12] Thm. 1.4.2) which states that, for every sequence of events
(An)n∈N

(i) if
∑

n∈N

P(An) <∞, then P({An i.o.}) = 0;

78

4 – Binary serial turbo ensembles: typical performance analysis

(ii) if the An’s are independent and
∑

n∈N

P(An) = ∞, then P({An i.o.}) = 1;

where the event {An i.o.} (‘An occurs infinitely often’) is defined as

{An i.o.} :=
⋂

n∈N

(

⋃

m≥n
Am

)

.

We define, for every N ∈ N and x ∈ [0,1],

Ex
N := {dmin

N ≤ Kx
N} ,

θ(x) := 1 +
dof
2

(x− 1) .

Observe that θ(x) is an increasing function of x, and that θ(α) = −1, θ(β) = 0.
From Corollary 4.1 it follows that, for 0 ≤ x < β, two positive constants C ′ and C ′′

exist such that
C ′N θ(x) ≤ P(Ex

N) ≤ C ′′N θ(x) . (4.9)

4.4.1 Minimum distances

Usually, asymptotics of the minimum distance of ensembles of codes are studied by
defining the relative minimum distance δN = dmin

N /KN . In our case Theorem 4.3

directly implies that deterministically δN
N→∞−→ 0 for any sequence of serial turbo

codes. For this reason we propose the following non linear rescaling

XN :=
log(dmin

N)

log(KN)
.

With this rescaling, (XN)N is a sequence of independent random variables taking
values in [0,1], since 1 ≤ dmin

N ≤ KN . The meaning of XN is to capture the exponent
of the sublinear asymptotic behaviour of dmin

N . Notice that

Ex
N = {XN ≤ x} .

Our main results about (XN)N∈N are the two following theorems.

Theorem 4.4 With probability one:

(a) (XN)N∈N densely covers [α,β] ;

(b) lim infN XN = α ;

(c) lim supN XN = β . �

79

4 – Binary serial turbo ensembles: typical performance analysis

Proof:
(a) We define for any t,n ∈ N, and s = 1, . . . ,2t,

Bs,N
t :=

{

XN ∈
[

α + s−1
2t

(β − α),α + s
2t

(β − α)
]

}

,

Bs
t :=

{

Bs,N
t i.o.

}

, Bt :=
⋂2t

s=1B
s
t .

From (4.9), we have that

P(Bs,N
t) ≥ C ′N θ(α+

s
2t

(β−α)) − C ′′N
θ
(

α+
s−1
2t

(β−α)
)

= C ′N θ(α+
s
2t

(β−α))
(

1 − C′′

C′ N
−β−α

2t

)

,

so that, since θ
(

α + s
2t

(β − α)
)

≥ −1,

∑

N∈N

P
(

Bs,N
t

)

= ∞ .

Thus, part (ii) of the Borel-Cantelli lemma lets us conclude that P(Bs
t) = 1 for any

s = 1, . . . ,2t, and so

P(Bt) = P
(

⋂2t

s=1B
s
t

)

= 1 , ∀t ∈ N .

But then

P ({(XN)N densely covers [α,β]}) = P
(
⋂

t∈N
Bt

)

= lim
t→∞

P(Bt) = 1 .

(b) By (4.9) we have that, for every ε > 0

∑

N∈N

P(Eα−ε
N) ≤

∑

N∈N

CNθ(α−ε) <∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P
({

Eα−ε
N i.o.

})

= 0 .

Denoting by Ac the complement of an event A, we have

{

Eα−ε
N i.o.

}c ⊆
{

lim inf
N∈N

XN ≥ α− ε

}

80

4 – Binary serial turbo ensembles: typical performance analysis

so that

P

(

lim inf
N∈N

XN ≥ α

)

=P

(

⋂

k∈N

{

lim infN XN ≥ α− 1
k

}

)

= lim
k→∞

P
({

lim infN XN ≥ α− 1
k

})

≥ lim
k→∞

P
({

E
α−1/k
N i.o.

}c)

= 1 .

Since by point (a) we have P (lim infN XN ≤ α) = 1, point (b) follows.
(c) Theorem 4.3 directly implies that lim supN XN ≤ β . Since point (a) implies

that P (lim supN XN ≥ β) = 1, point (c) follows. �

Although Theorem 4.4 tells us that with probability one a random sequence of
codes from the serial turbo ensemble has minimum distance exhibiting a chaotic
behaviour, a weak form of convergence for the sequence of r.v.s (XN)N can still
be observed. Formally, we have to consider the sequence of probability measures

instead of the probability space of sequences. We will denote by XN
P→ X the

convergence in probability (see [12] for definitions and properties). The following
result is a restating of [41]’s Theorem 2 in our setting.

Theorem 4.5 XN
P→ β . �

Proof: For every ε > 0, Corollary 4.1 and Theorem 4.3 guarantee that

P(|XN − β| < ε) ≥ 1 − C N−
dof
2
ε N→∞−→ 1 .

�

4.4.2 ML Error probabilities

In order to transfer our results about minimum distances to ML word error prob-
abilities we use a classical tool of coding theory known as expurgation (see [33]).
We estimate the averaged error probability conditioned on the complement events
(Ex

N)c for some proper x ∈ [0,β). By combining these estimations with (4.9) we
derive strong probabilistic results about the asymptotic behaviour of P (e|ΠN).

We define the following random variable

YN :=
log(− logP (e|ΠN))

logN
;

the idea is that YN should capture the speed of the subexponential asymptotic
decrease of P (e|ΠN).

81

4 – Binary serial turbo ensembles: typical performance analysis

Proposition 4.1 If the channel is sufficiently good, for all x ∈ [0,β),

E[P (e|ΠN) |(Ex
N)c] ≤ exp(−KxN

x)

for some positive constant Kx. �

Proof: We use the Union-Bhattacharyya bound, remembering that (Ex
N)c =

{dmin
N > Kx

N} and then, denoting by 1E the characteristic function of some event E:

E[P (e|ΠN)|(Ex
N)c]=

1

P((Ex
N)c)

E[P (e|ΠN) · 1(ExN)c]

≤ 1

P((Ex
N)c)

KN
∑

h=Kx
N

µih
∑

w=dof

µow
∑

l=1

Ao,Nl,w A
i,N
w,h

(

NN
w

) γh .

By Corollary 4.1, P((Ex
N)c)

N→∞−→ 1. So, for some c ≥ 1,

1

P((Ex
N)c)

≤ c .

We estimate Ai,Nw,h≤Ai,Nw,≤h by Lemma 4.4 and
µow
∑

l=1

Ao,Nl,w by Lemma 4.2, so we can find

a positive C such that:

E[P (e|ΠN)|(Ex
N)c]≤c

KN
∑

h=Kx
N

µih
∑

w=dof

Cw

(

h

w

)
w
2(w

N

)
w
2
− w
do
f γh.

Then we remark that the function g(z) := (a/z)z has maximum value g(a/e) = ea/e

and hence
(h/w)w/2 ≤ eh/(2e) .

Moreover, w ≤ LN ≤ c̃N for some c̃ ≥ 1, so (w/N)
w
2
− w
do
f ≤ c̃

(1
2
− 1
do
f

)w
. Hence, as

w ≤ µih, we can find a constant C̄ ≥ 1 such that:

E[P (e|ΠN)|(Ex
N)c] ≤

KN
∑

h=Kx
N

(C̄γ)h ≤ c̄(C̄γ)K
x
N

where the last inequality holds true, for some c̄ > 0, if γ < 1/C̄. Notice that C̄γ < 1
also implies that c̄(C̄γ)K

x
N ≤ exp (−KxN

x) for some positive Kx. �

Lemma 4.10 There exists a constant K such that, deterministically, P (e|ΠN) ≥
exp(−KNβ logN) . �

82

4 – Binary serial turbo ensembles: typical performance analysis

Proof: We use the inequality P (e|ΠN) ≥ pdmin
N , where p is the equivocation

probability of the channel (see [23]; e.g. p = 1/2 erfc(
√

Es/N0) for the BIAWGNC).
This, together with Theorem 4.3, gives the result. �

Lemma 4.11 For any x ∈ [0,β), there exist two positive constants K and C, de-
pending on x but not on N , such that

P
(

P (e|ΠN) ≥ exp(−KNx)
)

≥ CNθ(x) .

�

Proof: Since P (e|ΠN) ≥ pdmin
N , by (4.9) we get

P
(

P (e|ΠN) ≥ pK
x
N

)

≥ P
(

dmin
N ≤ Kx

N

)

= P (Ex
N)

≥ CNθ(x) .
�

Lemma 4.12 For a sufficiently good channel, for any x ∈ [0,β), there exist two
positive constants K and K ′, depending on x but not on N , such that

P
(

P (e|ΠN) ≥ exp(−KNx)
)

≤ K ′N θ(x) .

�

Proof: By Proposition 4.1 we have, for some Kx > 0

E [P (e|ΠN) |(Ex
N)c] ≤ exp(−KxN

x) ,

so that, by Markov inequality, we get

P
(

P (e|ΠN) ≥ exp(−Kx
2
Nx)

∣

∣ (Ex
N)c
)

≤ P

(

P (e|ΠN) ≥ E [P (e|ΠN)| (Ex
N)c]

exp(−Kx
2
Nx)

∣

∣

∣

∣

∣

(Ex
N)c

)

≤ exp(−Kx
2
Nx) .

Thus, by (4.9) we get

P
(

P (e|ΠN) ≥ exp(−Kx
2
Nx)

)

= P
(

P (e|ΠN) ≥ exp(−Kx
2
Nx)

∣

∣Ex
N

)

P(Ex
N)+

+ P
(

P (e|ΠN) ≥ exp(−Kx
2
Nx)

∣

∣ (Ex
N)c
)

P((Ex
N)c)

≤ P(Ex
N) + P

(

P (e|ΠN) ≥ exp(−Kx
2
Nx)

∣

∣ (Ex
N)c
)

≤ CNθ(x) + exp(−Kx
2
Nx)

and the claim immediately follows with K = Kx/2, and for some K ′ ≥ C. �

83

4 – Binary serial turbo ensembles: typical performance analysis

Theorem 4.6 For a sufficiently good channel, with probability one it holds true:

(a) (YN)N∈N densely covers [α,β];

(b) lim infN YN = α;

(c) lim supN YN = β. �

Proof:
(a) The proof is rather technical and we omit it, but the main ideas are similar

to those of the proof of Thm. 4.4 (a)
(b) For every ε > 0, by Lemma 4.12 we get

∑

N∈N

P
(

P (e|ΠN)≥exp(−KNα−ε)
)

≤
∑

N∈N

K ′N θ(α−ε)<∞

Then point (i) of the Borel-Cantelli lemma implies

P
({

P (e|ΠN) ≥ exp(−KNα−ε)
}

i.o.
)

= 0

so that

P (lim infN YN ≥ α− ε)

≥ P
({

{P (e|ΠN) ≥ exp(−KNα−ε)} i.o.
}c)

= 1 ,

and

P (lim infN YN ≥ α)

= P
(
⋂

k∈N
{lim infN YN ≥ α− 1/k}

)

= lim
k→∞

P (lim infN YN ≥ α− 1/k) = 1 . (4.10)

Moreover, by Lemma 4.11

∑

N∈N

P (P (e|ΠN)≥exp(−KNα))≥
∑

N∈N

CNθ(α) = ∞

and thus, by point (ii) of the Borel-Cantelli lemma:

P (lim infN YN ≤ α)

≥ P
(

{

P (e|ΠN) ≥ exp(−KNα)
}

i.o.
)

= 1

(c) Lemma 4.10 implies that, deterministically

lim supN YN ≤ β .

84

4 – Binary serial turbo ensembles: typical performance analysis

Moreover, for every ε > 0, by Lemma 4.12 we have

P
(

P (e|ΠN) ≥ exp(−KNβ−ε)
)

≤ CNθ(β−ε) N→∞−→ 0 .

Thus a subsequence (ΠNk)k∈N exists such that

∑

k∈N

P
(

P (e|ΠNk) ≥ exp(−KNβ−ε
k)

)

<∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P (lim supN YN ≥ β − ε)

≥ P
(

{

P (e|ΠN) ≥ exp(−KNβ−ε)
}

i.o.
)

≥ P
(

{

P (e|ΠNk) ≥ exp(−KNk
β−ε)

}

i.o.
)

= 1 .

By essentially the same derivation as in (4.10), we get P (lim supN YN ≥ β) = 1 . �

Theorem 4.7 For a sufficiently good channel

YN
P→ β .

�

Proof: This follows from Lemmas 4.10 and 4.12. �

4.5 Generalizations

In this section, we discuss how the simplifying assumptions we made can be removed.
To keep this section readable, we will address these issues one at the time, not
explicitly address how to remove them altogether, e.g. taking odd dof and φi with
non-scalar input and non-proper, even though this is clearly possible.

4.5.1 do
f = 2

Throughout Sections 4.3 and 4.4 we have assumed dof > 2. Now, for the case dof = 2,
let’s look more in detail at which results are still true.

The deterministic upper bound (Theorem 4.3) holds true also for dof = 2, where
it gives a logarithmic upper bound on the minimum distance.

The upper bound on the left tail of the minimum distance (Theorem 4.1) in this
case is not true, and following the same steps as the proof of Theorem 4.1 we get

P(dmin
N ≤ d) ≤ mo

f

(

2e√
r

)dof

N1−dof /2
⌊

d

di2

⌋dof/2

+

µid
∑

w=dof+1

CwN ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉

85

4 – Binary serial turbo ensembles: typical performance analysis

where now every term in the summation having even w does not decrease in N , and
so the bound grows to infinity and becomes trivial.

The lower bound on the left tail of the minimum distance (Theorem 4.2) is still
true, however it could become trivial with a right side getting negative. A more
careful choice of the indexes set J gives the more interesting result that P(dmin

N ≤
di2) is bounded away from zero. In fact, if you replace J := {dofηo i , i ∈ Z+} ∩
{0,1, . . . ,N − 1 − dofηo} with J := {C i , i ∈ Z+} ∩ {0,1, . . . ,N − 1 − C} where

C ≥ dofηo is a constant chosen large enough to ensure that 1− 2e2

rC
> 0, following the

proof of Theorem 4.2

P(dmin
N ≤ di2) ≥

1

re2C

(

1 − 2e2

rC

)

> 0

Clearly this means that Theorems 4.5 and 4.7 hold true (with β = 0) and, even
more, XN → 0 and YN → 0 deterministically. More precisely, the fact that P(dmin

N ≤
di2) ≥ c for some positive constant c implies that also P(Pw(e) ≥ pd

i
2) ≥ c > 0 and

that EPw(e) ≥ cpd
i
2 > 0, where p is the equivocation probability of the channel.

Finally note that the logarithmic upper bound implies that deterministically Pw(e) ≥
c̃/N for some positive constant c̃.

4.5.2 Non-scalar φi

When the inner encoder has non-scalar input (s 6= 1), we need to modify the results
in Section 4.2.3. Let’s start by looking at how Lemma 4.3 generalized to and encoder
φ ∈ Zl×s

2 ((D)). Clearly Lemma 4.3 is still true for the s scalar-input encoders
corresponding to columns of φ, so we know that also non-scalar recursive encoders
admit input words of weight 2 producing finite-weight output (thus ensuring d2 <
∞). But we can say more about input-weight-2 codewords of φ. Let’s define:

• δij the value of δ̄ obtained applying Lemma 4.3 to φij ;

• δj the value of δ̄ obtained applying Lemma 4.3 to the j-th column of φ;

• Dij =
{

δ : wH(φ(ei +Dδej)) <∞
}

Note that δj = lcm{δij, i : φij is recursive}. Also note that Dij could be empty or
non-empty, depending on the encoder φ. The following result characterizes non-
empty Dij’s. Suppose you write φij = pij(D)/qij(D) with gcd(pij,qij) = 1 and with
qij(0) = 1 (clearly you can always do so); then the following property holds.

Proposition 4.1 If Dij is not empty, then:

1. δi = δj

86

4 – Binary serial turbo ensembles: typical performance analysis

2. Dij = δ̃ij + δiN∗, where δ̃ij := minDij ;

3. qmi = qmj for all m = 1, . . . ,l;

4. δ̃ij < δi;

5. Dji 6= ∅ and, more precisely, Dji = δ̃ji + δiN∗ with δ̃ji = δi − δij .

Proof: Assume φ is recursive, i.e. every column of φ has at least one entry which
is a recursive scalar input - scalar output encoder. If not so, the proposition is
trivially true.

To prove statement 1., say that
pij(D)

qij(D)
+

Dδpi′j′ (D)

qi′j′ (D)
= r(D) ∈ Z2[D]. This implies

pij(D)qi′j′(D) + Dδpi′j′(D)qij(D) = r(D)qij(D)qi′j′(D), which in turn implies that
qij(D) both divides and is divided by qi′j′(D); in Z2[D] this gives qij(D) = qi′j′(D).

To prove statements 2. and 3. we use two steps. The first claim we prove is
that a ∈ Dij implies a + n1δi + n2δj ∈ Dij for any n1,n2 ∈ N∗. To see this, write:
φ
(

ei + Da+n1δi+n2δjej
)

= φ
(

ei + Dn1δiei
)

+ φ
(

Dn1δi(ei + Daej)
)

+ φ
(

Da+n1δi(ej +
Dn2δjej)

)

∈ Z2[D].
If Dij 6= ∅, this claim gives us

δ̃ij + δiN
∗ + δjN

∗ ⊆ Dij (4.11)

The second claim is that

Dij ⊆ δ̃ij + δjN
∗ (4.12)

and

Dij ⊆ δ̃ij + δiN
∗ . (4.13)

To prove the first inclusion, note that, if a ∈ Dij, then φ
(

Dδ̃ij(1 + Da−δ̃ij)ej
)

=

φ
(

ei +Daej
)

+ φ
(

ei +Dδ̃ijej
)

∈ Zl
2[D] which implies that a− δ̃ij ∈ δkN∗. To prove

the second inclusion, note that if a ∈ Dij , then φ
(

(1 +Da−δ̃ij)ei
)

= φ
(

ei +Daej
)

+

φ
(

Da(1 +Da−δ̃ij)ej
)

∈ Zl
2[D] which implies that a− δ̃ij ∈ δiN∗.

Finally, Equations (4.11), (4.12) and (4.13) altogether prove statements 2. and 3.
To prove statement 4., use a simple argument by contradiction: if it was δ̃ij ≥ δi,

then we would have also δ̃ij − δi ∈ Dij , because Dδiφ(ei +Dδ̃ij−δi) = φ(ei +Dδi) +

φ(ei +Dδ̃ijej) ∈ Z2[D].
To prove the last statement, we start noticing that δi − δ̃i ∈ Dji. In fact,

Dδ̃ijφ(ej + Dδi−δ̃ij) = φ(ei + Dδ̃ijej) + φ(ei + Dδiei) ∈ Z2[D]. Then, by statement
2. Dji = δ̃ji + δiN∗ for some δ̃ji ≤ δi − δ̃ij. The equality δ̃ji = δi − δ̃ij is true,

because φ(ej + Dδ̃ij+δ̃jiej) = φ(ej + Dδ̃jiei) + Dδ̃jiφ(ei + Dδ̃ijej) ∈ Z2[D] and so
δ̃ij + δ̃ji ∈ δiN∗. �

87

4 – Binary serial turbo ensembles: typical performance analysis

Clearly d2 = min{min
i

wH(φ(ei+Dδiei)), min
i,j:Dij 6=∅

wH(φ(ei+Dδ̃ijej))}. When com-

puting the average error probability of the serial uniform interleaver ensemble, this
is the relevant parameter to consider (see e.g. [3], and see also Chapter 3). However,
when dealing with typical instead of worse case, the most relevant parameters are all
d2,i := wH(φ(ei+D

δiei)). In fact, for all a ∈ N∗, we have wH(ei+D
aδiei) ≤ awH(φ(ei+

Dδiei)), with equality if the i-th column of φ has only proper fractions, and also

wH(ei + Dδ̃ij+aδiej) ≤ wH(ei + Dδ̃ij) + amin
(

wH(φ(ei + Dδiei)),wH(φ(ej + Dδiej))
)

If φ is proper, i.e. deg pij < deg qij for all i and j, it’s straightforward to prove the
following property.

Proposition 4.2 If Dij 6= ∅, define si(D) = φ(ei +Dδiei), sij(D) = φ(ei +Dδ̃ijej).
If φ is proper rational, then:

1. deg sij ≤ δ̃ij < δi;

2. wH(si) = wH(sj) = wH(sij) + wH(sji);

3. wH(φ(ei +Dδ̃ij+aδiej)) = wH(sij) + awH(si) = (a+ 1)wH(sij) + awH(si).

�

Now we have the tools to see how the estimations are modified for non-scalar-
input inner encoder.

Consider the upper bounds of the inner weight enumerating coefficients given in
Lemma 4.4. The modified version is:

Lemma 4.13 (Lemma 4.4 for non-scalar φi) Let 1 ≤ w ≤ µid, 1 ≤ d ≤ KN .

• If w is even,

Ri,N
w,≤d,w/2 ≤ sw

(2e)w

ww
M

w/2
N

⌊

d

di2

⌋w/2

• If w is even, for N → ∞, if d = o(N),

Ai,Nw,≤d = Ri,N
w,≤d,w/2 + o

(

Cw

ww
(sMN)w/2

⌊

d

di2

⌋w/2
)

where C = 2e3s2
√

e(l + 1)ηi.

• If w is odd, for N → ∞, if d = o(N),

Ai,Nw,≤d = O

(

sw/2
Cw

ww
N ⌊w/2⌋

⌊

d

di2

⌋⌊w/2⌋−1

d2

)

where C = max
(

2e3s2
√

(l + 1)ηi, sµ
2
i

√
e,2se2ηi

)

�

88

4 – Binary serial turbo ensembles: typical performance analysis

The bound for Rw,≤d,w/2 in Lemma 4.4 is generalized by counting words made
of w/2 pairs of ones, each of this pairs being of the form Dbt

(

ej(1 + Datδj)
)

or

Dbt
(

ei +Dδ̃ij+atδiej
)

for some i,j such that Dij 6= ∅. By imposing
∑w/2

t=1 at ≤ d
di2

we

ensure that the total output weight is ≤ d (overcounting; a tighter but very cum-
bersome bound could be obtained involving all di2(i)’s and di2(ij)’s). The number of
possible times to begin the w/2 events is bounded by

(

MN

w/2

)

and finally the term sw

takes into account the choice of the component where the w ones are (if Dij = ∅ for
all i 6= j, we can replace sw by sw/2).

For the remaining terms Ri,N
w,≤d,n and T i,Nw,≤d,n, follow the proof of Lemma 4.4 being

careful to distinguish MN from LN = sMN . The only tricky point is the estimation
(4.5) and its analogous (4.6): it is essential to get

(

dηi
w−n
)

and not just
(

dηi
w

)

, and
for scalar-input φi this is obtained by noting that surely the first bit of each error
event cannot be zero, so it is known to be one. Now, the first vector (element of Zs

2)
of an error event is surely not all-zero, but it can still have 2s − 1 different values.
However, with some careful estimation, we can replace (4.5) by the following:

Ri,N
w,b,≤d,n ≤ s2w

[

edηi
w − n

]w−n
(4.14)

which is tight enough to prove Lemma 4.13. To prove (4.14), let’s define Ri,N
w,b,v,≤d,n

to be the number of inner codewords with output weight ≤ d, made of n regular
error events, where w = w1, . . . ,wn are their input weights, b = b1, . . . ,bn are their
beginning time (bt ∈ [MN]), and v = v1, . . . ,vn is the weight of their first vector (i.e.
vt is the weight of the vector, element of Zs

2 which is the input at time bt). Clearly,
for all t, 1 ≤ vt ≤ s and also vt ≤ wt so that

∑

t vt ≤
∑

twt = w. Now we estimate

Ri,N
w,b,v,≤d,n ≤

(

s
v1

)

. . .
(

s
vn

)(

sdηi
w−∑n

t=1 wt

)

. Note that
(

s
v1

)

. . .
(

s
vn

)

≤ s
∑n
t=1 wt ≤ sw. For

the remaining term, we estimate
(

sdηi
w−∑n

t=1wt

)

≤
[

esdηi
w−∑n

t=1 wt

]w−∑n
t=1 wt

. Now note that

the function g(z) := (a/z)z is an increasing function of z for z ≤ a/e, and here we
have it with a = esdηi and z = w −∑n

t=1wt ≤ w − n < w ≤ sdηi = a/e, so that
[

esdηi
w−∑n

t=1 wt

]w−∑n
t=1wt ≤

[

esdηi
w−n

]w−n
. Putting everything together:

Ri,N
w,b,≤d,n =

∑

v1,...,vn
1≤vt≤s

Ri,N
w,b,v,≤d,n ≤ sn sw

[

esdηi
w − n

]w−n

The same bound can be proved also for T i,N
w,b,≤d,n. �

The lower bound on the enumerating coefficients given in Lemma 4.5 is easily
extended to non-scalar input φi.

89

4 – Binary serial turbo ensembles: typical performance analysis

Lemma 4.14 (Lemma 4.5 for non-scalar-input φi) If w is even, 2 ≤ w ≤ N
ηo

and
di2w

2
≤ d ≤ di2MN

2δi

Ri,N
w,≤d,w/2 ≥

s
∑

j=1

(

MN − δij⌊d/di2(j)⌋
w/2

)(⌊d/di2(j)⌋
w/2

)

which implies also

Ri,N
w,≤d,w/2 ≥ s

2w/2

ww
M

w/2
N

⌊

d

di2

⌋w/2

�

Proof: Simply apply the proof of Lemma 4.5 to every column of φi separately.�
A slightly tighter bound could be obtained by counting also words with error

events in different components, similarly to what is done in the upper bound.
These two modified lemmas allow to obtain easily the results in Theorems 4.2

and 4.1, only with suitably modified constants.
Also the deterministic upper bound (Theorem 4.3) generalizes to non-scalar-

input φi:

Theorem 4.8 (Theorem 4.3 for non-scalar-input φi) IfMN ≥ max(dofηo,
1
2
dof(maxj δ

i
j)

dmin
N ≤ 1

2
(dof)

2(max
j
di2(j)) log b

⌊

N

b

⌋

where b =

(

1

4

⌈

1

(
∏s

j=1 δ
i
j)
dof

⌊

N

dofηo

⌋⌉)2/dof

This also implies that, for sufficiently big N ,

dmin
N ≤ 2(max

j
di2(j))d

o
f(

s
∏

j=1

δij)
2
(

4(dofηo + 1)
)2/dofNβ logN

�

Proof: In the proof of Theorem 4.3, change the definition of σ, letting σ : J →
(Zδ1 × Zδ2 × · · · × Zδs)

dof be the function that associates to the dof ones of the outer
codeword c∗

j the position where they end up after the permutation, in the following

way: if a one goes to component k at time t (we look at ZsMN
2 as (Zs

2)
MN , MN being

the time on the trellis) we put a 0 in all components except the k-th, where we put
t mod δk. In this way, σ(i) = σ(j) means that for all k = 1, . . . ,dof , the k-th one
of the codewords c∗

i and c∗
j are permuted to the same component, say mk, and at

distance multiple of δmk , say akδmk so each pair produces an output with weight
upper bounded by akd

i
2(k) < (akδmk)(maxk d

i
2(k)).

By the pigeonhole principle, we can find U ⊆ J such that σ(i) = σ(j) for all

i,j ∈ U , with |U | ≥ |J |
(δi1δ

i
2...δ

i
s)
do
f
. With this new U you can apply all the proof of

Theorem 4.3, simply replacing δi by
∏s

j=1 δ
i
s and replacing di2 with maxsj=1 d

i
2(j). �

90

4 – Binary serial turbo ensembles: typical performance analysis

4.5.3 φi not proper rational

Now we want to relax the assumption that the degree of the numerator of φi is
strictly smaller than the degree of the denominator, which was used to obtain the
equality wH(φ(1 + Daδi) = adi2 (Lemma 4.3). For simplicity we focus again on the
scalar-input case.

Note that if both input and output are scalar, than non-catastrophicity and
recursiveness together imply that φi(D) = 1/q(D), so there is no need to study
non-proper rational encoders. However this is no longer the case when the output
is non-scalar.

Clearly we have wH(φ(1+Daδi) ≤ adi2 and, by definition of Ii, wH(φ(1+Daδi) ≥
aIi, so Lemma 4.5 and Theorem 4.3 are still true, and Lemma 4.4 is true if we use
Ii instead of di2.

In the following we want to show a parameter which can appear both in the upper
and in the lower bounds, at least for the case when the degree of the numerator is not
too big. As a notation, say that φi(D) = 1

q(D)[p1(D),...,pl(D)]
with gcd(q,p1, . . . ,pl) = 1

and let
pj(D)

q(D)
= sj(D) +

rj(D)

q(D)
with deg rj < deg q, sj possibly zero. Denote s(D) :=

[s1(D), . . . ,sl(D)]T . Define

Li := wH

(

1

q(D)
[r1(D), . . . ,rl(D)]T (1 +Dδi)

)

i.e. Li is the d2 of the proper rational encoder 1
q(D)

[r1(D), . . . ,rl(D)]T .

Lemma 4.15 If deg s < mδ, then:

Li ≤ wH(φ(1 +Daδ)) ≤ aLi + 2wH(s(D)) .

Moreover,

Li = lim
a→∞

wH(φ(1 +Daδ))

a

�

Proof: Consider separately each of the scalar encoders sj(D) +
rj(D)

qj(D)
. Note that

(sj(D) +
rj(D)

qj(D)
)(1 + Daδ) = sj(D) +

∑a−1
k=0D

kδ(1 + Dδ)
rj(D)

q(D)
+ Dasj(D). Clearly

(1 +Dδ)
rj(D)

q(D)
,Dδ(1 +Dδ)

rj(D)

q(D)
, . . . ,D(a−1)δ(1 +Dδ)

rj(D)

q(D)
and also Daδsj(D) all have

disjoint supports thanks to the assumption deg s < mδ, so the only part that overlaps
and could cancel some bits in the summation is sj(D). Thus:

wH((sj(D) +
rj(D)

qj(D)
)(1 +Daδ)) ≤ 2wH(sj(D)) + awH((1 +Dδ)

rj(D)

q(D)
)

91

4 – Binary serial turbo ensembles: typical performance analysis

and

wH((sj(D) +
rj(D)

qj(D)
)(1 +Daδ)) ≥ (wH(sj(D)) + awH((1 +Dδ)

rj(D)

q(D)
)) − wH(sj(D))

This applied for all j gives the bound. The limit follows immediately. �

Note that in Lemma 4.15 the assumption deg s < mδ is needed only for the lower
bound, not for the upper. Also note that if deg s < δ, the bound in Lemma 4.15 is
true for all values of m, and so Ii = Li, which allows to have Li appear in Lemma 4.4
without any further calculation. Moreover, in this case you can notice that sj(D)

overlaps only with the first term in the summation
∑a−1

k=0D
kδ(1 +Dδ)

rj(D)

q(D)
, so that

another interesting upper bound can be derived from the proof of Lemma 4.15:

wH(φ(1 +Daδi)) ≤ di2 + (a− 1)Li .

Lemma 4.5 and Theorem 4.3 are easily modified using the upper bound in
Lemma 4.15. Lemma 4.5 now gives

Ri,N
w,≤d,w/2 ≥

(

MN − δi⌊d/di2⌋
w/2

)(⌊d−wwH(s)
Li

⌋
w/2

)

which makes sense with the additional assumption that w = o(d) for N → ∞,
which is clearly verified for the constant w = dof (this is the only use we make of
this lemma). To prove it, simply modify the proof of Lemma 4.4 by choosing

1 ≤ h1 < h2 < · · · < hw/2 ≤ ⌊d− wwH(s)

Li
⌋

because wH

(

φi((1 + Dδi(ht−ht−1)))
)

≤ Li (ht − ht−1) + w
2
2wH(s), and then the to-

tal output weight of the w/2 events is less then Li
∑w/2

t=1 (ht − ht−1) = Lihw/2 +
wwH(s(D)) ≤ d. The deterministic upper bound can also be modified, keeping
all the proof the same, except that after the codeword construction the bound on

the weight uses Lemma 4.15: wH

(

φNi (π(c))
)

≤
|S|dof/2
∑

m=1

wH

(

φNi (Dt2m−1 + Dt2m)
)

≤

Li

|S|dof/2
∑

m=1

(t2m−t2m−1)+2
|S|dof

2
wH(s(D)) ≤ Li|S|

dof
2

N

b
+2

|S|dof
2

wH(s(D)) Theorem 4.3

now becomes:

dmin
N ≤ 1

2
(dof)

2Li log b

⌊

N

b

⌋

+ dofwH(s(D)) log b

where b =
(

1
4

⌈

1

δ
do
f

⌊

N
dofηo

⌋⌉)2/dof
, also implying that, for sufficiently big N ,

dmin
N ≤ 2di2d

o
fδ

2
(

4(dofηo + 1)
)2/dofNβ logN + 2wH(s(D)) logN

92

4 – Binary serial turbo ensembles: typical performance analysis

4.5.4 Odd do
f

The relevant parameters now are:

• α := 1 − 2
⌈dof/2⌉

= 1 − 4
dof+1

;

• β := 1 − 2
dof

;

• β̃ := 1 − 1
⌈dof/2⌉

= 1 − 2
dof+1

.

Clearly 0 ≤ α < β < β̃ < 1, with α = 0 if and only if dof = 3.

Here Lemmas 4.2 and 4.4 hold true without any modification. Only note that
a slightly more tight upper bound for Ai,Nw,≤d could be obtained in Lemma 4.4, by
carefully evaluating the constants.

We need the following version of Lemma 4.5 for odd w, to be used with w = dof .
In addition to the parameter di2, we also need here

di1 := sup
t=1,...,MN

1

t
wH

(

φi,N(DMN−t)
)

where we consider the terminated encoder φi,N , not the convolutional encoder φi

which would always give wH

(

φi(D
MN−t)

)

= +∞ by recursiveness. Note that we
have the trivial bound 1 ≤ di1 ≤ l.

Lemma 4.16 (Lemma 4.5 for odd w) If w is odd, for any choice of ǫ1,ǫ2 ∈ (0,1),
if ǫ2d ≤ lǫ1MN ,

T i,Nw,≤d,⌈w/2⌉ ≥
(

(1 − ǫ1)MN − δi
⌊

(1−ǫ2)d

di2

⌋

⌊w/2⌋

)(

⌊

(1−ǫ2)d
di2

⌋

⌊w/2⌋

)⌊

ǫ2d

di2

⌋

In particular, this implies that for all d ≤MN/(2l):

Ai,Nw,≤d ≥ T i,Nw,≤d,⌈w/2⌉ ≥
1

(8w)w
M

⌊w/2⌋
N

⌊

d

di2

⌋⌊w/2⌋
d

di1

Proof: We count some particular codewords which have a first part with support
in [0, . . . (1 − ǫ1)MN − 1], consisting of (w − 1)/2 error events each of input weight
2 and of total weight ≤ (1 − ǫ2d) (use Lemma 4.5 to count them); a second part is
one single terminating event of input weight 1 and output weight ≤ ǫ2d. �

Now we have the tools to see how Theorems 4.1 and 4.2 generalize.

93

4 – Binary serial turbo ensembles: typical performance analysis

Theorem 4.9 (Theorem 4.1, odd dof) For N → ∞, if d = o(Nβ), then

P(dmin
N ≤ d) = O

(

N1−⌈dof /2⌉d⌈d
o
f /2⌉
)

+O
(

N2−dofdd
o
f
)

�

Proof: From Lemma 4.6, estimating the enumerating coefficients of the con-
stituent encoders with Lemmas 4.2 and 4.4, you get:

P(dmin
N ≤ d) ≤

µid
∑

w=dof

CwN ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉ (4.15)

for some C > 0 depending on φo and φi but not growing with N and d. Now we
need to separate different terms. If you write w = adof + b, with integers a ≥ 1,
0 ≤ b < dof , you can see that

N ⌊w/dof ⌋−⌈w/2⌉d⌈w/2⌉ =







(

d
N

)b/2
(

N1−dof /2dd
o
f/2
)a

if a+ b is even
(

d
N

)
b+1
2

(

N1−dof/2dd
o
f/2
)a

if a+ b is odd

For N → ∞, if d = o(Nβ) then N1−dof /2dd
o
f/2 → 0 and so

∑

aN
1−dof /2dd

o
f/2 converges.

So, you need to split the summation in (4.15) in the following four terms (with the
notation [dof] = {0,1, . . . ,dof − 1}):

•
∑

b∈[dof]

b even

(

d

N

)b/2
∑

a∈N
∗

a even

(

N1−dof/2dd
o
f/2
)a

≤ c1N
2−dofdd

o
f

•
∑

b∈[dof]

b odd

(

d

N

)b/2
∑

a∈N∗

a odd

(

N1−dof /2dd
o
f/2
)a

≤ c2

(

d

N

)1/2

N1−dof /2dd
o
f/2

•
∑

b∈[dof]

b even

(

d

N

)
b+1
2 ∑

a∈N∗

a odd

(

N1−dof/2dd
o
f/2
)a

≤ c3
d

N
N2−dofdd

o
f

•
∑

b∈[dof]

b odd

(

d

N

)
b+1
2 ∑

a∈N
∗

a even

(

N1−dof /2dd
o
f/2
)a

≤ c4

(

d

N

)1/2

N1−dof /2dd
o
f/2

94

4 – Binary serial turbo ensembles: typical performance analysis

for some constants c1,c2,c3,c4 > 0.
Finally note that d

N
N2−dofdd

o
f = o

(

N2−dofdd
o
f
)

. �

The reason why we keep two terms in the right-hand side of Theorem 4.9 is that,
depending on how fast d grows with N , either the first or the second term will be
dominating. More precisely, define κ := 1 − 2

dof−1
and note that for N → ∞, if

d/Nκ → 0 then N1−⌈dof /2⌉d⌈d
o
f/2⌉ = o

(

N2−dofdd
o
f
)

and vice-versa if d/Nκ → ∞ then

N2−dofdd
o
f = o

(

N1−⌈dof /2⌉d⌈d
o
f/2⌉
)

. Also note that α < κ < β, except for dof = 3 which

gives 0 = α = κ < β = 1/3.

A closer look to the proof shows that the term N2−dofdd
o
f corresponds to input

weight 2dof , while the term N1−⌈dof /2⌉d⌈d
o
f/2⌉ comes from input weight dof and also

from input weight dof + 1 (if there is any outer codeword with such weight). This
suggests which words we have to count in the different regimes (d below or above
Nκ) in order to obtain a tight lower bound for P(dmin

N ≤ d).

We give here a bound, analogous to Theorem 4.2, which is tight for d below Nκ

and will allow us to show the role of α.

Theorem 4.10 (Theorem 4.2 for odd dof) For all N ≥ dofηo and d ≥ dof−1

2
di2+di1

P(dmin
N ≤ d) ≥ C1N M

−
⌈

dof
2

⌉

N

⌊

d

di2

⌋

⌊

dof
2

⌋

d

di1



1 − C2N M
−
⌈

dof
2

⌉

N

⌊

d

di2

⌋

⌊

dof
2

⌋

d





where C1 = 1

dofηo(8e)
do
f

and C2 = ηi
4ηo

(4e)d
o
f . �

Proof: Modify the definition of the events E∗
j (d) as follows:

E∗
j (d) :=

{

wH(φNi (ΠN(c∗
j))) ≤ d

}

∩{φNi (ΠN(c∗
j)) has ⌊dof/2⌋ regular and one terminating events }

Clearly E∗
j (d) implies dmin

N ≤ d.

A slight modification of Lemma 4.7 gives:

• for all j ∈ [0, . . . ,N − T − 1], P(E∗
j (d)) =

T i,Ndof ,≤d,⌈dof/2⌉
(

LN
dof

) .

• if i and j are such that |i− j| ≥ T , i 6= j,

P(E∗
i (d) ∩ E∗

j (d)) ≤
(

LN
dof

)

(LN−dof
dof

)
P(E∗

i (d))P(E∗
j (d))

95

4 – Binary serial turbo ensembles: typical performance analysis

Then we estimate T i,Ndof ,≤d,⌈dof/2⌉
from above using Eq. (4.7) from the proof of Lemma 4.4

T i,Ndof ,≤d,⌈dof/2⌉
≤ ηi

(

2e

dof − 1

)dof−1

M
⌊dof /2⌋
N d⌊d/di2⌋⌊d

o
f /2⌋

while for the lower estimation we use Lemma 4.16. We conclude estimating P(dmin
N ≤

d) ≥
∑

j∈J
P(E∗

i (d)) −
∑

i,j∈J
i<j

P(E∗
i (d) ∩ E∗

j (d)) as in Theorem 4.2. �

From Theorems 4.9 and 4.10 we understand the role of α:

∑

N

P(dmin
N ≤ d) < +∞ if and only if d = o(Nα) .

From Theorem 4.9 it is also clear that d = o(Nβ) implies P(dmin
N ≤ d) → 0 when

N → ∞. However, to generalize Theorems 4.4, 4.5, 4.6 and 4.7 we still need the
deterministic upper bound of Theorem 4.3. What we can get is the following.

Theorem 4.11 (Theorem 4.3 for odd dof) For all N ≥ max(dofηo,
1
2
dofδ)

dmin
N ≤ 1

2
(dof)

2di2 log b

⌊

N

b

⌋

where b =

⌊

1

4

⌈

1

δd
o
f

⌊

N

dofηo

⌋⌉⌋
1

⌈do
f
/2⌉

This also implies that, for sufficiently big N ,

dmin
N ≤ 2di2d

o
fδ

2
(

4(dofηo + 1)
)

2
do
f
+1Nβ logN

�

Proof: The proof is the same as for even dof except the way you construct
the bipartite graph G from the hypergraph H : now you let V ′ = V1 × V2 with V1 =
W ⌈dof/2⌉ and V2 = W ⌊dof/2⌋ and you put an edge connecting vertices (v1, . . . ,v⌈dof /2⌉) ∈
V1 and (w1, . . . ,w⌊dof /2⌋) ∈ V2 if and only if there is an edge (v1, . . . ,v⌈dof/2⌉,w1, . . . ,w⌊dof/2⌋) ∈
E. Note that |V ′| = b⌈d

o
f/2⌉+b⌊d

o
f/2⌋ < 2b⌈d

o
f/2⌉ while |E ′| is the same as for even dof and

satisfies |E ′| ≥
⌈

1

δ
do
f

⌊

N
dofηo

⌋⌉

so you need to choose b satisfying 4b⌈d
o
f/2⌉ ≤

⌈

1

δ
do
f

⌊

N
dofηo

⌋⌉

in order to apply Lemma 4.9 and conclude the proof. �

Unfortunately, the exponent β̃ in this bound does not match β as it does when
dof is even. It is still possible to prove Theorems 4.5 and 4.7 (with the exponent β)
by a second-order method used in [41] for even dof . Following the suggestion in [41],
for odd dof it is necessary to look at events somehow similar to E∗

j (d) but involving a
pair of outer error events c∗

i ,c
∗
j instead of just one of them. Roughly, what we want

96

4 – Binary serial turbo ensembles: typical performance analysis

to estimate is the probability that wH

(

φNi ◦Π(c∗
i + c∗

j)
)

≤ d, but we will choose
slightly smaller events in order to simplify the study of the intersections. We define:

E∗
ij(d) :=

{

Π(c∗
i) =

dof
∑

t=1

Dbt and Π(c∗
j) =

dof
∑

t=1

Dbt+ltδi

for some 0 ≤ b1 < · · · < bdof ≤MN , lt ≥ 1,

dof
∑

t=1

lt ≤
⌊

d

di2

⌋ }

Now define the random variable

Z :=
∑

i,j∈I, i6=j
1E∗

ij(d)

Clearly

P(dmin
N ≤ d) ≥ P

(

⋃

i,j∈I, i6=j
E∗
ij(d)

)

= 1 − P(Z = 0)

so all we need is to estimate P(Z = 0) using the following well-known trick

Lemma 4.17 ([41], Lemma 5) If Z is a r.v. with finite mean and finite variance,

P(Z = 0) ≤ E(Z2)

[E(Z)]2
− 1

�

Proof: P(Z = 0) ≤ P
(

|Z−E(Z)| ≥ E(Z)
)

≤ E[(Z−E(Z))2]
[E(Z)]2

by Chebyshev inequality.�
From this Lemma and from the definition of our Z, we get

P(dmin
N ≤ d) ≥ 2 − E(Z2)

[E(Z)]2
= 2 −

∑

i,j,k,l∈I
i6=j,k 6=l

P
(

E∗
ij(d) ∩E∗

kl(d)
)

[

∑

i,j∈I
i6=j

P
(

E∗
ij(d)

)

]2 (4.16)

The aim now is to prove that, for N → ∞, if d/Nβ → ∞, then the right side of the
above inequality tends to one and so also P(dmin

N ≤ d) → 1. We do so by using the
following estimations:

• a look at the proof of Lemma 4.5 (with w = 2dof), gives:

P
(

E∗
ij(d)

)

≥ 1
(

LN
2dof

)

2d
o
f

(dof)
2dof
L
dof
N

⌊

d

di2

⌋dof

97

4 – Binary serial turbo ensembles: typical performance analysis

• with a similar proof to Lemma 4.7 (i.e. using the same conditioning trick) you
find that, if i,j,k,l are all distinct:

P
(

E∗
ij(d) ∩ E∗

kl(d)
)

≤
(

LN
2dof

)

(LN−2dof
2dof

)
P
(

E∗
ij(d)

)

P
(

E∗
kl(d)

)

• simple counting gives that, if i,j,k are all distinct,

P
(

E∗
ij(d) ∩ E∗

ik(d)
)

≤ 1
(

LN
3dof

)

(

LN
dof

)(⌊d/di2⌋
dof

)2

and the same bound holds for P
(

E∗
ij(d) ∩E∗

kj(d)
)

so that we can split the summation in Eq. (4.16) in the following terms:

•

∑

i,j,k,l∈I
i,j,k,l distinct

P
(

E∗
ij(d) ∩ E∗

kl(d)
)

[

∑

i,j∈I
i6=j

P
(

E∗
ij(d)

)

]2

N→∞−→ 1

•

∑

i,j,k∈I
i,j,k distinct

[

P
(

E∗
ij(d) ∩ E∗

ik(d)
)

+ P
(

E∗
ij(d) ∩ E∗

kj(d)
)]

[

∑

i,j∈I
i6=j

P
(

E∗
ij(d)

)

]2 ≤ c1
1

N

for some constant c1 > 0 and so it tends to zero when N → ∞;

•

∑

i,j∈I
i6=j

P
(

E∗
ij(d)

)

[

∑

i,j∈I
i6=j

P
(

E∗
ij(d)

)

]2 ≤ c2
1

N2−dofdd
o
f

= c2

(

Nβ

d

)dof

for some constant c2 > 0 and so, if d = o(Nβ), it tends to zero when N → ∞.

As a conclusion, for N → ∞:

• if d/Nβ → ∞, then P(dmin
N ≤ d) → 1;

• if d/Nβ → 0, then P(dmin
N ≤ d) → 0.

This proves that Theorems 4.5 and 4.7 are true also for odd dof . Unfortunately,
the second moment technique used here does not tell anything about the speed of
convergence: even for d/N β̃ → ∞, when the we know that dmin ≤ d deterministically,
the upper bound obtained with the second moment technique goes to zero as slow
as 1/N . Thus we cannot obtain a full strong result analogous to Theorems 4.4 and
4.6. However, it is clear that we have at least the following, by the same techniques
used to prove Theorems 4.4 and 4.6: with probability one,

98

4 – Binary serial turbo ensembles: typical performance analysis

(a) (XN)N∈N and (YN)N∈N densely cover [α,β] ;

(b) lim infN XN = lim infN YN = α ;

(c) β ≤ lim supN XN = lim supN YN ≤ β̃ .

4.5.5 Other generalizations and open questions

One straightforward generalization is a relaxation of the assumption that both en-
coders are non-catastrophic, using instead the assumption that the family of serial
encoding schemes is concatenatedly non-catastrophic (Definition 3.2). With this re-
laxed assumption, all results of this paper still hold true, without any modification
in the proofs.

An interesting generalization is the study of other ensembles. From the same
fixed component encoders φo and φi, it is possible to construct different ensembles,
introducing other probabilistic structures for the interleaver sequence. For instance,
instead of a sequence of independent interleavers (ΠN)N∈N with ΠN uniformly dis-
tributed over SLN as in our serial turbo ensemble, we can consider a sequence of
interleavers (Π ′

N)N∈N such that each Π ′
N is still uniformly distributed over SLN , but

possibly dependent on {Π ′
i,i = 1, . . . ,N − 1}.

A close look at our proofs shows that independence among the ΠN ’s is required
only when using point (ii) of the Borel-Cantelli lemma. Hence, for the new ensemble
based on (Π ′

N)N∈N we can state that (for even dof), with probability one:

• lim infN X
′
N≥α; lim supN X

′
N =β ,

• lim infN Y
′
N≥α; lim supN Y

′
N =β ,

while X ′
N

P→ β and Y ′
N

P→ β.
This means that introducing some dependence among the uniform interleavers

cannot make performance worse while it could possibly improve it. It would be
interesting to develop an analysis for these hierarchical structures.

Finally, it would be very interesting to obtain results also for the non-binary
case, for example in the same setting considered in Chapter 3. However, the proof
techniques used to obtain the tight bounds on enumerating coefficients (Sections 4.2
and 4.2.4) are specific for the binary case: they don’t generalize easily, not even for
the case of non-binary codes still maintaining the rich algebraic structure of vector
spaces over some finite field. We leave as a completely open problem the search for
new proof techniques to address this issue.

99

Chapter 5

A family of structured linear-time
encodable LDPC codes

In this chapter, we develop the study of a family of codes which are a generalization
of Repeat-Accumulate codes, and which can be seen both as serial turbo schemes and
as structured LDPC codes. We already introduced these schemes in Section 3.1.3,
as an example of our very general serial turbo scheme, so that we could compute
the average error probability (Section 3.4.3).

Now we want to focus on the binary case, for which it is easier to get a deeper
understanding. First, we will propose the study of the average error probability
of a smaller ensemble, which is quite natural in analogy with results from LDPC
literature, and which allows to find a design parameter for the inner encoder which
was not visible in the bigger ensemble. In this smaller ensemble, the interleaver
is uniformly distributed on a subset of permutations which is not a subgroup and
thus the study requires some other proof techniques in addition to what is done in
Chapter 3.

Simulations using usual LDPC decoding show some dependence on the proposed
design parameter, but not as much as it could be expected. An explanation to this
is that in many cases the presence of a large amount (linear in the blocklength) of
small cycles in the structured part of the Tanner graph deteriorates the performance
of the iterative decoder, thus giving poor performance even for some good codes.
For an important class of inner encoders, we introduce a modified decoding, which
corresponds to suitably grouping together the nodes in the Tanner graph, obtaining a
modified graph without cycles in the structured part. Under this modified algorithm,
simulations show a good matching with the proposed design parameter: in the
medium-high SNR, the hierarchy given by the inner encoder’s effective free distance
is respected. Moreover, it is possible to analyze the behaviour of codes under this
decoding at small SNR, by density evolution. This was not possible for most codes of
our structured family with usual LDPC decoding, because the tree-like assumption

100

5 – A family of structured linear-time encodable LDPC codes

was false even after very few iterations due to small structured cycles.

5.1 Encoder description and parity check matrix

We consider the following encoding scheme:

Repr Sums ψNπN

ϕN

where:

• Repr : ZN
2 → ZrN

2 we denote the repetition code with rate 1/r;

• Sums : ZrN
2 → ZrN/s

2 is defined by

Sums(x) = (x1 + . . .+ xs, xs+1 + . . .+ x2s, . . .)

i.e. it gives the modulo-2 sum of every block of s bits (s is called the grouping
factor in the Irregular Repeat Accumulate codes literature).

• ψ(D) : Zk
2((D)) → Zk

2((D)) is a rate-1 non-catastrophic and recursive convo-

lutional encoder, and ψN : ZrN/s
2 → ZrN/s

2 is the truncated encoder obtained
by using the trellis of ψ(D) for rN/(sk) time steps (here we consider trun-
cation instead of termination of the convolutional encoder, for simplicity, but
the terminated encoder could be considered as well)

• πN ∈ SrN .

We will always assume that rN is a multiple of sk, so that the above construction
can be properly made (this will be implicitly assumed also when taking limits for
N → ∞).

This scheme generalizes Repeat-Accumulate and Repeat-Convolute codes, which
are the particular case when s = 1 and k = 1 (and ψ(D) = 1/(1 + D) for Repeat-
Accumulate codes). On the contrary, Irregular Repeat-Accumulate (see [38]) in-
troduced for the first time the grouping factor s, and were more general than our
scheme in the outer repetition, which was irregular, i.e. time-variant, while they
were less general in the inner encoder, which was fixed to be the accumulator.

To make this scheme fit in the general setting presented in Chapter 3, you need
to include the systematic branch in both the outer and the inner encoder and to
consider interleavers (πN ,π̃N) where π̃N permutes only the systematic bits, and so

101

5 – A family of structured linear-time encodable LDPC codes

does not change the performance of the code. This was the description of these
schemes given in Section 3.1.3. Other two small differences from the scheme in
Section 3.1.3 are that we are allowing ψ to be non-scalar, even if with rate 1, and
that we are taking a truncated instead of a terminated version, i.e. we are not
enforcing the return to all-zero state. However, this does not affect the results on
the average-based analysis.

The decoding can be performed exploiting the fact that these same codes can also
be seen as LDPC codes: a parity check matrix can be constructed in the following
way. Notice that a pair (u,c) ∈ ZN

2 × ZrN/s
2 belongs to our code if and only if c =

ψN ◦ Sums ◦ πN ◦Repr(u), which is equivalent to Sums ◦ πN ◦Repr(u) +ψ−1
N (c) = 0

and can be represented with matrices as [HN KN]
[

u
c

]

= 0.
Notice that HN is a low-density matrix depending only on r, s and on the

permutation πN , and has at most s ones per row and r ones per column, while KN

is a matrix depending on the choice of ψ, and is also low density, having a number
of ones per row bounded by the degree of the polynomial ψ−1(D) and a number of
ones per column bounded by k times the degree of ψ−1(D).

For example, if k = 1 and ψ(D) is the accumulator ψ(D) = 1/(1 +D), we have
the so-called ‘staircase’ LDPC codes: KN has ones on the diagonal and on the lower
diagonal, and zeros everywhere else.

As another example, the scalar encoder ψ(D) = 1
1+D+D3 is associated to a matrix

KN =







1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
0 1 1 0 0 0 . . .
1 0 1 1 0 0 . . .
0 1 0 1 1 0 . . .
0 0 1 0 1 1 . . .
. .







5.2 Error floor region analysis

In this section, we look for design parameters for the medium-high SNR region.

5.2.1 Uniform interleaver

It is clear from Section 3.4.3, that Theorem 3.1 applies to the family of codes we are
analyzing. Theorem 3.1, together with the computations in Section 3.4, gives the
following result.

If r ≥ 2, there exist positive constants γ0, C1 and C2 (depending only on the
ensemble, i.e. on r,s,ψ(D)) such that, for any BIOS channel with Bhattacharyya
noise parameter γ ≤ γ0:

• C1p
d∗N−µ ≤ Pb(e) ≤ C2γ

d∗N−µ +O(N−µ−1) for N → ∞

• C1p
d∗N−µ+1 ≤ Pw(e) ≤ C2γ

d∗N−µ+1 +O(N−µ) for N → ∞

102

5 – A family of structured linear-time encodable LDPC codes

where p is the equivocation probability of the channel and µ = ⌊(r + 1)/2⌋. For
s = 1, i.e. for traditional Repeat-Convolute codes,

d∗ =

{

1 + dψ2 if r is even

1 + r−3
2
dψ2 + min

{

dψ2 + dψ1,tr, d
ψ
f,3

}

if r is odd

and for all s ≥ 2,

d∗ =















1 if r is even

2 if r = 3

1 + min
{

dψ1,tr, d
ψ
f,3

}

if r is odd, r ≥ 5

where dψ2 and dψ3 are the smallest output weight of error events of ψ(D) with input
weight 2 and 3 respectively, while dψ1,tr is the smallest output weight of a truncated

error event of ψN . If k = 1, clearly dψ1,tr = 1 and so d∗ = 2 for all odd r and all
s ≥ 2.

5.2.2 A better smaller ensemble and a design parameter

In the result given in previous section, notice that when s ≥ 2 there is essentially
no dependence of the exponents µ and d∗ on the choice of the encoder ψ. Looking
at traditional serial turbo codes [3], we see that it is natural that µ depends only on
the free distance of the outer encoder, but we expect a dependence of the effective
free distance d∗ on the inner encoder too. What happens with our schemes is that
pairs of ones which are repetition of a same information bit can be permuted by
some interleaver in such a way that they are summed up by Sums, producing a zero
output. The value of d∗ is given by this ‘worse case’ scenario.

This remark suggests to consider a smaller family of interleavers, enforcing that
ones coming from the same error event of Repr cannot end up in positions where
they would be summed up by Sums. More precisely, we define the set

RN
r,s :=

{

π ∈ SrN : ⌊i/r⌋ = ⌊j/r⌋ ⇒ ⌊π(i)/s⌋ 6= ⌊π(j)/s⌋
}

What we want to consider is an ensemble of encoders constructed as in Sec-
tion 5.1, except that now the permutation is uniformly distributed on RN

r,s instead
of all SrN . Additionally to the motivation of finding a more interesting effective free
distance, this ensemble turns out to be a natural choice in analogy with classical
results for regular LDPC codes: restricting the permutation to RN

r,s is the same as
enforcing that the Tanner graph corresponding to the regular part of the matrix,
HN , does not have cycles of length two. This new ensemble is also equivalent to

103

5 – A family of structured linear-time encodable LDPC codes

pick HN uniformly at random in the set of N × N binary matrices with exactly s
ones per row and r ones per column.

As RN
r,s is not a group, we cannot directly apply results from Chapter 3. However,

we can slightly modify our techniques for estimating E(Pb(e)|RN
r,s), where E is taken

in the ensemble with ΠN uniformly distributed in SrN ; notice that E(Pb(e)|RN
r,s) is

equal to the average Pb(e) when ΠN is uniformly distributed in RN
r,s which is what

we would like to estimate; we will also denote it Pb(e)exp.
The key remark is that the probability that a permutation uniformly extracted

from SrN belongs to RN
r,s is non-vanishing: P(RN

r,s) → e−(r−1)(s−1)/2 when N → ∞
(see e.g. [11] Exercise 2.12 p. 59).

Notice that P(RN
r,s) tends to a constant which is strictly smaller than one, so even

though the techniques we use are the same usually known as expurgation, the result
we will get is not the typical behavior of the ensemble introduced in Sect. 5.2.1:
we will find the average behavior of a subensemble which is neither vanishing nor
typical, but is well characterized.

Define µ = ⌊(r + 1)/2⌋ and

d∗exp =











































2 if r = 2 and s ≥ 2

1 + dψ2 if r = 2 and s = 1

2 if r = 3 and s ≥ 2

1 + min
{

dψ2 + dψ1,tr, d
ψ
3

}

if r = 3 and s = 1

1 + r
2
dψ2 if r is even, r ≥ 4

1 + r−3
2
dψ2 + min

{

dψ2 + dψ1,tr, d
ψ
3

}

if r is odd, r ≥ 5

Our main result is the following.

Theorem 5.1 If s ≥ 2. there exist positive constants γ0, c1 and c2 (depending
only on the ensemble, i.e. on r,s,ψ(D)) such that, for any BIOS channel with
Bhatthacharyya noise parameter γ ≤ γ0, and with equivocation probability p,

• c1p
d∗expN−µ ≤ Pb(e)exp ≤ c2γ

d∗expN−µ +O(N−µ−1)

• c1p
d∗expN−µ+1 ≤ Pw(e)exp ≤ c2γ

d∗expN−µ+1 +O(N−µ) �

In the remainder of this section, we will prove this theorem, by following similar
steps to the proofs in Sections 3.3.1 and 3.3.2 together with expurgation.

We start with the upper bound. By the union-Bhattacharyya bound:

Pb(e)exp ≤
N
∑

w=1

(r+s)N/s
∑

d=w

w

N
E(ANw,d(ΠN)|RN

r,s)γ
d (5.1)

104

5 – A family of structured linear-time encodable LDPC codes

where ANw,d(π) is the number of codewords of the concatenated scheme with input
Hamming weight w and output Hamming weight d for a given permutation π ∈ SrN .

For most of the terms, we will use the estimation

E(ANw,d(ΠN)|RN
r,s) ≤

E
(

ANw,d(ΠN)
)

P(RN
r,s)

=
Aw,d

N

P(RN
r,s)

(5.2)

and the fact that P(RN
r,s) is bounded away from zero, so that we can exploit all what

we know about
∑

w

∑

dAw,d
N
γd from Section 3.3.1.

We consider separately the terms with w ∈ W where W := {1} for r ≥ 4,
W = {1,2} if r = 3 and W = N∗ if r = 2. The reason is that, with the notation
from Section 3.3.1, because of Prop. 3.11, H = {(w,rw) : w ∈ W}, so these are the
main terms in the estimation. Also note that d∗

exp is the minimum output weight of
ϕN if the input weight is restricted to {rw, w ∈ W} and the permutation is enforced
to belong to RN

r,s.
Now define V ϕN

h,k as the set of codewords of ϕN(ZrN
2) with input weight h and

output weight k and note that

E
(

ANw,d(ΠN)|RN
r,s

)

=
∑

u∈ZN2 :wH(u)=w

∑

v∈V ϕNr,d−w

P
(

ΠN(Repr(u)) = v|RN
r,s

)

For the term with w = 1, define also SNs =
{

v s.t. ⌊i/s⌋ 6= ⌊j/s⌋ ∀i 6= j : vi = vj = 1
}

and notice that wH(u) = 1 and v /∈ SNs give P
(

{ΠN(Repr(u))= v} ∩RN
r,s

)

= 0, so
that

E
(

ANw,d(ΠN)|RN
r,s

)

=
∑

u∈ZN2
wH(u)=w

∑

v∈V ϕNr,d−w∩SNs

P
(

ΠN(Repr(u)) = v|RN
r,s

)

≤
(

wN

w

)

|V ϕN
r,d−w ∩ SNs | 1

(

rwN
rw

)

P(RN
r,s)

Then, |V ϕN
r,d−w ∩ SNs | =

nmax
∑

n=0

|V ϕN
r,d−w,n ∩ SNs |, where V ϕN

h,k,n denotes the set of code-

words of ϕN (ZrN
2) with input weight h and output weight k made by exactly n error

events, plus possibly a final truncated error event not counted by n.
The recursiveness of ϕN ensures nmax ≤ ⌊r/2⌋, but also notice that if wH(v) ∈ W

and v ∈ V ϕN
r,d−w,n ∩ SNs , then wH(ϕN(v)) ≥ d∗exp, so that for d < d∗exp we have the

tighter bound nmax ≤ ⌊r/2⌋ − 1. Finally, we estimate |V ϕN
r,d−w,n ∩ SNs | ≤ |V ϕN

r,d−w,n|.
For the terms w ∈ W such that w ≥ 2, which exist only for r = 2 and r = 3,

note that

E
(

ANw,d(ΠN)|RN
r,s

)

=
∑

u∈Z
N
2

wH(u)=w

∑

v∈V ϕNr,d−w

P
(

ΠN(Repr(u)) = v|RN
r,s

)

≤
(

wN

w

) |V ϕN
r,d−w|

(

rwN
rw

)

P(RN
r,s)

105

5 – A family of structured linear-time encodable LDPC codes

and |V ϕN
r,d−w =

nmax
∑

n=0

|V ϕN
r,d−w,n, with nmax = ⌊r/2⌋ for d ≥ 2 = d∗exp while nmax ≤

⌊r/2⌋ − 1 for d < 2 = d∗exp.

We can now put the above estimations in the union-Bhatthacharyya bound (5.1):

Pb(e)exp ≤ 1

P(RN
r,s)

∑

w∈W ,w≤d∗

w

N

(

wN

w

)

1
(

rwN
rw

)

⌊rw/2⌋
∑

n=0

|V ϕN
r,d∗−w,n|γd

∗

+
1

P(RN
r,s)

(r+s)N/s
∑

d=d∗+1

∑

w∈W ,w≤d

w

N

(

wN

w

)

1
(

rwN
rw

)

⌊rw/2⌋−1
∑

n=0

|V ϕN
r,d−w,n|γd

+
1

P(RN
r,s)

(r+s)N/s
∑

d=d∗+1

∑

w/∈W ,w≤d

w

N

(

wN

w

)

1
(

rwN
rw

)

⌊rw/2⌋
∑

n=0

|V ϕN
r,d−w,n|γd

Then the proof is ended by the same techniques used in Section 3.3.1, in particular
Prop. 2.5, showing an analogous of Prop. 3.8 and Prop. 3.9, i.e. that the first sum-
mation is bounded by cγd

∗ 1
Nµ while the second and third are bounded by c(γ) 1

Nµ+1 .
Here the remark that P(RN

r,s) remains bounded away from zero when N → ∞ is
essential.

Now we adapt the proof of the lower bound in Section 3.3.2 to our setting. We
use the same technique:

Pw(e)exp ≥ pd
∗
expP(dmin

N ≤ d∗exp|RN
r,s)

and then

P(dmin
N ≤ d∗exp|RN

r,s) ≥ P
(

⋃

a,b

Ea,b

∣

∣RN
r,s

)

for some suitably defined events Ea,b, here slightly different from those in Sect. 3.3.2.

First of all, note that if s = 1 we don’t have anything to prove, as RN
r,s = SrN and

the ensemble is the same as in previous section. When s ≥ 2, the output weight d∗exp

is obtained with input weight w = 1, which simplifies the description of words c∗
a
:

now a is simply scalar, a ∈ A := {0, . . . ,N − 1} and c∗
a := Repr(D

a). Only for the
case r = 2 we need the same trick used in Section 3.3.2 and we restrict A to be
A = {0,T,2T, . . . ,T ⌊N/T ⌋ − 1} for a suitable fixed T > 0. Then fix v∗ an input
word for ψiN , made of:

• if r is even: r/2 regular error events v∗
1 , . . . ,v

∗
r/2 of input weight 2 and output

weight dψ2 , say λ is the length of such events;

106

5 – A family of structured linear-time encodable LDPC codes

• if r is odd and dψ3 < dψ2 + dψ1,tr: (r − 3)/2 regular error events v∗
1 , . . . ,v

∗
(r−3)/2

of input weight 2 and output weight dψ2 , with length λ2, and one regular
event v∗

(r−1)/2, of input weight 3, output weight dψ3 and length λ3; let λ =

max{λ1,λ2};
• if r is odd and dψ2 + dψ1,tr ≤ dψ3 : (r − 1)/2 regular error events v∗

1 , . . . ,v
∗
(r−1)/2

of input weight 2 and output weight dψ2 , with length λ, and a truncated event
v∗

tr, of input weight 1, output weight dψ1,tr and length 1.

Define B = {0,1, . . . ,⌊2N
sk
⌋ − 2}. For all b ∈ B⌊r/2⌋ define the word v∗

b
∈ (Zk

2)
rN/(sk)

made of the same error events of v∗, with its j-th error event starting at time
(j − 1)

(

⌊2N
sk
⌋ − 1

)

+ bj , plus possibly the truncated event starting at time ⌊2N
sk
⌋− 1.

Finally define the word u∗
b
∈ ZrN

2 obtained from v∗ by first identifying (Zk
2)
rN/(sk)

with ZrN/s
2 and then spreading the ones s apart, i.e. transforming

∑r
i=1D

ti in
∑r

i=1D
sti. It is clear that, if π(c∗

a) = u∗
b

for some a ∈ A and b ∈ B⌊r/2⌋, then
ψN ◦ Sums(u

∗
b
) = ψN (v∗

b
) so that the final output weight corresponding to input

Da, including one systematic bit, is exactly d∗exp. For a ∈ A and b ∈ B⌊r/2⌋, define
Ea,b := {ΠN(c∗

a) = u∗
b
} so that

P(dmin
N ≤ d∗exp|RN

r,s) ≥ P
(

⋃

a∈A,b∈B⌊r/2⌋

Ea,b

∣

∣RN
r,s

)

Now we proceed to estimate this union of events with inclusion-exclusion, similarly
to what done in Section 3.3.2. Here, it’s easier to deal with intersections, as a is
simply scalar, while we need to deal carefully with the conditioning on RN

r,s. First
of all, notice that P(Ea,b ∩RN

r,s) does not depend on a and b and is non-zero. Then,
to find a lower bound for

∑

a,b P(Ea,b|RN
r,s), for l = l0, . . . ,lr−1 and i = i0, . . . ,ir−1,

define the events

FN
a,l,i =

{

ΠN(c∗
a) =

r−1
∑

j=0

Dslj+ij
}

and notice that, for any a ∈ A, b ∈ B⌊r/2⌋, we have

P(RN
r,s) =

∑

l0<···<lr−1

0≤lj≤ rN
s

−1

∑

i0,...,ir−1
0≤ij≤s−1

P
(

RN
r,s ∩ FN

a,l,i

)

=

(

rN/s

r

)

sr P(RN
r,s ∩ Ea,b)

so that P(Ea,b|RN
r,s) =

P(Ea,b ∩RN
r,s)

P(RN
r,s)

=
1

(

rN/s
r

)

sr
and finally

∑

a∈A

∑

b∈B⌊r/2⌋

P(Ea,b|RN
r,s) = |A| |B|⌊r/2⌋ 1

(

rN
r

)

sr
≥ cN−µ+1 .

107

5 – A family of structured linear-time encodable LDPC codes

For the term with intersections, we use the simple bound

P(Ea,b ∩ Ea′,b′|RN
r,s) =

P(Ea,b ∩Ea′,b′ ∩ RN
r,s)

P(RN
r,s)

≤ P(Ea,b ∩ Ea′,b′)

P(RN
r,s)

Then we exploit the fact that P(RN
r,s) is bounded away from zero and we estimate

P(Ea,b∩Ea′,b′) as follows. For (a,b) 6= (a′,b′), P(Ea,b∩Ea′,b′) can be non-zero only if
a 6= a′ and bj 6= b′j for all j and there is no final truncated error event in u∗

b
. Under

these assumptions, simply

P(Ea,b ∩ Ea′,b′) ≤ P(ΠN

(

ca + ca′ = ub + ub′

)

=
1
(

rN
2r

)

so finally
∑

(a,b)6=(a′,b′)

P(Ea,b ∩Ea′,b′|RN
r,s) <

1

P(RN
r,s)

|A|2|B|2⌊r/2⌋ 1
(

rN
2r

) ≤ CN−2µ+2 .

For r ≥ 3, which ensures µ ≥ 2, this ends the proof:

Pw(e)exp ≥ pd
∗
expP(dmin

N ≤ d∗exp|RN
r,s) ≥ pd

∗
expP

(

⋃

a,b

Ea,b

∣

∣RN
r,s

)

≥ pd
∗
exp
[

cN−µ+1−CN−2µ+2
]

For r = 2, a suitable choice of the constant T in the definition of A ensures that the
constant c is bigger than C, thus showing that Pw(e)exp is bounded away from zero.

5.2.3 ML predictions vs. standard BP simulations

We simulated the coding schemes with two simple examples of ψ(D): the accumu-
lator and ψ(D) = 1/(1+D+D3) , using the standard belief propagation algorithm
over the Tanner graph associated to the low density matrix [HNKN]. Although this
approach is satisfactory for ψ(D) = 1/(1 +D), this is not the case for the encoder
1/(1 +D +D3).

In fact, Monte-Carlo simulations reported in Fig. 5.4 are in contrast with the
results of Theorem 5.1: the coding scheme based on the simple accumulator ψ(D) =
1/(1 +D), having dψ2 = 1, performs much better than the one using ψ(D) = 1/(1 +
D +D3) as inner encoder, even if the latter has dψ2 = 4.

A close look to the structure of the Tanner graphs suggests a possible explanation
for such a disappointing behaviour. Indeed, a large number of 6-cycles appear in the
structured part of the graph (see Fig. 5.2). More precisely there are N − 2 of such
cycles and they are concatenated in a very particular way. The belief-propagation
algorithm is known to be exact on cycle-free graphs [78] and has been shown to be
highly performing on random graphs which with high probability do not contain

108

5 – A family of structured linear-time encodable LDPC codes

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
w

(e
)

d
2
=1 (1+D)−1

d
2
=4 (1+D+D3)−1

Figure 5.1. Simulation with BP: 1/(1 + D), 1/(1 + D + D3) (blocklength = 300)

(a) 1/(1 + D + D3) (b) 1/(1 + D)

Figure 5.2. Structured part of the Tanner graph

small cycles [60]. Thus, the presence of such a big and structured collection of 6-
cycles seems to be a possible explanation why the algorithm fails to converge. Notice
that the Tanner graph of the Repeat-Accumulate does not contain any cycle in its
structured part.

This remark suggests to focus the attention on codes without cycles in the struc-
tured part on the Tanner graph, but this is very restrictive. A closer look to the
matrix KN associated with ψ(D) = 1/(1 +D + D3) suggests a different approach.
In fact if you look at this matrix gathering together blocks of three bits, a staircase
structure emerges:

KN =

. . .

1 0

0 1

0 0 1

1

0

1 0

0 1

0 0 1

1

0

1 0

1 1

0 1 1

0

0

1 0

1 1

0 1 1

0

0

1 0

1 1

0 1 1

0

0

This suggests to focus on matrices with such block-wise staircase structure and to
associate to them a modified Tanner graph, where k-tuples of bits are aggregated

109

5 – A family of structured linear-time encodable LDPC codes

together. This will be done in the next section.

5.3 Non-binary decoding of block-wise staircase

LDPC codes

5.3.1 Encoder structure

We consider the encoding scheme described in Section 5.1, in the particular case
when ψ(D) = (A+BD)−1 for some matrices A,B ∈ Zk

2, so that the structured part
of the matrix will have the form

KN =















A 0 0 . . . 0
B A 0 . . . 0
0 B A . . . 0
...

. . .
. . .

...
0 0 . . . B A















(5.3)

Another possibility is to consider an upper staircase structure, with an encoder
of the form ψ = (AD−1 +B)−1, which gives:

KN =

















B A 0 . . . 0

0 B
. . . 0

0 0
. . . A 0

...
. . . B A

0 0 . . . 0 B

















(5.4)

In these schemes, the matrices A and B must be carefully chosen in order to en-
sure that the inverse matrix we have written in the definition of ψ(D) indeed exists,
and that ψ(D) has all the good properties we need: causality, non-catastrophicity,
recursiveness (see Section 2.3 for definition of these properties). In this section,
we will show that the ‘safe’ choice, that ensures all these properties, is the lower-
staircase structure with A and B both invertible. We will also discuss other possible
choices.

We start by deriving an explicit expression for the minimal state-space realization
of such convolutional codes: this is helpful for actually implementing the encoder,
but it will also enlighten the theoretical properties of ψ(D).

Let’s focus at first on ψ(D) = (A+BD)−1, and let’s assume that A is invertible.
This assumption guarantees that the inverse (A+BD)−1 exists, as we can write (A+
BD)−1 = A−1(I + BA−1D)−1 = A−1

∑

t≥0(BA
−1)tDt. Under this assumption, it is

110

5 – A family of structured linear-time encodable LDPC codes

also easy to find a realization with 2m states where m = rankB, and to prove that it
is indeed minimal. In fact, you can note that y(D) = ψ(D)u(D) ⇔ ψ−1(D)y(D) =
u(D) ⇔ (A + BD)y(D) = u(D) ⇔ ∀t, Ayt + Byt−1 = ut ⇔ ∀t, yt = A−1ut +
A−1Byt−1. Now, if you define the state xt = Byt−1, you have the state space
X = B(Zk

2), which is a subspace of Zk
2 having dimension rankB, and you have the

following realization:

y(D) = ψ(D)u(D) ⇔
{

yt = A−1ut + A−1xt

xt+1 = Byt = BA−1ut +BA−1xt.
(5.5)

To prove minimality, we need to prove controllability, i.e. that all states can be
reached from the zero-state, and observability, i.e. for all sequence (ut,yt,xt)t∈N sat-
isfying the system (5.5) if yt = ut = 0∀t ≥ 0 then also x0 = 0. Controllability is
clearly true. Also observability is true: even more, as (5.5) gives y0 = A−1u0+A

−1x0,
simply u0 = y0 = 0 is enough to ensure x0 = 0.

Now, what can we say about the properties of ψ(D)? Non-catastrophicity im-
mediately follows from the fact that A + BD is polynomial and is the inverse of
ψ(D). The state realization we just described clearly shows that ψ(D) is causal.
We also need recursiveness. If also B is invertible, it is clear from the state realiza-
tion that ψ(D) is recursive. For general B, we have the following effective test for
recursiveness.

Proposition 5.1 A convolutional encoder ψ(D) = (A+BD)−1 with A invertible, is
recursive if and only if the matrix (BA−1)2k−1

has non-zero weight on each column. �

Proof: For simplicity of notation, define M := (BA−1).
Recursiveness means that any input u(D) with Hamming weight 1 produces

infinite-weight output; on the minimal state realization, this translates as: an input
u0 of weight wH(u0) = 1 followed by ut = 0 for all t > 0 produces a state sequence
never returning to zero. With the realization (5.5), this condition reads: for all
t > 0, xt = M tu0 6= 0 for all u0 with wH(u0) = 1, i.e. all columns of M t have
non-zero weight.

Then we can note that there is no need to test this condition for infinitely
many values of t. In fact, by Cayley-Hamilton theorem, if you denote by p(z)
the characteristic polynomial of M , p(M) = 0. Now, p(z) has degree k, with leading
coefficient 1. If M is not invertible, we also know that p(z) has trailing coefficient
equal to zero (in the case M is invertible, we don’t have anything to prove). These
remarks on p(z) ensure that Mk is a linear combination of M,M2, . . . ,Mk−1, and
this also implies that all M t with t ≥ k are linear combinations of M,M2, . . . ,Mk−1.
There are only 2k−1 choices for the coefficients of these combinations, including
the choice with only one non-zero coefficient which simply gives again one of the
matrices M,M2, . . . ,Mk−1. So, finally, after having considered M,M2, . . . ,M2k−1

you
will surely never encounter a new different matrix.

111

5 – A family of structured linear-time encodable LDPC codes

The final remark is that testing M,M2, . . . ,M2k−1
is equivalent to testing only

M2k−1
: in fact, if some M t has zero-weight on some column, then also M t′ will have

a zero column in the same position, for all t′ > t. �

Now we switch to the case when we do not enforce invertibility of A, and we
assume the invertibility of B. This assumption ensures existence of the inverse
(A + BD)−1. However, it does not guarantee that the encoder obtained in such
a way is causal; we will prove (Prop. 5.2) that it is causal if and only if also A
is invertible. This seems to suggest to avoid non-invertible A’s; however, we can
prove that for some choices of non-invertible A, the shifted encoder D(A+BD)−1,
corresponding to an upper-staircase parity matrix as in (5.4), is indeed causal.

Proposition 5.2 If ψ(D) = (A +BD)−1 with B invertible, then:

• ψ(D) is causal if and only if also A is invertible;

• Dψ(D) is causal if and only if there exists some m ∈ N∗ such that Nm+1 = N ,
where N := AB−1.

Moreover, if Nm+1 = N , then

Dψ(D) = B−1 +B−1Nm(I +N2m−1D)−1 . (5.6)

�

Proof: We start by explicitly constructing the Laurent series of ψ(D). First,
(A + BD)−1 = D−1B−1(I + AB−1D−1)−1 = D−1B−1

∑

t≥0(AB
−1)tD−t. Now, we

use the remark that surely the sequence (N t)t∈N is periodical, i.e. there exist a ∈ N
and b ∈ N∗ such that Na+b = Na; moreover, a = 0 if and only if N is invertible. So:

BDψ(D) =
∑

t≥0

N tD−t

=
a−1
∑

t=0

N tD−t +Na
∑

h≥0

D−(a+bh) +Na+1
∑

h≥0

D−(a+1+bh) + · · ·+Na+b−1
∑

h≥0

D−(a+b−1+bh)

=
a−1
∑

t=0

N tD−t +Na D−a

1+D−b +Na+1D−(a+1)

1+D−b + · · ·+Na+b−1D−(a+b−1)

1+D−b

=

a−1
∑

t=0

N tD−t +Na D−a+b

1+Db
+Na+1D−(a+1)+b

1+Db
+ · · · +Na+b−1D−(a+b−1)+b

1+Db

=

a−1
∑

t=0

N tD−t +
(

N b+a−1D−a+1 + · · ·+Na+1D−a+b−1 +NaD−a+b)
(

∑

t≥0

Dbt

)

.

(5.7)

112

5 – A family of structured linear-time encodable LDPC codes

Looking at the last line, we see that the first part has terms with exponent increasing
from −a+ 1 to 0, while the second has terms from −a+ 1 to +∞: Dψ(D) is causal
when all pairs of terms with negative exponent cancel each other. In particular, the
terms with exponent −1 cancel, i.e. N = Nm+1 for some m+ 1 ∈ {a, . . . ,a+ b− 1}.
If ψ(D) itself is causal, then also the term with exponent 0 is zero, i.e. I = Nm for
the same m as above.

Viceversa, let’s assume that there exists m ∈ N∗ such that Nm+1 = N , say m is
the smallest integer satisfying this relation. If moreover Nm = I, i.e. N is invertible,
Eq. (5.6) is trivially verified. If Nm 6= I, with the above notation we have a = 1 and
b = m, so that Eq. (5.7) simplifies to

BDψ(D) = I +
(

NmD0 +Nm−1D + · · ·+N2Dm−2 +NDm−1
)

(

∑

t≥0

Dmt

)

.

which immediately shows that Dψ(D) is causal. From this, simple calculation gives

(BDψ(D) + I)(I +N2m−1D) = Nm

which proves Eq. (5.6). �

Remark 5.1 By the same argument as in the proof of Prop. 5.1 (i.e. using Cayley-
Hamilton Theorem), you can prove that Na+b = Na with a+ b ≤ 2k−1. So, to check
wether there exists m such that Nm+1 = N , you need to compute and compare with
N only powers up to N2k−1

. �

We can also exploit Eq. (5.6) in order to construct a minimal linear realization
of ψ̃(D) := Dψ(D), with state space X = N2m−1(Zk

2). Note that, under the as-
sumption Nm+1 = N , rankN t = rankN for all t ≥ 1, so dimX = rankN = rankA.
Also note that N2m−1 = Nm−1 if m ≥ 2 and N2m−1 = N if m = 1.

We start finding a realization for the encoder ϕ(D) := Nm(I +N2m−1D)−1.

v(D) = ϕ(D)u(D) ⇔
{

vt = Nmut + xt

xt+1 = N2m−1vt = N2m−1ut +N2m−1xt.
(5.8)

From Eq. (5.8), we can find a realization for ψ̃(D) with the same state space:

y(D) = ψ̃(D)u(D) ⇔
{

yt = B−1ut +B−1vt = B−1(I +Nm)ut +B−1xt

xt+1 = N2m−1ut +N2m−1xt.
(5.9)

It is easy to prove that this realization is minimal, by the same technique we used
for the realization (5.5): both controllability and observability are trivially true.

With the same technique we used for encoders with invertible A, we can use the
state realization in order to characterize recursiveness.

113

5 – A family of structured linear-time encodable LDPC codes

Proposition 5.3 Given a causal encoder ψ(D) = D(A+BD)−1 with B invertible,
ψ(D) is recursive if and only if all columns of N are non-zero, where N = AB−1. �

Proof: Recursiveness means that if wH(u0) = 1 and ut = 0 ∀t ≥ 1, then xt 6=
0 ∀t ≥ 1. The assumption on the inputs, used in the realization (5.9), gives for
m ≥ 2 the state sequence x0 = 0, x1 = Nm−1u0 x2 = N2m−2u0, . . . , xm = N ,
xm+1 = Nm, xm+2 = Nm−1 and so on, periodically. For m = 1, simply x0 = 0,
xt = Nu0 for all g ≥ 1. So the recursiveness request translates in asking that no
column of the following matrices is zero: N,N2, . . . ,Nm,Nm+1 = N ; this is the same
as simply asking that all the columns of N are non-zero. �

We show here an example of a causal encoder with non-invertible A and invertible
B, thus clarifying that the class of encoders characterized in Prop. 5.2 is not empty.

Example 5.1 If you choose matrices

A =
[

1 1 0
0 0 1
1 1 1

]

, B =
[

1 0 0
0 1 0
1 0 1

]

you get the encoder

ψ(D) := D(A+BD)−1 =

[

1+D−1 D−1 0
0 1 D−1

1+D−1 D−1 1+D−1

]−1

=

[

1+ D
1+D2

1
1+D

1
1+D2

1
1+D

1 1
1+D

D
1+D

0 D
1+D

]

From the last expression, you can understand that ψ(D) is causal and recursive,
but you can see it directly from the matrices A and B, by applying Propositions 5.2

and 5.3: compute N = AB−1 =
[

1 1 0
1 0 1
0 1 1

]

, N2 =
[

0 1 1
1 0 1
1 1 0

]

, N3 =
[

1 1 0
1 0 1
0 1 1

]

= N . N3 = N

ensures a causal encoder, and N with no zero-column gives recursiveness. In this
example, Eq. (5.9) gives a state realization with 4 states:

y(D) = ψ(D)u(D) ⇔
{

yt = B−1(I +N2)ut +B−1xt

xt+1 = Nut +Nxt.
�

5.3.2 Decoding algorithm

Motivated by the remarks in Section 5.2.3 about cycles in the Tanner graph, we
propose the following modified version of the BP algorithm for block-wise staircase
encoders (k > 1).

Associate to the parity matrix [HNKN] a labeled factor graph with vertex set
given by Vi ∪ Vp ∪ Vc (see Fig.5.3), where:

• Vi = {i1, . . . ,iN} is a set of N information nodes, each corresponding to an
information bit (recall the codes are systematic);

114

5 – A family of structured linear-time encodable LDPC codes

. . .

. . .

. . .

Information
Nodes

Check
Nodes

Parity
Nodes

BABABA

Figure 5.3. Tanner graph of the hybrid non-binary algorithm

• Vp = {p1, . . . ,p r
ks
N} is a set of r

ks
N parity nodes, each corresponding to a group

of k consecutive parity bits;

• Vc = {c1, . . . ,c r
ks
N} is a set of r

ks
N check nodes each corresponding to a group

of k consecutive rows of the matrix.

For every 1 ≤ j ≤ r
ks
N , the parity node pj is connected only to the check node cj

with an edge labeled by λij ,cj = A, and to the check node cj+1 with an edge labeled
by λij ,cj+1

= B. There is an edge between a check node cl in Vc and an information
node ij in Vi whenever the k × 1 block (HN)[k(l−1)+1,kl],j is nonzero; such an edge is
labeled by the k × 1 block λcl,pj = (HN)[k(l−1)+1,kl],j itself.

We use a sum-product belief propagation algorithm over this graph. Messages
exchanged between information nodes and check nodes consist in probability distri-
butions over Z2, while messages exchanged between parity nodes and check nodes
consist in probability distributions over Zk

2. For every parity or information node
v denote the a posteriori probability distributions given by the channel output by
zv. Denote the message sent from node v to node v′ at the t-th iteration by mt

v→v′ .
For every adjacent parity node v and check node c initialize m0

c→v as the uniform
distribution over Zk

2 and similarly for every adjacent information node v and check
node c let m0

c→v be the uniform distribution over Z2. Then for every time step t ≥ 1

• the message sent from a node v in Vi ∪ Vp to an adjacent check node c, mt
v→c

is the normalized pointwise product of zv and of messages mt−1
c′→v received by

the node v from all its neighbors c′ but c;

• the message sent from a check node c to an adjacent information or parity
node v is given by

mt
c→v(x) = Ptc→v

(
∑

v′∼c
v′ 6=v

λc,v′Xv′ = λcvx
)

where the probability Ptc→v is evaluated by considering the random variables
Xv′ mutually independent, each distributed accordingly to mv′→c.

115

5 – A family of structured linear-time encodable LDPC codes

The labels A and B on edges clearly affect the messages. If the label is an invertible
matrix, it just gives a permutation of the messages. If not, for outgoing messages
from the parity node, you need to map a message (which is a probability measure) to
the corresponding image measure with respect to the label matrix; in the opposite
direction, the probability of some vector is split evenly among all elements of its
preimage with respect to the label matrix.

This algorithm falls within the large class of generalized belief propagation algo-
rithms described in [79].

Notice that the complexity of this non-binary BP algorithm (with an efficient
implementation of the check-nodes updates), scales with k and N as 22k+1 r

ks
N op-

erations per iteration, compared to 4r(k+1)
s

N for the standard BP algorithm.

5.3.3 Simulation results

We have focused our attention on codes with invertible A and B, so that all good
properties of ψ(D) were guaranteed.

All the examples we simulated have r = 4 and s = 4, consequently the overall
rate R is 1/2. A maximum of 50 iterations has been considered.

1 1.5 2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
w

(e
)

k=1 d
2
=1 (1+D)−1 binary BP

k=3 d
2
=4 (1+D+D3)−1 binary BP

k=3 d
2
=4 (1+D+D3)−1 non−binary BP

k=4 d
2
=7 binary BP

k=4 d
2
=7 non−binary BP

Figure 5.4. Binary vs. non-binary BP decoding (blocklength = 300)

Fig. 5.4 shows how the use of the non-binary algorithm may lead to a dramatic
improvement with respect to the standard BP algorithm, in two examples: 1/(1 +
D + D3), considered with k = 3, and the following encoder ψ(D) = (A + BD)−1

116

5 – A family of structured linear-time encodable LDPC codes

with k = 4 and dψ2 = 7:

A =

[

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

]

, B =

[

1 1 1 0
0 0 0 1
0 1 1 0
1 1 0 1

]

In both cases, we conjecture that the improvement is strictly related to the large
number of small cycles in the structured part of the Tanner graph. In fact, for
other codes such that 1/(1 +D3 +D4), where the structured cycles have length at
least 8, there is almost no difference in between binary and non-binary decoding
with k = 4. However, we don’t have yet a precise theory on how performance is
affected by the number of small cycles, by their length and even by the way they
are intertwined. For example, we don’t have a satisfactory explanation of the much
bigger improvement for 1/(1 + D + D3), which has cycles of length 6 with respect
to the other ψ(D) reported in Fig. 5.4, which has also cycles of length 4.

3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 [dB]

P
w

(e
)

k=1 d
2
=1 (1+D)−1

k=3 d
2
=1

k=3 d
2
=2

k=3 d
2
=4 (1+D+D3)−1

k=4 d
2
=4

k=4 d
2
=6

k=4 d
2
=8

Figure 5.5. Dependence on dψ2 for different values of k, block length = 300

Figures 5.5 and 5.6 show the role of dψ2 , comparing different encoders all decoded
with the non-binary algorithm. The hierarchy given by this parameter is clearly
respected in the error-floor region, as predicted by the theoretical results. At low
SNR, we see that the hierarchy is inverted (see Fig. 5.6), so that we have cross
points among curves. The codes in Figures 5.5 and 5.6 have blocklength 300 and
600 respectively; at higher lengths it is more difficult to get simulation results in the
error floor region, which has very low Pw(e).

117

5 – A family of structured linear-time encodable LDPC codes

1 1.5 2 2.5 3 3.5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

P
w

(e
)

k=1 d
2
=1 (1+D)−1

k=3 d
2
=1

k=3 d
2
=4 (1+D+D3)−1

k=4 d
2
=8

Figure 5.6. Dependence on dψ2 for different values of k, block length = 600

5.4 Density evolution analysis of the non-binary

decoding algorithm

Density evolution is a useful tool introduced in [60] to analyze the convergence of
the message-passing decoding of ensembles of LDPC codes.

This tool has been extended to the structured ensemble of IRA in [66], but
it could not be extended to our geralized repeat-accumulate codes under usual
message-passing, because of the structural presence of cycles in the Tanner graph.
In fact, density evolution describes how the distribution probability of the messages
exchanged evolve during the decoding algorithm, under the assumption that up to
that time no cycle has been encountered. It has been shown [60] that for random
regular and irregular LDPC ensembles, if you let the blocklength grow, the proba-
bility of not having cycles up to any fixed number of iterations grows to one. On
the contrary, most Repeat-Sum-Convolute concatenations give rise to many small
cycles, which not only may deteriorate the performance of the usual LDPC decoder,
but also prevent the use of density evolution as a tool to analyze its performance.

With our modified algorithm, there are no cycles in the structured part of the
graph, while to the remaining random part the same results of [60] apply. The only
drawback is that the non-binary algorithm is more difficult to analyze and gives rise
to a bigger number of variables, as was already noted in [58] who generalized density
evolution to different non-binary decoding.

118

5 – A family of structured linear-time encodable LDPC codes

5.4.1 Density evolution equations

In order to keep the number of variables finite, we will focus on the case of trans-
mission over Binary Erasure Channel (BEC). This choice is quite common in the
density evolution literature, because it leads to the study of a finite-dimensional
dynamical system.

Thanks to the code linearity and the symmetry of the channel, we can perform
the analysis under the assumption that the all-zero codeword has been sent, exactly
as in the classical case [60]

On the BEC and supposing transmission of all-zero codewords, the only possible
messages sent by the decoding algorithm are:

• from and to an information node: either 0 or ‘erased’. (i.e. the uniform prob-
ability on the set {0} and {0,1} respectively);

• from and to a parity node: the uniform distribution on some vector space,
subset of Zk

2, possibly {0} or Zk
2 itself. If the message comes from the channel,

not all subspaces are possible, only those corresponding exactly to the restric-
tion of Zk

2 to some of its components, i.e. the spaces having as a basis a subset
of the canonical basis of Zk

2.

Clearly, one can take as message the subspace itself, instead of the uniform distri-
bution on that subspace, so that the set of possible messages from and to the parity
nodes becomes G := { subspaces of Zk

2 }.
In the density evolution, clearly we want to keep track of the fraction of infor-

mation bits erased, which we would like to see converging to zero. Then, we need
to keep track of the probability that the parity nodes outputs each of its possible
messages. Differently from [58], for our parity nodes we need to keep separate the
distribution of messages on edges with label A and B, because we have fixed matri-
ces A, B and we cannot use the simplification given by averaging. We can exploit
the averaging effect only for information nodes, which have random labels on their
output edges. So, the density evolution system will have the following variables:

• yt∈ [0,1] = fraction of information bits erased at time t;

• xA
t ∈ P(G) defined by xAt (V)= fraction of output messages from parity sym-

bols (on edge with label A), which at time t that are equal to V ;

• analogous definition for xB
t on edges with label B.

By P(G) we denote the set of probability vectors of length |G|, with the convention
that components of these vectors will be labeled by elements V ∈ G instead of by
numbers 1, . . . ,|G|.

119

5 – A family of structured linear-time encodable LDPC codes

..

..
r−1

s

s−1

BW

W

V
AV

A

B

i

ym

(a) Information Node

..

..B

s

s

A
A

mx

BV
J

I V

AW

W

(b) Parity Node

Figure 5.7. Portions of Tanner graph, with messages exchanged

We will now give the equations describing the density evolution. We will use the
short-hand notations [k] := {1,2, . . . ,k} and, for I ⊆ [k], ZI

2 := span{ei,i ∈ I}. We
will denote by πi(V) the restriction of a vector space V ∈ G to its i-th component,
i.e. πi(V) is {0} if all vectors in V have their i-th component equal to zero, and is
{0,1} otherwise.

The update equations are:

yt+1 = ε









1 − (1 − yt)
s−1

k

k
∑

i=1

∑

V ∈G:
πi(AV)={0}

xAt (V)
∑

W∈G:
πi(BW)={0}

xBt (W)









r−1

(5.10)

and, for any U ∈ G,

xAt+1(U) =
∑

I⊆[k]

∑

J⊆[k]

∑

W∈G
ε|I| (1 − ε)k−|I| xAt (W) pJ(yt)n

A
U,W,I,J (5.11)

where:

• pJ(yt) = (1 − (1 − yt)
s)

|J |
(1 − yt)

s(k−|J |)

• nAU,W,I,J=#
{

V ∈G : BV =AW + FJ2 , U=V ∩ FI2
}

.

The equation for xB
t+1 is the same, simply exchanging the role of A andB everywhere.

Note that, if B is invertible, nAU,W,I,J becomes simply 1 if U = B−1(AW+FJ2)∩FI2
and 0 otherwise.

These update equations describe the evolution of y, xA and xB at one step of
the decoding algorithm, under the assumption that no loops have been created up
to that time (as in classical density evolution) and under the additional assumption

120

5 – A family of structured linear-time encodable LDPC codes

that labels on edges connected to information nodes all have weight one (this is true
with high probability).

Fig. 5.7 helps to understand the meaning of equations (5.10) and (5.11). It shows
the portion of Tanner graph corresponding to one step in the iterative decoding, from
the perspective of an information and a parity node. The triangles denote the output
from the channel. The check nodes can be thought as the aggregation of k bit-wise
check nodes, where the i-th bit-wise check is connected to the information nodes
having label ei.

Referring to Fig. 5.7(a), yt+1 is the probability that my = {0,1}. This happens
only if both the message from the channel and all the r − 1 incoming messages
from check nodes give an erasure. The channel sends an erasure with probability
ε. For each of the r − 1 edges, we will now compute the probability that the
message is {0}, i.e. not erased, assuming that the label is ei: the averaging on i
then comes from the fact that the labels are uniformly random. Looking at the
check node, we see that it sends {0} for the i-th component when all the other s−1
edges incoming with label ei carry a {0} and both messages AV and BW from
parity nodes give {0} when restricted to the i-th component. This happens with
probability (1 − yt)

s−1
∑

V :πi(AV)={0}
xAt (V)

∑

W :πi(BW)={0}
xBt (W).

xA
t+1 is the distribution of the messages mx in Fig. 5.7(b); let’s compute the

probability that mx = U . Note that U is the intersection of the message received
from the channel and the one coming from the check node. The channel can send
any of the spaces ZI

2, I ⊆ [k] (i.e. an erasure exactly in the components listed in the
indexes set I), each with probability ε|I|(1 − ε)k−|I|. The check node computes the
sum of the vector spaces it receives. The combination of the ks messages from the
information nodes is ZJ

2 , J ⊆ [k], i.e. an erasure exactly in the components listed in
J , with probability pJ(yt). In fact, a bit-wise check node j is erased when at least
one of the s information nodes with label ej carries an erasure. The check node has
to sum ZJ

2 and the message it receives on the edge labeled with A, which is AW
with probability xAt (W), for any W ∈ G. In conclusion, any triple I ⊆ [k], J ⊆ [k],
and W ∈ G appears with probability ε|I|(1− ε)k−|I|pJ(yt)xAt (W) and contributes to
xAt+1(U) nAU,W,I,J times.

5.4.2 Convergence threshold and stability condition

The evolution equations (5.10) and (5.11) describe a dynamical system, with variable
z = (y,xA,xB) ∈ [0,1] × P(G) × P(G). It is clear that if we denote by δV a vector
in P(G) with a one in position V and zeros everywhere else, z∗ := (0,δ{0},δ{0}) is a
fixed point of the system. Since yt → 0 represents successful decoding, finding the
threshold means finding up to what value of ε the system converges to z0 from the
initial condition z0 = (1,δZk2

,δZk2
). This choice of z0 corresponds to the initialization

121

5 – A family of structured linear-time encodable LDPC codes

of the decoding algorithm.
Fig. 5.8 shows an example of the threshold behaviour.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

ε

Threshold

Figure 5.8. Fraction of erased info bits (y) vs. erasure probability of the BEC (ε),
at iterations from 1 to 100 of the density evolution

Numerical computation of the threshold for different values of A and B can guide
the choice of the inner encoder, as is discussed in Section 5.4.3.

An interesting theoretical question which is often considered in the Density Evo-
lution literature is the stability condition: you look for conditions ensuring that the
fixed point to which you wish convergence (in our case, z∗) is asymptotically stable
for all ε, i.e. for all ε, there exists a neighbourhood of z∗ such that starting from
any initial condition in that neighbourhood the system will converge to z∗. This is
clearly a necessary condition for convergence from the given initial condition z0, and
it can provide interesting design guidelines, as it happens for the degree distributions
of the irregular binary random LDPC ensemble.

In our setting, it turns out that z∗ is asymptotically stable, for all ε, for any
choice of A and B, provided that r ≥ 3. This generalizes the well-known result
that for the regular LDPC ensemble, with left degree at least three, the asymptotic
stability of the fixed point 0 is always true. However, the proof in our setting is
less trivial. You need at first to linearize the system, i.e. to compute the Jacobian
matrix in z∗, J(z∗). r ≥ 3 ensures that the first line of J(z∗) is all-zero. Then
you can note that xA

t+1 does not depend on xB
t and depends linearly on xA

t ; denote
by MA the |G| × |G| matrix describing this linear map in the case when yt = 0.
Analogously define MB. Now note that the eigenvalues of J(z∗) are: 0 and then the
eigenvalues of MA and MB. Now, instead of explicitly computing the eigenvalues of
A and B, which are hard to express in closed form, we prove that the linear systems
on P(G) associated with MA and MB have a unique asymptotically stable fixed

122

5 – A family of structured linear-time encodable LDPC codes

point in δ{0}, by using a Lyapunov technique (see e.g. [43]): we define the function
η(x) =

∑

U∈G(dimU)x(U), which can be interpreted as the average dimension of
the subspaces of Zk

2 with respect to the probability distribution x. We note that η
is a linear function, η(x) ≥ 0 for all x ∈ P(G), η(x) = 0 if and only if x = δ{0}, and
we prove that η is strictly decreasing along the trajectories, i.e. η(MAx) < η(x) and
η(MBx) < η(x) for all x 6= δ{0}.

5.4.3 Simulation results

Our analysis is validated by simulation results in which at low SNR the hierarchy
given by the threshold is respected. The threshold has been obtained numerically,
iteratively calculating message densities and considering a maximum of 250 itera-
tions.

All the examples simulated have r = 4 and s = 4, so that the overall rate R is
1/2. Simulations differ for k and for the choice of ψ(D), which influences both the
threshold and the parameter dψ2 .

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
10

−3

10
−2

10
−1

ε

B
E

R

th=0.4449 d

2
=1

th=0.4029 d
2
=2

th=0.3876 d
2
=4

Figure 5.9. Results on BEC channel, k = 3, block length 2400, rate 1/2

Fig. 5.9 shows the behaviour of the non-binary decoding algorithm with k = 3
for three encoders, on the BEC channel. For the low SNR region the predicted hier-
archies are respected, they can be read on the graph in the BER region between 10−1

and 10−2. Hierarchies are reversed at higher SNR, as predicted by the parameter dψ2 .
Fig. 5.10 shows analogous simulations for some codes with k = 4. For all the

curves the matrix B has been kept fixed equal to the identity while A, starting from

123

5 – A family of structured linear-time encodable LDPC codes

0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44
10

−3

10
−2

10
−1

ε

B
E

R

th=0.4449 d
2
=1

th=0.4323 d
2
=1

th=0.4236 d
2
=1

th=0.4122 d
2
=1

th=0.3973 d
2
=1

th=0.3676 d
2
=1

th=0.3562 d
2
=3

Figure 5.10. Results on BEC channel, k = 4, block length 2000, rate 1/2

the identity matrix, has been filled up with more and more ones: this leads to a
decreasing threshold and a dψ2 which is very low when A is sparse; this suggests some
relation between our design parameters and sparseness of the matrices. Simulation
results are again perfectly matching with the predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

BEC th=0.4449
BEC th=0.4236
BEC th=0.3973
BEC th=0.3676

Figure 5.11. Results on AWGN channel, k = 4, block length 2000, rate 1/2

Fig. 5.10 shows performance of some codes on the AWGN channel. A look at

124

5 – A family of structured linear-time encodable LDPC codes

the thresholds for these codes on the BEC shows that the hierarchy is respected.
This suggests that density evolution on the BEC can also provide some insight in
the behaviour on other channels.

In Sections 5.2.2 and 5.3.3, we have underlined the role of the parameter dψ2 : its
maximization improves performance at high SNR. Now density evolution provides
an optimization criterion for low SNR: maximizing the threshold. It is well-known
that these two optimizations are often in contrast, so that a compromise is necessary
if both SNR regions are targeted. We want to investigate if this happens also in our
setting.

0.35 0.37 0.39 0.41 0.43 0.45

1

2

3

4

Threshold

d 2

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

1

2

3

4

5

6

7

8

Threshold

d 2

Figure 5.12. Distribution of the threshold as function of dψ2 with k = 3, 4

Figure 5.12 reports the threshold vs. dψ2 for a large number of choices of the pairs
A, B.

These numerical results show that the best threshold corresponds to A and B
being both permutation matrices; unfortunately, it is easy to prove that this condi-
tion implies dψ2 = 1, the same as with the simple accumulator on which we wanted
to improve. For k = 3 we see that the values of the threshold are quite dispersed,
even if there is some dependence on dψ2 , in that the lower dψ2 , the higher the max-
imum threshold. For k = 4, apart from the special case dψ2 = 1, the thresholds
don’t exhibit any apparent dependence on dψ2 . This suggests, especially for k = 4,
the following simple design criterion: take A and B with the maximum threshold
among those having the maximum dψ2 .

125

Chapter 6

Conclusion

In this thesis, we have considered very general serial turbo coding ensembles, where
convolutional encoders on a finite Abelian group are concatenated through an in-
terleaver which can be a permutation, or some more general homomorphic trans-
formation. This setting includes as special cases usual binary serial and parallel
turbo codes, as well as turbo trellis-coded modulation for AWGN channels with
geometrically uniform input constellation, e.g. m-PSK.

We have proved in this general setting an upper bound on the average error
probability which generalizes the interleaver gain result for binary serial turbo codes
given in [3]. The tightness of this bound is ensured by a lower bound, which is new
also for the binary case. Together, the upper and the lower bound prove that,
under mild assumptions on the constituent encoders, the average error probability
is vanishing when the blocklength goes to infinity, with a polynomial decay. We have
also characterized both the speed of decay and the dependence of the average error
probability on the channel’s signal-to-noise ratio as the solution of two combinatorial
optimization problems, in general involving both constituent encoders.

In the particular case of classical binary serial turbo codes, we have shown that
there is no concentration of the error probability around its average, in the sense that
both average and typical error probability are decreasing to zero when the block-
length grows to infinity, but the first one decreases polynomially while the latter one
decreases sub-exponentially fast. The exponent of the sub-exponential decay, as well
as some multiplicative constants appearing in the bounds, give design parameter for
the constituents encoders of the scheme, and are perfectly matching with the ones
suggested by the average-based analysis and well-known from simulations (e.g. [3]).
Our typical-case analysis is based on tight bounds for the average enumerating
coefficients, which use techniques specific for binary codes ([41, 2]). We conjecture
that also non-binary serial concatenations have a typical error probability decreasing
faster than the average, but we leave as an open problem to find some suitable tools
to obtain a proof.

126

6 – Conclusion

We have considered also another binary ensemble fitting in the general scheme
discussed above. It is a generalization of Repeat-Accumulate codes, and it can also
be interpreted as a family of structured linear-time encodable and decodable LDPC
codes, generalizing staircase LDPC codes. The inner encoder is itself the compo-
sition of two maps, and in order to find a design criterion for its inner part we
presented a modified average-based analysis, where we considered a sub-ensemble
using expurgation techniques. Simulation results with usual LDPC decoders showed
poor performance and poor correspondence with theoretical predictions of ML error
probability. This, due to the presence of cycles in the structured part of the graph
associated with the parity-check matrix. We have proposed a different decoding
algorithm, where groups of nodes in the Tanner graph were associated to form a
single super-node, thus breaking cycles. This new decoding algorithm allowed both
an improvement of performance (at least for some codes) and the use of density
evolution analysis of convergence, which was not possible in the presence of many
small cycles. Simulation results show hierarchies well matching the theoretical pre-
dictions given by the density evolution threshold in the low SNR (waterfall) region
and by the average-based ML error probability analysis in the medium-high SNR
(error floor) region, and this allows us to give guidelines on the design of the code.
There are still many open questions in the study of this family of codes. A straight-
forward step is to turn from regular degrees to irregular degrees in the random part
of the matrix, i.e. time-varying outer repetition and inner summator codes. Den-
sity evolution equations can be easily generalized to this setting, and even though
their theoretical analysis does not look simple, it is clearly possible to use them to
compute numerically the threshold and thus guide the design of both the inner code
and the degree distributions. Another interesting open problem is to generalize to
this decoding algorithm the finite-length analysis techniques proposed in [1], which
provide more refined predictions of the convergence.

A broader open problem, which looks more like a whole research area, includes
the search for results on serial turbo-like codes performance under actual iterative
decoding algorithms. We believe that our techniques, based on the study of weight
enumerators and distances, could be used, together with new tools, to study the
weight of turbo-stopping-sets, a new measure of the performance of a binary turbo
decoder on the BEC introduced for parallel turbo codes in [65].

127

Bibliography

[1] A. Amraoui, A. Montanari, T. Richardson, and R. Ur-
banke, Finite-Length Scaling for Iteratively Decoded LDPC Ensembles,
submitted to IEEE Trans. Inform. Theory (2004), available online:
http://arxiv.org/abs/cs.IT/0406050

[2] L. Bazzi, M. Mahdian, and D. Spielman, The minimum distance of turbo-
like codes, submitted to IEEE Trans. Inform. Theory (2003), available online:
http://basilo.kaist.ac.kr/papers/MIT/Spielman/s_12.pdf

[3] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, Serial
concatenation of interleaved codes: performance analysis, design and iterative
decoding, IEEE Trans. Inform. Theory, 44 (1998), pp. 909–926.

[4] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, Analy-
sis, design, and iterative decoding of double serially concatenated codes with
interleavers, IEEE J. Sel. Areas Communications, 16 (1998), pp. 231–244.

[5] S. Benedetto, R. Garello, M. Mondin, and G. Montorsi, Geometri-
cally uniform TCM codes based on L×MPSK constellations, IEEE Trans. Inf.
Theory, 40 (1994), pp.137–152.

[6] S. Benedetto and G. Montorsi, Unveiling turbo codes: some results on
parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 42 (1996),
pp. 409–428.

[7] S. Benedetto and G. Montorsi, Design of parallel concatenated convolu-
tional codes, IEEE Trans. Communications, 44 (1996), pp. 591–600.

[8] A. Bennatan and D. Burshetein, On The Application of LDPC Codes to
Arbitrary Discrete Memoryless Channels, IEEE Trans. Inf. Theory, 50 (2004),
pp. 417-438.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit
Error-Correctiong Coding and Decoding: Turbo Codes, Proc. IEEE Int. Conf.
Communications (1993), pp. 1064–1070.

[10] C. Berrou and A. Glavieux, Near optimum error correcting coding and
decoding: turbo-codes, IEEE Trans. Communications, 44 (1996), pp. 1261–1271.

[11] B. Bollobás, Random Graphs, 2nd edition, Cambridge University Press,
2001.

128

Bibliography

[12] V. Borkar, Probability Theory, NewYork: Springer-Verlag, 1995.

[13] F. Brännström, L. K. Rasmussen, A. J. Grant, Convergence Analysis
and Optimal Scheduling for Multiple Concatenated Codes, IEEE Trans. Inform.
Theory, 51 (2005), pp. 3354–3364.

[14] M. Breiling A logarithmic upper bound on the minimum distance of turbo
codes, IEEE Trans. Inform. Theory, 50 (2004), pp. 1692–1710.

[15] G. Como and F. Fagnani, The capacity of Abelian group codes over symmet-
ric channels, submitted to IEEE Trans. Inform. Theory (2005), available online:
http://calvino.polito.it/ricerca/2005/pdf/33_2005/art_33_2005.pdf

[16] M. C. Davey and D. J. C. MacKay, Low density parity check codes over
GF(q), IEEE Communications Letters, 2 (1998), pp. 159-166.

[17] D. Divsalar, A simple tight bound on error probability of block codes with
application to turbo codes, JPL TDA Progress Report, 42-139 (1999), pp. 1–35.

[18] D. Divsalar, S. Dolinar, and F. Pollara, Iterative turbo decoder analysis
based on density evolution, IEEE J. Sel. Areas Communications, 19 (2001),
pp. 891–907.

[19] T. M. Duman and M. Salehi, New performance bounds of turbo codes, IEEE
Trans. Communications, 46 (1998), pp. 717–723.

[20] S. Eilenberg, Automata, machines, and languages. Vol A., Academic Press,
1974.

[21] H. El-Gamal and A. R. Hammons, Analyzing the turbo decoder using the
Gaussian approximation, IEEE Trans. Inform. Theory, 47 (2001), pp. 671–686.

[22] U. Erez and G. Miller, The ML Decoding Performance of LDPC Ensembles
Over Zq, IEEE Trans. Inform. Theory, 51 (2005), pp. 1871–1879.

[23] F. Fagnani, Performance of parallel concatenated coding schemes, accepted
for publication, IEEE Trans. Inform. Theory (2008). Pre-print available on-line:
http://calvino.polito.it/ricerca/2004/pdf/31_2004/art_31_2004.pdf

[24] F. Fagnani, R. Garello, B. Scanavino, and S. Zampieri, Geometrically
uniform parallel concatenated coded modulation schemes, in preparation.

[25] F. Fagnani and S. Zampieri, Convolutional codes over finite Abelian groups:
some basic results, in Codes, systems and graphical models, B. Marcus and
J. Rosenthal, eds, IMA Volumes in Mathematics and its applications, vol. 123,
pp. 327–346, 2001.

[26] F. Fagnani and S. Zampieri, System-theoretic properties of convolutional
codes over rings, IEEE Trans. Inform. Theory, 47 (2001), pp. 2256–2274.

[27] F. Fagnani and S. Zampieri, Minimal and systematic convolutional codes
over finite Abelian groups, Linear Algebra Appl., 378 (2004), pp. 31–59.

[28] G. D. Forney, Jr., Concatenated codes, Cambridge, MA: MIT Press, 1966.

[29] G. D. Forney, Jr., Geometrically uniform codes, IEEE Trans. Inform. The-
ory, 37 (1991), pp. 1241–1260.

129

Bibliography

[30] G. D. Forney, Jr. and M. D. Trott, The dynamics of group codes: state
spaces, trellis diagrams and canonical encoders, IEEE Trans. Inform. Theory,
39 (1993), pp. 1491–1513.

[31] G. D. Forney, Jr. and M. D. Trott, The dynamics of group codes: Dual
Abelian Group Codes and Systems, IEEE Trans. Inform. Theory, 50 (2004),
pp. 2935–2965.

[32] C. Fragouli, R.D. Wesel, Turbo-Encoder design for symbol-interleaved par-
allel concatenated Trellis-Coded Modulation, IEEE Transactions on Communi-
cations, 49 (2001), pp. 425–435.

[33] R. G. Gallager, Low Density Parity Check Codes, Cambridge, MA: MIT
Press, 1963.

[34] R. Garello, G. Montorsi, S. Benedetto, D. Divsalar, and F. Pol-
lara, Labelings and encoders with the uniform bit error property with appli-
cations to serially concatenated trellis codes, IEEE Trans. Inform. Theory, 48
(2002), pp. 123–136.

[35] A. Graell i Amat, G. Montorsi, and F. Vatta, Analysis and design
of rate compatible serial concatenated convolutional codes, Proc. Int. Symp.
Inform. Theory (2005), pp. 607-611.

[36] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

[37] I. Ingemarsson, Commutative Group Codes for the Gaussian Channel, IEEE
Trans. Inform. Theory, 19 (1973), pp. 215–219.

[38] H. Jin, A. Khandekar, and R. J. McEliece, Irregular Repeat-Accumulate
Codes, Proc. Intern. Symposium Turbo Codes (2000).

[39] H. Jin and R. J. McEliece, Coding theorems for turbo code ensembles, IEEE
Trans. Inform. Theory, 48 (2002), pp. 1451–1461.

[40] R. Johannesson, Z.-X. Wan, and E. Wittenmark, Some structural prop-
erties of convolutional codes over rings, IEEE Trans. Inform. Theory, 44 (1998),
pp. 839-845.

[41] N. Kahale and R. Urbanke, On the minimum distance of parallel and
serially concatenated codes, submitted to IEEE Trans. Inform. Theory (1997),
available online: http://lthcwww.epfl.ch/papers/KaU.ps

[42] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in mathematical
system theory, McGraw Hill, 1969.

[43] J. P. LaSalle, The Stability and Control of Discrete Processes, Applied Math-
ematical Sciences, 62, SpringerVerlag, 1986.

[44] S. Le Goff, A. Glavieux, and C. Berrou, Turbo-codes and high spectral
efficiency modulation, Proc. IEEE Int. Conf. Communications (1994), pp. 645–
649.

[45] H.-A. Loeliger, Signal sets matched to groups, IEEE Trans. Inform. Theory,
37 (1991), pp. 1675–1682.

130

Bibliography

[46] H.-A. Loeliger and T. Mittelholzer, Convolutional Codes Over Groups,
IEEE Trans. Inform. Theory, 42 (1996), pp. 1660–1686.

[47] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman
Improved low-density parity-check codes using irregular graphs IEEE Trans. In-
form. Theory, 47 (2001), pp. 585–598.

[48] D. J. C. MacKay, Good Error Correcting Codes Based On Very Sparse Ma-
trices, IEEE Trans. Inform. Theory, 45 (1999), pp. 399–431.

[49] D. J. C. MacKay and R. M. Neal, Good Codes Based on Very Sparse
Matrices, Cryptography and Coding. 5th IMA Conf. (Cirencester, UK), LNCS
1025: 100-111. Berlin: Springer, 1995.

[50] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1977.

[51] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, Turbo Decoding
as an Instance of Pearl’s “Belief Propagation” Algorithm, IEEE J. Sel. Areas
Communications, 16 (1998), pp. 140–152.

[52] G. Miller and D. Burshetein, Bounds on the Maximum Likelihood Decod-
ing Error Probability of Low–Density Parity–Check Codes, IEEE Trans. Inform.
Theory, 47 (2001), pp. 2696–2710.

[53] H. Ogiwara, A. Mizutome, and K. Koike, Performance evaluation of
parallel concatenated Trellis-Coded Modulation, IEICE Trans. Fundamentals,
E84-A (2001), pp. 2410–2417.

[54] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, San Mateo, CA: Morgan Kaufmann, 1988.

[55] A. Perotti and S. Benedetto, An Upper Bound on the Minimum Distance
of Serially Concatenated Convolutional Codes, IEEE Trans. Inform. Theory, 52
(2006), pp. 5501–5509.

[56] H. D. Pfister and P. H. Siegel, The Serial Concatenation of Rate-1 Codes
Trough Uniform Random Interleavers, IEEE Trans. Inform. Theory, 49 (2003),
pp. 1425–1438.

[57] H. D. Pfister, I. Sason and R. Urbanke, Capacity-Achieving Ensem-
bles for the Binary Erasure Channel With Bounded Complexity, IEEE Trans.
Inform. Theory, 51 (2005), pp. 2352–2379.

[58] V. Rathi and R. Urbanke, Density evolution, thresholds and the stabil-
ity condition for non-binary LDPC codes, IEE Proc. on Communications, 152
(2005), pp. 1069-1074.

[59] T. J. Richardson, The geometry of turbo-decoding dynamics, IEEE Trans.
Inform. Theory, 46 (2000), pp. 9–23.

[60] T. J. Richardson and R. Urbanke, The Capacity of Low-Density Parity-
Check Codes Under Message-Passing Decoding, IEEE Trans. Inform. Theory,
47 (2001), pp. 599-618.

131

Bibliography

[61] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, Design of
Capacity-Approaching Irregular Low-Density Parity-Check Codes, IEEE Trans.
Inform. Theory, 47 (2001), pp. 619–637.

[62] T. Richardson and R. Urbanke, Efficient Encoding of Low-Density Parity-
Check Codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 638–656.

[63] T. Richardson and R. Urbanke, Modern Coding Theory. Online:
http://lthcwww.epfl.ch/mct

[64] P. Robertson and T. Wörz, Novel bandwidth efficient coding scheme em-
ploying turbo-codes, Proc. IEEE Int. Conf. Communications (1996), pp. 962–
967.

[65] E. Rosnes, Ø. Ytrehus, Turbo Decoding on the Binary Erasure
Channel: Finite-Length Analysis and Turbo Stopping Sets, sub-
mitted to IEEE Trans. Inform. Theory (2006), available online:
http://arxiv.org/PS_cache/cs/pdf/0602/0602072v1.pdf

[66] A. Roumy, S. Guemghar, G. Caire, and S. Verdú, Design Methods for
Irregular Repeat-Accumulate Codes, IEEE Trans. Inform. Theory, 50 (2004),
pp. 1711–1727.

[67] I. Sason and S. Shamai (Shitz) Improved upper bounds on the ML decod-
ing error probability of parallel and serially concatenated turbo codes via their
ensemble distance spectrum, IEEE Trans. Inform. Theory, 46 (2000), pp. 24–47.

[68] I. Sason, E. Telatar, and R. Urbanke, The asymptotic input-output
weight distributions and thresholds of convolutional and turbo-like encoders,
IEEE Trans. Inform. Theory, 48 (2002), pp. 3052–3061.

[69] S. Shamai (Shitz) and I. Sason, Variations on the Gallager bounds, connec-
tions and applications, IEEE Trans. Inform. Theory, 48 (2002), pp. 3029–3051.

[70] C. E. Shannon, A Mathematical Theory of Communication, Bell System
Technical Journal, 27 (1948), pp. 379–423 and pp. 623–656.

[71] D. Slepian, Group codes for the Gaussian channel, Bell System Technical
Journal, 47 (1968), pp. 575–602.

[72] D. Slepian, On Neighbor Distances and Symmetry in Group Codes, IEEE
Trans. Inform. Theory, 17 (1971), pp. 630–632.

[73] Special Issue on Codes on Graphs and Iterative Algorithms, B. Frey, R. Koetter,
G. D. Forney, Jr., F. R. Kschischang, R. J. McEliece, and D. A. Spielman,
Editors, IEEE Trans. Inform. Theory, vol. 47 n. 2, 2001.

[74] D. Sridhara and T. E. Fuja, LDPC Codes Over Rings for PSK Modulation,
IEEE Trans. Inform. Theory, 51 (2005), pp. 3209–3220.

[75] E. Telatar and R. Urbanke, On the ensemble performance of turbo codes,
Proc. IEEE Int. Symp. Inform. Theory (1997), pp. 105–105.

[76] S. ten Brink, Convergence of iterative decoding, Electronics Letters, 35
(1999), pp. 806–808.

132

Bibliography

[77] G. Ungerboeck, Channel Coding with Multilevel/Phase Signals, IEEE Trans.
Inform. Theory, 28 (1982), pp. 55–67.

[78] N. Wiberg, Codes and Decoding on General Graphs, Ph.D. thesis, Linköping
University, Linköping, Sweden, 1996.

[79] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing Free-Energy
Approximations and Generalized Belief Propagation Algorithms, IEEE Trans.
Inform. Theory, 51 (2005), pp. 2282–2312.

133

