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Abstract

In this paper we investigate the typical behaviour of minimum distance
and ML word error probability of a serial turbo concatenation with ran-
dom interleaver, when the interleaver length N goes to infinity. Our main
result shows that the word error probability P (e) goes to zero subexponen-
tially in N with probability one. While it is known that logE[P (e)]/ log N
converges to a constant, we prove that with probability one the sequence
log(− log(P (e)))/ log N approaches an interval [α, β] ⊂ (0, 1), thus show-
ing that the expected error rate is dominated by an asymptotically neg-
ligible fraction of bad interleavers. Our analysis is based on precise esti-
mations of the minimum distance distribution.

1 Introduction

Serial turbo codes (serially concatenated convolutional codes with inter-
leaver) were introduced in [3], together with an analytical explanation of
the simulation results. The authors based their analysis on the so called
‘uniform interleaver’, a conceptual tool first introduced in [2] in order to
explain the performances of Berrou et al.’s turbo codes [4]. Essentially
the idea consists of fixing outer and inner encoder and estimating the ML
error probability averaged over all possible interleavers. The main result
in [3] consists in an upper bound to the average error probability which
goes to zero as a negative power of the interleaver length N . The expo-
nent of N , called the interleaver gain, was shown to depend only on the
free distance of the outer encoder, which turns out to be the main design
parameter of serial turbo codes. These ideas were rigorously formalized
first in [9] and then, in a more general setting, in [7], where also a lower
bound is proved differing from the upper bound only by a multiplicative
constant, thus showing that the estimation is tight for the average serial
turbo code. Since this average based analysis seemed to agree with simu-
lation results in the sense that hierarchies of the design parameters were
respected, it could be expected that a typical serial turbo code has an
analogous behaviour, i.e. there is concentration phenomenon. From this,
the quest for more precise probabilistic estimations.
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In this paper we investigate this problem, showing that in fact there
is no concentration of the ML error probability around its average value,
since the ratio P (e)/E[P (e)] converges to zero with probability one. More
precisely we shall prove that a typical sequence of serial turbo codes has
error probability subexponentially decreasing to zero in N . The speed of
this convergence turns out to depend (in a non deterministic way) on the
free distance of the outer encoder, which is confirmed as the main design
parameter for these coding schemes.

Our analysis is based on a precise estimation of the probability distri-
bution of minimum distances, inspired both by the the tail estimations of
[10] and the deterministic upper bounding techniques devised in [1].

Our result has to be considered as analogous of the well known be-
haviour of ML-decoded LDPC codes (see [8], [11]): for the (c, d)-regular
LDPC ensemble the average error probability is known to decrease to zero
as N1−c/2 for even c and N2−c for odd c, while the error probability of a
typical code goes to zero exponentially fast. At the same time our results
should be considered in contrast with the concentration results of [12] and
[13], proved in the different context of iterative BP-decoding.

In Sec. 2, we introduce the setting and state our main result. Sec. 3
contains estimations of the probabilistic distribution of minimum dis-
tances. In Sec. 4 we prove strong probabilistic results first on the asymp-
totic distribution of the minimum distance sequence and then for that of
the ML word error probabilities.

2 Problem setting and main result

Throughout this paper we will deal with the following coding scheme

kn bits−→ φo
n

Nn bits−→ πn
Nn bits−→ φi

n
Mn bits−→ Channel

where:

• the outer encoder φo
n is the termination after n trellis steps of a

convolutional encoder φo ∈ Zk×m
2 (D) with controllability index νo;

• the inner encoder φi
n is the termination after n+νo trellis steps of a

convolutional encoder φi ∈ Zm×r
2 (D) with controllability index νi;

• the interleaver πn is a permutation of Nn := m(n + νo) bits;

• Mn := r(n + νo + νi) is the blocklength;

• the channel is memoryless, binary-input output-symmetric, with
Batthacharyya noise parameter γ (see [9], e.g. for the BIAWGNC
γ = e−Es/N0 ).

We will denote by P (e|πn) the word error probability of the above
coding scheme, under maximum likelihood (ML) decoding, and by dmin

n

its minimum Hamming distance. All the asymptotic results about P (e|πn)
will be stated for a sufficiently good channel, meaning that there exists
γ > 0 such that the result holds true provided that γ < γ.

About the component encoders, we will assume that:

• φo is non-catastrophic, with free distance do
f ≥ 5;
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• φi is non-catastrophic and recursive.

These assumptions are essential to our results. The most used concate-
nation scheme, with two rate 1/2 systematic recursive encoders, is a par-
ticular case of our more general setting (systematic codes are surely non-
catastrophic). Also Repeat-Accumulate and Repeat-Convolute codes fill
in our setting.

For a fixed pair of component encoders φo and φi, for every n in N
it is possible to introduce a probabilistic structure in the above serial
turbo scheme, by considering as interleaver a random variable (r.v.) Πn

uniformly distributed over the set SNn of all permutations of Nn bits. We
denote by P (e|Πn) the r.v. describing the ML word error probability of
such a random coding scheme.

Consider a sequence (Πn)n∈N of independent random interleavers each
uniformly distributed over SNn : from (Πn)n∈N we naturally obtain a se-
quence of random coding schemes. We call this probabilistic space the
serial turbo ensemble; denote by P and E probability and expected value
with respect to this space.

The well known results about the serial turbo ensemble consist of
estimations of the average word error probabilities ([3], [9], [7]): there
exist two positive constants C′ and C′′ such that

C′n−b(d
o
f−1)/2c ≤ E[P (e|Πn)] ≤ C′′n−b(d

o
f−1)/2c .

In this paper we will show that the typical asymptotic behaviour of the
random sequence (P (e|Πn))n∈N is quite different from its means and is
actually subexponentially decreasing to zero. Indeed, we will prove that,
with probability one, for all ε > 0:

lim
n→∞

P (e|Πn)

exp(−nα−ε)
= 0 ; lim

n→∞
P (e|Πn)

exp(−nβ+ε)
= ∞ ,

where

α := 1− 2

ddo
f/2e , β := 1− 1

ddo
f/2e . (1)

Notice that both α and β are increasing functions of do
f and as do

f ≥ 5, we
have 0 < α < β < 1. So the typical behaviour does not concentrate and
is much better then the average one. However, the key design parameter
do

f is still the same, enlightened by the previous average-based analysis.

3 Estimation of minimum distance dis-
tribution

3.1 Properties of component encoders

In this paragraph we fix some notation and we recall a well-known prop-
erty of convolutional encoders. We then give some estimations of the
weight enumerating coefficients of our terminated convolutional encoders.
In the next paragraphs we will apply these properties to the component
encoders of our serial scheme. As a notation, superscripts ‘o’ or ‘i’ will
refer to the outer and the inner encoder respectively.
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Following [2], we will call an error event a codeword whose correspond-
ing trellis state sequence, for some t1 < t2, is zero for all t ≤ t1 and t > t2,
and is non-zero for all t1 < t ≤ t2 (our error events are [10]’s detours).
We will call the interval [t1, t2] the support of the error event.

Note that non-catastrophic encoders are surely injective and so there
is a one-to-one correspondence between input words and codewords.

Property 1 Given a non-catastrophic convolutional encoder φ, there ex-
ists a positive µ such that any codeword of weight d comes from an input
word of weight w ≤ µd (for systematic encoders, trivially µ = 1).

Given the coding scheme described in Section 2, we define outer and
inner weight enumerating coefficients. All the weights we will consider
are Hamming weights (we denote by wH(x) the weight of a word x).
We define An,o

w,h and An,i
w,h to be the number of codewords of φo

n and φi
n

respectively, having input weight w and output weight h. We will also
write An,o

h :=
P

w An,o
w,h.

We give here some estimations of these weight enumerating coefficients.
The following Lemmas are taken from [10]; we have slightly rearranged
their proofs, extending their results to our more general setting and ob-
taining tighter bounds in Lemma 1 when w is odd.

Lemma 1 (Lemmas 1 and 2 in [10]) There exist some positive con-
stants C1, C2, η, ω such that:

dX

h=1

An,i
w,h ≤

Cw
1

ww
nbw/2cddw/2e

and, if n ≥ ηw and ωw ≤ d ≤ Mn ,
dX

h=1

An,i
w,h ≥

Cw
2

ww
nbw/2cddw/2e . ¤

Lemma 2 (Lemma 3 in [10]) There exists a constant C > 0 such that

An,o
d ≤ Cd

 
n

bd/do
fc

!
. ¤

3.2 Upper bound for the left tail

We recall the upper bound for P(dmin
n ≤ d) given in [10] (Thm. 2.a), here

improved for odd do
f and generalized to our setting.

Lemma 3 (Lemma 6 in [10])

P(dmin
n ≤ d) ≤

µidX

w=do
f

1�
Nn
w

� An,o
w

 
dX

h=1

An,i
w,h

!

¤

Theorem 1 There exists a constant C > 0 such that,

P(dmin
n ≤ d) ≤

µidX

w=do
f

Cwnw/do
f−dw/2eddw/2e
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Proof sketch: The proof of this theorem follows the proof of Theorem 2.a
in [10], (whose exact statement is the second part of the following Corol-
lary 1) and is obtained applying Lemma 3 and then estimating the weight
enumerating coefficients by Lemmas 1 and 2. ¥

Corollary 1 If (dn)n∈N is a sequence such that
dn

nβ

n→∞−→ 0, there exists

a constant C > 0 such that

P(dmin
n ≤ dn) ≤ C n

�
dn

n

�ddo
f /2e

and hence P(dmin
n ≤ dn) → 0 when n →∞. ¤

3.3 Lower bound for the left tail

We recall some technical results given in [10] as a part of the proof of their
Thm. 2.b (whose proofs can be generalized to our setting). We then use
these results to establish a new lower bound for P(dmin

n ≤ d), given in the
following Theorem 2.

First of all, we define some particular outer codewords we will use in
the proof. Let c∗ be a word of the outer code which has wH(c∗) = do

f

and is an error event with support [0, a − 1] for some constant a. We
consider n > a. We define c∗j as the shift to the right of c∗ for j trellis
steps; clearly, if |j− l| ≥ a, then c∗j and c∗l have non-overlapping supports.
For j ∈ {0, 1, . . . , n − 1 − a} and d ∈ N, we define the events E∗

j (d) :=n
wH(φi

n(Πn(c∗j ))) ≤ d
o

.

Lemma 4 ([10], part of proof of Thm. 2.b)

• if j and l are such that |j − l| ≥ a

P(E∗
j (d) ∩ E∗

l (d)) ≤
�

Nn
do

f

�
�Nn−do

f

do
f

�P(E∗
j (d))P(E∗

l (d))

• for all j, P(E∗
j (d)) =

dP
h=1

An,i
do

f
,h

�
Nn
do

f

� .
¤

Note that
(Nn

do
f
)

(
Nn−do

f
do

f
)
≤
�
1 +

do
f

Nn−2do
f
+1

�do
f n→∞−→ 1 and hence it is surely

bounded by some constant c.

Theorem 2 There exist some positive constants C1, C2, n̄, ω such that, if
n > n̄ and ωdo

f ≤ d ≤ Mn

P(dmin
n ≤ d) ≥ C1 n

�
d

n

�ddo
f /2e

− C2

"
n

�
d

n

�ddo
f /2e#2
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Proof:
Let n̄ = max{ηdo

f , a} with a as above, η as in Lemma 1, and consider
n > n̄. Let ω be as in Lemma 1.

P(dmin
n ≤ d)≥P

 
Nn[
j=0

E∗
j (d)

!
≥P
 [

j∈J

E∗
j (d)

!
, where

J :={a r , r ∈ Z+} ∩ {0, 1, . . . , n− 1− a}.
Note that j, l ∈ J , j 6= l implies that |j − l| ≥ a and hence, by Lemma

4,
P(E∗

j (d) ∩ E∗
l (d)) ≤ c [P(E∗

j (d))]2 .

We use the union-intersection bound:

P

 [
j∈J

E∗
j (d)

!
≥
X
j∈J

P(E∗
i (d))−

X
j∈J

X

l∈J\{j}
P(E∗

j (d) ∩ E∗
l (d))

≥ |J |P(E∗
0 (d))− c [|J |P(E∗

0 (d))]2 .

By Lemmas 4 and 1, we can find two positive c1 and c2 (depending on
do

f ) such that, for all n > n̄ and ωdo
f ≤ d ≤ Mn:

c1

�
d

n

�ddo
f /2e

≤ P(E∗
j (d)) ≤ c2

�
d

n

�ddo
f /2e

To conclude, note that c3n≤|J |≤c4n for some positive constants c3 and
c4. ¥

Corollary 2 If (dn)n∈N is a sequence such that
dn

nβ

n→∞−→ 0, there exists

a constant C > 0 such that

P(dmin
n ≤ dn) ≥ Cn

�
dn

n

�ddo
f /2e

¤

3.4 Deterministic upper bound

We have generalized the deterministic upper bound for the minimum dis-
tance obtained by Bazzi et al. for Repeat–Convolute codes ([1], Thm. 2)
to our serial concatenation scheme. Actually Bazzi et al. also study se-
rial turbo codes in an even more general setting ([1], Thm. 4), but we
need a different estimation, where do

f plays the same role as the repetition
parameter k in [1], Thm. 2.

Theorem 3 There exists a constant K > 0 such that
dmin

n ≤ Knβ log n ¤

The details of the proof will be given in a forthcoming paper; the outline
follows the proof of Thm. 2 in [1].
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4 Probabilistic conclusions

In this section we derive probabilistic results for the sequence of minimum
distances based on the estimations of the previous section. Roughly speak-
ing, we show that minimum distances almost grow as n to some positive
exponent which is less then one and converges in a weak way to β, while in
a strong way the sequence densely covers the whole interval [α, β], α and
β being defined in (1). Finally we show how these results can be trans-
ferred to ML word error probabilities. We show that typically P (e|Πn) is
subexponentially decreasing to zero, again with a speed densely covering
the interval [α, β] with probability one and weakly converging to β.

Remember that our probabilistic space is the serial turbo ensemble
generated by a sequence of independent r.v.s (Πn)n∈N, with each Πn uni-
formly distributed over SNn . The main probabilistic tool we will use in
our derivation is the Borel-Cantelli lemma ([5] Thm. 1.4.2) which states
that, for every sequence of events (An)n∈N

(i) if
P

n∈N
P(An) < ∞, then P({An i.o.}) = 0;

(ii) if the An’s are independent and
P

n∈N
P(An) = ∞, then P({An i.o.}) =

1;

where the event {An i.o.} (‘An occurs infinitely often’) is defined as

{An i.o.} :=
\

n∈N

� [

l≥n

Al

�
.

We define, for every n ∈ N and x ∈ [0, 1],

Ex
n := {dmin

n ≤ Mx
n} ,

θ(x) := 1 + ddo
f/2e(x− 1) .

Observe that θ(x) is an increasing function of x, and that θ(α) = −1,
θ(β) = 0. From Corollaries 1 and 2 it follows that, for 0 ≤ x < β, two
positive constants C′ and C′′ exist such that

C′nθ(x) ≤ P(Ex
n) ≤ C′′nθ(x) . (2)

4.1 Minimum distances

Usually, asymptotics of the minimum distance of ensembles of codes are
studied by defining the relative minimum distance δn = dmin

n /Mn. In our
case Theorem 3 directly implies that deterministically δn

n→∞−→ 0 for any
sequence of serial turbo codes. For this reason we propose the following
non linear rescaling

Xn :=
log(dmin

n )

log(Mn)
.

With this rescaling, (Xn)n is a sequence of independent random variables
taking values in [0, 1], since 1 ≤ dmin

n ≤ Mn. The meaning of Xn is to cap-
ture the exponent of the sublinear asymptotic behaviour of dmin

n . Notice
that

Ex
n = {Xn ≤ x} .
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Our main results about (Xn)n∈N are the two following theorems.

Theorem 4 With probability one:

(a) (Xn)n∈N densely covers [α, β] ;

(b) lim infn Xn = α ;

(c) lim supn Xn = β .

Proof:
(a) We define for any t, n ∈ N, and s = 1, . . . , 2t,

Bs,n
t :=

n
Xn ∈

�
α + s−1

2t (β − α), α + s
2t (β − α)

� o
,

Bs
t := {Bs,n

t i.o.} , Bt =
T2t

s=1 Bs
t .

From (2), we have that

P(Bs,n
t ) ≥ C′nθ(α+

s
2t (β−α)) − C′′n

θ

�
α+

s−1
2t (β−α)

�

= C′nθ(α+
s
2t (β−α))

�
1− C′′

C′ n−
β−α
2t

�
,

so that, since θ
�
α + s

2t (β − α)
� ≥ −1,

X

n∈N
P (Bs,n

t ) = ∞ .

Thus, part (ii) of the Borel-Cantelli lemma lets us conclude that P(Bs
t ) = 1

for any s = 1, . . . , 2t, and so

P(Bt) = P
�T2t

s=1 Bs
t

�
= 1 , ∀t ∈ N .

But then

P ({(Xn)n densely covers [α, β]}) = P
�T

t∈NBt

�

= lim
t→∞

P(Bt) = 1 .

(b) By (2) we have that, for every ε > 0

X

n∈N
P(Eα−ε

n ) ≤
X

n∈N
Cnθ(α−ε) < ∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P
� �

Eα−ε
n i.o.

	 �
= 0 .

Denoting by Ac the complement of an event A, we have

�
Eα−ε

n i.o.
	c ⊆

�
lim inf

n∈N
Xn ≥ α− ε

�
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so that

P
�

lim inf
n∈N

Xn ≥ α

�
=P
� T

k∈N

�
lim infn Xn ≥ α− 1

k

	�

= lim
k→∞

P
��

lim infn Xn ≥ α− 1
k

	�

≥ lim
k→∞

P
�n

Eα−1/k
n i.o.

oc �

= 1 .

Since by point (a) we have P (lim infn Xn ≤ α) = 1, point (b) follows.
(c) Theorem 3 directly implies that lim supn Xn ≤ β . Since point (a)

implies that P (lim supn Xn ≥ β) = 1, point (c) follows.

Although Theorem 4 tells us that with probability one a random se-
quence of codes from the serial turbo ensemble has minimum distance
exhibiting a chaotic behaviour, a weak form of convergence for the se-
quence of r.v.s (Xn)n can still be observed. Formally, we have to consider
the sequence of probability measures instead of the probability space of

sequences. We will denote by Xn
P→ X the convergence in probability

(see [5] for definitions and properties). The following result is a restating
of [10]’s Theorem 2 in our setting (and with an improvement when do

f is
odd).

Theorem 5 Xn
P→ β .

Proof: For every ε > 0, Corollary 1 and Theorem 3 guarantee that

P(|Xn − β| < ε) ≥ 1− C n−ddo
f /2eε n→∞−→ 1 .

4.2 ML Error probabilities

In order to transfer our results about minimum distances to ML word error
probabilities we use a classical tool of coding theory known as expurga-
tion (see [8]). We estimate the averaged error probability conditioned on
the complement events (Ex

n)c for some proper x ∈ [0, β). By combining
these estimations with (2) we derive strong probabilistic results about the
asymptotic behaviour of P (e|Πn).

We define the following r.v.

Yn :=
log(− log P (e|Πn))

log n
;

the idea is that Yn should capture the speed of the subexponential asymp-
totic decrease of P (e|Πn).

Proposition 1 If the channel is sufficiently good, for all x ∈ [0, β),

E[P (e|Πn) |(Ex
n)c ] ≤ exp(−Kxnx)

for some positive constant Kx.
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Proof: We use the Union-Bhattacharyya bound, remembering that (Ex
n)c =

{dmin
n > Mx

n} and then, denoting by 1E the characteristic function of some
event E:

E[P (e|Πn)|(Ex
n)c]=

1

P((Ex
n)c)

E[P (e|Πn) · 1(Ex
n)c ]

≤ 1

P((Ex
n)c)

MnX

h=Mx
n

µihX

w=do
f

µowX

l=1

An,o
l,wAn,i

w,h�
Nn
w

� γh .

By Coroll. 1, P((Ex
n)c)

n→∞−→ 1. So, for some c ≥ 1,

1

P((Ex
n)c)

≤ c .

We estimate An,i
w,h≤

hP
j=1

An,i
w,j by Lemma 1 and

µowP
l=1

An,o
l,w by Lemma 2, so we

can find a positive C such that:

E[P (e|Πn)|(Ex
n)c]≤c

MnX

h=Mx
n

µihX

w=do
f

Cw

�
h

w

�w
2�w

n

�w
2 − w

do
f γh.

Then we remark that the function g(s) := (a/s)s has maximum value
g(a/e) = ea/e and hence

(h/w)w/2 ≤ eh/(2e) .

Moreover, w ≤ Nn = m(n + νo) ≤ c̃n for some c̃ ≥ 1, so (w/n)
w
2 − w

do
f ≤

c̃
( 1
2− 1

do
f

)w
. Hence, as w ≤ µih, we can find a constant C̄ ≥ 1 such that:

E[P (e|Πn)|(Ex
n)c] ≤

MnX

h=Mx
n

(C̄γ)h ≤ c̄(C̄γ)Mx
n

where the last inequality holds true, for some c̄ > 0, if γ < 1/C̄. Notice
that C̄γ < 1 also implies that c̄(C̄γ)Mx

n ≤ exp (−Kxnx) for some positive
Kx.

Lemma 5 There exists a constant K such that, deterministically, P (e|Πn) ≥
exp(−Knβ log n) .

Proof: We use the inequality P (e|Πn) ≥ pdmin
n , where p is the equivocation

probability of the channel (see [6]; e.g. p = 1/2 erfc(
p

Es/N0) for the
BIAWGNC). This, together with Theorem 3, gives the result. ¥

Lemma 6 For any x ∈ [0, β), there exist two positive constants K and
C, depending on x but not on n, such that

P
�
P (e|Πn) ≥ exp(−Knx)

�
≥ Cnθ(x) .
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Proof: Since P (e|Πn) ≥ pdmin
n , by (2) we get

P
�
P (e|Πn) ≥ pMx

n

�
≥ P

�
dmin

n ≤ Mx
n

�

= P (Ex
n)

≥ Cnθ(x) .

Lemma 7 For a sufficiently good channel, for any x ∈ [0, β), there exist
two positive constants K and K′, depending on x but not on n, such that

P
�
P (e|Πn) ≥ exp(−Knx)

�
≤ K′nθ(x) .

Proof: By Proposition 1 we have, for some Kx > 0

E [P (e|Πn) |(Ex
n)c ] ≤ exp(−Kxnx) ,

so that, by Markov inequality, we get

P
�
P (e|Πn) ≥ exp(−Kx

2
nx)
�� (Ex

n)c�

≤ P
 

P (e|Πn) ≥ E [P (e|Πn)| (Ex
n)c]

exp(−Kx
2

nx)

����� (E
x
n)c

!

≤ exp(−Kx
2

nx) .

Thus, by (2) we get

P
�
P (e|Πn) ≥ exp(−Kx

2
nx)
�

= P
�
P (e|Πn) ≥ exp(−Kx

2
nx)
��Ex

n

�
P(Ex

n)+

+ P
�
P (e|Πn) ≥ exp(−Kx

2
nx)
�� (Ex

n)c�P((Ex
n)c)

≤ P(Ex
n) + P

�
P (e|Πn) ≥ exp(−Kx

2
nx)
�� (Ex

n)c�

≤ Cnθ(x) + exp(−Kx
2

nx)

and the claim immediately follows with K = Kx/2, and for some K′ ≥ C.
¥
Theorem 6 For a sufficiently good channel, with probability one it holds
true:

(a) (Yn)n∈N densely covers [α, β];

(b) lim infn Yn = α;

(c) lim supn Yn = β.

Proof:
(a) The proof is rather technical and will be given in a forthcoming

paper. The main ideas are similar to those of the proof of Thm. 4 (a).
(b) For every ε > 0, by Lemma 7 we get

X

n∈N
P
�
P (e|Πn)≥exp(−Knα−ε)

�
≤
X

n∈N
K′nθ(α−ε)<∞

Then point (i) of the Borel-Cantelli lemma implies

P
��

P (e|Πn) ≥ exp(−Knα−ε)
	

i.o.
�

= 0
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so that

P (lim infn Yn ≥ α− ε)

≥ P
��{P (e|Πn) ≥ exp(−Knα−ε)} i.o.

	c
�

= 1 ,

and
P (lim infn Yn ≥ α)

= P
�T

k∈N {lim infn Yn ≥ α− 1/k}�

= lim
k→∞

P (lim infn Yn ≥ α− 1/k) = 1 . (3)

Moreover, by Lemma 6

X

n∈N
P (P (e|Πn)≥exp(−Knα))≥

X

n∈N
Cnθ(α) = ∞

and thus, by point (ii) of the Borel-Cantelli lemma:

P (lim infn Yn ≤ α)

≥ P
��

P (e|Πn) ≥ exp(−Knα)
	

i.o.
�

= 1

(c) Lemma 5 implies that, deterministically

lim supn Yn ≤ β .

Moreover, for every ε > 0, by Lemma 7 we have

P
�
P (e|Πn) ≥ exp(−Knβ−ε)

�
≤ Cnθ(β−ε) n→∞−→ 0 .

Thus a subsequence (Πnk )k∈N exists1 such that

X

k∈N
P
�
P (e|Πnk ) ≥ exp(−Knβ−ε

k )
�

< ∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P (lim supn Yn ≥ β − ε)

≥ P
��

P (e|Πn) ≥ exp(−Knβ−ε)
	

i.o.
�

≥ P
��

P (e|Πnk ) ≥ exp(−Knk
β−ε)

	
i.o.
�

= 1 .

By essentially the same derivation as in (3), we obtain

P (lim supn Yn ≥ β) = 1 .

Theorem 7 For a sufficiently good channel

Yn
P→ β .

Proof: This follows from Lemmas 5 and 7.

1Given any real sequence (an)n∈N such that lim
n→∞ an = 0, you can find an increasing

sequence of naturals n1 <n2 <. . . such that
P

k∈N
|ank | < +∞ .
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4.3 Other ensembles

From the same fixed component encoders φo and φi, it is possible to
construct different ensembles, introducing other probabilistic structures
for the interleaver sequence. For instance, instead of a sequence of inde-
pendent interleavers (Πn)n∈N with Πn uniformly distributed over SNn as
in our serial turbo ensemble, we can consider a sequence of interleavers
(Π′n)n∈N such that each Π′n is still uniformly distributed over SNn , but
possibly dependent on {Π′i, i = 1, . . . , n− 1}.

A close look at our proofs shows that independence among the Πn’s is
required only when using point (ii) of the Borel-Cantelli lemma. Hence,
for the new ensemble based on (Π′n)n∈N we can state that, with probability
one:

• lim infn X ′
n≥α; lim supn X ′

n =β ,

• lim infn Y ′
n≥α; lim supn Y ′

n =β ,

while X ′
n
P→ β and Y ′

n
P→ β.

This means that introducing some dependence among the uniform in-
terleavers cannot make performances worse while it could possibly improve
them. It would be interesting to develop an analysis for these hierarchical
structures.

5 Conclusions

We have analyzed the asymptotic behaviour of minimum distances and
ML error probabilities of the serial turbo ensemble. We have proved that
a typical sequence of codes from this ensemble has minimum distance
sublinearly growing in the interleaver length and ML error probability
subexponentially decreasing to zero. Both these asymptotic behaviours
are characterized by a random parameter densely covering the interval
[α, β], where α and β are increasing functions of the free distance of the
outer encoder. This shows that there is no concentration of error proba-
bility around its average, which decreases only as a negative power of the
interleaver length ([3],[9],[7]).
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