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Analyse de systémes temps-réels préemptifs par ’algébre
(max,plus) et applications a la robotique

Résumé : Dans cet article, nous présentons sous forme d’'un Réseaux de Petri
le modéle d’ un systéme de taches périodiques temps-réel, avec des priorités fixes,
de la préemption et de la synchronisation qui sont exécutées par le controleur d’un
robot. Ensuite, avec I'aide de l'algébre (max,plus), nous établissons des tests sim-
ples pour vérifier des contraintes temps-réels sur ces tiches, comme le calcul des
temps de réponse et le respect d’échéances. Cette méthode prend en compte les
contraintes de précédence et de synchronisation et n’est pas limitée & une politique
d’ ordonnancement particuliére.

Mots-clé : Systémes temps-réel, synchronisation, préemption & priorité fixe,
graphes d’événements , algébre (max,plus)
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1 Introduction

Marked graphs can be used to model processes with highly synchronous behaviors,
see [1, 5, 3] for example. Here, we focus on the study of several marked graphs which
interact via certain preemption schemes.

Such systems appear in the modeling of sets of tasks performed by on-board
processes in a robot. Some tasks have high priority and therefore must preempt the
low priority tasks. However, all tasks, those with high priority but also those with
low priority have real time constraints to meet, which are of the following type. Each
task is synchronized by a clock (or by a precedent task), and is made runnable at each
tick of the clock. Each task must run to completion before the next synchronization
tick. The ORCCAD system, detailed in Section 2 is a good example of such a systems.

This paper gives simple answers to a series of problems with an increasing degree
of difficulty, all related to the quantitative behavior of such systems.

e (maz,plus) representation. This modeling problem can be approached under
two different points of view: the contracted time approach is more suitable
for the special case of the ORCCAD model and is presented in Section 3; the
expanded time approach allows us to model more general problems but yields
less precise answers. It is presented at the end of the paper in Section 5

e Periodicity. A first structural problem that we address is the periodicity issue.
Under rather general assumptions, we show that the whole system reaches a
periodic regime after some transient behavior.

e (Cycle time. Another key practical problem is to compute the speed of the
system once it has reached its periodic regime. When the contracted time
model is valid, the answer to this question is quite simple and is given as the
ratio of the cycle time without preemption by the busy period of the preemptive
tasks (see section 3.2).

e Response times. A more precise performance measure is the response time of
each task defined as the duration between the time it becomes runnable and
the time of its completion. A (max,plus) representation of this quantity is
given in Section 4.2 whereas a brief presentation of the (max,plus) algebra is
given in appendix.

e Real time constraints. Finally, we give a simple test to check whether the
system complies with its real time constraints, during the transient period as
well as during the periodic regime (Section 4.4).
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4 F. Baccelli, B. Gaujal, D. Simon

In the last part of the paper, we show that this approach can be partially gen-
eralized to an arbitrary set of Marked Graphs equipped with partial order relations
between sets of transitions. In that case, we cannot always use the contracted time
approach but rather expand the firing time of the transitions. The main result being
the fact that the system reaches a periodic regime which does not depend on the
initial conditions (see Section 5).

2 Modeling of a Real Time System: The ORCCAD Frame-
work

This section is primarily a motivation section. We take the instance of a specific
framework for real time systems, ORCCAD, and show how to model its logical and
timed behavior by marked graphs. We believe that the mathematical models that
we develop in this section and study later on are nevertheless generic.

ORCCAD is a software environment dedicated to the design, the verification and
the implementation of advanced robotics control systems. It also allows the specifi-
cation and the validation of missions to be achieved by the system!.

Periodic and multi-rate communicating tasks are executed under the control of
a classical real-time operating system, using preemption based on fixed priorities
assigned to tasks.

The structure of the periodic tasks, which are called module-tasks (MTs) follows
the following scheme. After initialization, an infinite loop is executed where all input
ports are first read, calculations are performed from these inputs and finally results
are posted on all the output ports.

2.1 Synchronization

The general idea is that a partial synchronization of such tasks can improve the per-
formances by decreasing the computing latency. However, using too many or incor-
rectly specified synchronizations may lead to deadlocks or temporal inconsistencies
[8]. Several kinds of synchronizations can be used on ports in order to synchronize
more or less tightly the set of MTs:

e ASYN-ASYN: a communication of this type does not lead to further synchro-
nization.

YA freeware simplified prototype of the software and associated documentation are available
through http://www.inrialpes.fr/iramr/pub/Orccad/orccad-eng.html.

INRIA



Analysis of Preemptive Periodic Real Time Systems 5

e SYN-SYN: each communication of this type is a rendez-vous; the first task
to reach the rendez-vous (either the writer or the reader) is blocked until the
second one is ready.

e ASYN-SYN: the writer runs freely and posts messages on its output ports at
each period; the reader either reads the message if a new one is available or is
blocked until the next message is posted.

e SYN-ASYN: symmetrical to the previous case: the reader runs freely, the writer
is blocked until the next request except if a new one was posted since the last
reading.

2.2 Preemptions

In addition to synchronizations, M'Ts may interact through another mechanism, pre-
emption.

A control system for robotics is generally made of several calculation paths :
the direct control path computing control set-points from tracking errors is often
quite simple and has small computation duration. It can be activated with a fast
period, thus improving the performance of the control law, e.g. reducing tracking
errors or increasing robustness w.r.t. modeling errors [8]. Other tasks may be used
to update some parameters of the non-linear robot model. These tasks are data-
handling intensive, e.g. using trigonometric functions or matrix inversion. Their
duration is usually longer than the period of the direct path. Thus they must be
assigned with a low priority so that their execution is preempted by every execution
of the direct path calculations. Such an example is given in section 2.6.

The whole system is run over a limited number of CPUs. All the MTs using the
same CPU are ordered according to their priorities. When one MT with high priority
becomes runnable and starts its calculation cycle, all MTs with lower priorities are
preempted on the processor. The activity of the runnable MT with the immediately
lower priority resumes where it was stopped as soon as the higher priority MT has
finished its cycle of calculations.

2.3 Modeling with Petri nets

Design inconsistencies may arise in several ways. Structural deadlocks are due to
the synchronization structure itself whatever are the numerical values of temporal
attributes. In addition, preemption or badly chosen numerical values of temporal
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6 F. Baccelli, B. Gaujal, D. Simon

attributes like tasks period and duration may lead to temporal inconsistencies such
as non-periodic behavior of the system, even if it is free from structural deadlocks.

Therefore, we need modeling and analysis tools to automatically check for incon-
sistencies in the network of synchronized MTs. Such problems have been addressed in
the real-time community under very general assumptions, see for example [7]. Here,
we will adopt a particular modeling tool, Petri nets which will provide a simple and
efficient way to carry out inconsistency tests.

As shown in Figure 1, the sequential behavior of the simplest periodic MT (read-
ing an input port, performing a calculation, writing to an output port) may be
modeled by a Petri net with three transitions. (Of course, when a MT has multiple
input and output ports, we must be careful to associate a distinct transition with
each read and each write.) A fourth transition is required to activate the MT subject
to the periodic awakening associated with a real time clock (RT'C), also modeled by
a Petri net. As we shall be further concerned with temporal analysis, we may add
some temporal properties to the model to obtain a timed Petri net, i.e. a Petri net
where durations are associated with some transitions or places. We have chosen to
associate the duration [d] of the MT with the calculation step transition, and thereby
assume that reading and writing are instantaneous events, i.e. events of zero dura-
tion. A crossing time [7] is also assigned to the transition associated with the RTC
(Transitions associated with non zero duration are drawn with thick lines).

Since each place has just one input transition and one output transition, the
resulting Petri net is a so-called marked graph (or event graph).

ASYN/SYN communication between two MTs is modeled as shown in Figure 2
on the left and SYN/SYN communication is modeled as shown in Figure 2 on the
right. Note that the transition associated with the periodic awakening of MT2 is no
longer present, since the temporal behavior of MT2 is bound to that of MT1. Once
again, the combination of the two Petri nets is a marked graph.

Note that ASYN/ASYN communication does not add synchronization constraints,
i.e. MTs communicating using this protocol have disconnected models.

Also, preemption is not shown directly in the Petri net model. It will be taken
into account in the equations that describe the dynamics of the system.

Thanks to structural properties of marked graphs, checking for structural dead-
locks can be easily done through the analysis of the initial marking of the p-invariants
of the global Petri net [8]. Studying the temporal behavior of the set of MTs is more
complex: classically this can be done through a more or less exhaustive exploration
of the reachability graph of the Petri net, which can be costly in time and memory.
Moreover, such models usually do not take into account the effect of the real-time
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. Module-Task
Real-Time Clock

P4 o Waiting for clock
T3

Read input port [0]
End of Reading

Perform all
internal calculations  [d]

Ready to write

Write on output port [0]

Figure 1: A Petri net model of a periodic Module-Task.

MT2
P9
Reachiny
T7 P2 Ready for reading P8 rendez-{ous
T2R d it
P10 g ey Reading input
[0]
port [0]
T8
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P11
Computations Computations
[d1] [d2]
[d2] T9
Repching
rerldez-vous™* P10
P12
Write on Writ
output port [0] rite on
Ti0 4 tput port [0 output port|[0]

Figure 2: Petri net models for ASYN/SYN and SYN/SYN communications
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8 F. Baccelli, B. Gaujal, D. Simon

scheduler which is assumed to use fixed priorities and preemption. Thus, this model
must be refined accordingly, which will be the object of the present paper.

2.4 A Generic Marked Graph Model for Preemption Based Real
Time Systems

We shall retain the following generic model from the above framework:
The model consists of a set of tasks T;, ¢+ = 1, N. Each task 7; can be modeled
by a connected marked graph G; = (Q;, P;, M;, 0;),

e Q; is the set of numbered transition. We denote its size );;
e P; is the set of numbered places. We denote its size F;;

e 0; = (0iy, ++ ,0iy) is the set of firing times, 0;, being the firing duration of
transition q. We will assume that these numbers are all multiple of the smallest
time unit that can be handled by the system. Therefore, they can be seen as
integer numbers.

e M;(r,q) is the initial marking in the place between r and ¢ (if this place does
not exist, M;(r,q) is not defined).

e We also denote by ¢* and *q the output places and input places respectively,
of transition gq.

Moreover, the strongly connected components of G; are partitioned into two sets:

e The set of initial components, denoted I;. An initial component will be called a
clock. In most practical cases, this clock is always composed of a single recycled
transition. However, nothing forbids to consider more elaborate clocks, and we
will make no restrictive assumption concerning these initial components.

e All the other components, denoted O;. They are often simple cycles, for single
task models but may be more complicated.

As the preemption between tasks is given under the form of an order relation between
the graphs G;. If G; = G;, whenever a transition in Oj fires, every firing transition in
O; is interrupted and resumes its firing as soon as all activities in O; stop.

Note that the clocks of G; or G; are not involved in the preemption process.

INRIA
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All the other components: O

Initial components: 1

Figure 3: Example of a graph with the decomposition in the components I, O

2.5 Examples
2.5.1 Case 1: A Simple Case with no Preemption

This first example shows a group of two communicating task using a ASYN/SYN
communication. However, there is no preemption in this case. This system is repre-
sented in Figure 4.

The corresponding MG is displayed in Figure 5. Each task has its own clock that
sets the period of each task (20 and 15 units of time respectively).

2.6 Case 2: A case with preemption

Here, we show a realistic model of several tasks (MT1 to MT7) used in the Dy-
namical control in the ORCCAD system that involve preemptions. The priorities for
preemptions, are such that

{MT1,MT2} = {MT3, MT4, MT5, MT6} > {MT7}.

RR n~°3778
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Module Task 1 (MT1) Module Task 2 (MT2)
Clock period:20 Clock period: 15
Calculation: 2 ASYN-SYN Calculation: 1

o J o J

Figure 4: Two communicating tasks

Clock 1 - Wﬂl WEZ/IQ - ch%i

ol
.
Wi
IV

Figure 5: Corresponding Marked Graph model
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Priorities have been set according to the relative urgency of the tasks. Here,
MT1 and MT2 are observers checking for safety conditions, MT3-MT6 is the direct
control path and the long duration MT7 computes an explicit model of the robot arm
dynamics. Note that we have elected the rate-monotonic scheduling policy [4] which
matches well the constraints of automatic control in that particular example (the
fast direct path computation has a higher priority than the slower tasks updating
parameters). Anyway, the analysis method we present in the sequel is not limited to
a particular scheduling policy.

Figure 6 is the Marked Graph model of the system when there are enough pro-
cessing resources available so that tasks MT1 and MT2 may occur in parallel, as
well as tasks MT3, MT4, MT5, or MT6.

If there is only one processing unit (which is often the case) then tasks M7T1 and
MT?2 must be in mutual exclusion. Similarly, tasks { MT3, MT4, MT5, MT6} must
be in mutual exclusion. As for the exclusion between the different clusters of tasks,
this is taken care of by the preemption. The Marked Graph model of this system is
given in Figure 7, where the activities of tasks {MT1, MT2} are clustered into one
transition, and the activities of {MT3, MT4, MT5, MT6} are also clustered into a
single transition in order to avoid useless context switches.

2.7 Problems to be addressed

The problem which this paper addresses, is to check whether all tasks will meet their
time constraints, that is if each task is executed within the time slot that it is given
by its clock. This general problem will be called Problem P; in the following. In
the case with no preemption this problem is rather classical and does not require the
whole machinery developed below.

A less restrictive version of this problem is to check whether violation of the time
constraints may only happen a finite number of time. This is called Problem P in
the following.

In the marked graph models, these problems can be formulated in the following
way':

e for Problem P;: for all marked graph G;, the marking in the places that connect
initial components I; to any component O;, is bounded by one.

e For Problem P,: For all marked graph G;, the marking in the places that
connect initial components I; to any component O;, may get larger than one
for a finite number of occurrences.

RR n° 3778
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Clock 2 MT
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Clock 3
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MT 4 MT 5 MT 6
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Sub-system S3

Figure 6: Marked graph model of a dynamical command, involving preemption, with

several processors
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Clock 1 Clock 2 Clock 3 MT 7

MT1-MT2

11 MT 3 ... MT6|?.693 %.48

! 7

Ju— T |

(oo

Sub-system S'1 Sub-system S' 2 Sub-system S'3

Figure 7: Marked graph model of a dynamical command, involving preemption, with
one processor

The two problems P; and P will be solved in the following section. The full solution
for problems P, and P, in the cases 1 and 2 given above will then be given in Section
4.5.

3 Modeling Under Contracted Time

In this section, we introduce a representation of the system where we contract time
in the non-preempted transitions. This is a way to take into account the scheduler
without modeling it by a Petri net, thus allowing one to still use marked graphs.

3.1 Description of the Model

We simply consider the case where N = 2 which is generic, as we will see in the
following.

Let G1 > Go2. In the following, G; will only be seen through its activity process,
S1(t) that is the process which is equal to 1 if a transition in O; is active and 0
otherwise. It will be assumed to be periodic, with period T. As for Gy, we will
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14 F. Baccelli, B. Gaujal, D. Simon

remove the index 2, since every variable considered in the following, will be for the
marked graph Go.

We construct a copy of G(= Gs), that we call H which will be considered without
the preemption from G;.

In the following, for each Strongly Connected Component (SCC) C, we will denote

e {X,(n)} the sequence of firing times of transition ¢ € C, in the preempted
system G. The set of all these sequences will also be called the behavior of the
system;

o {Vy(n)} the sequence associated with the same transition in .

By using the theory of timed marked graphs and Lemma A.1 in the appendix, we get
for all SCC C in isolation, a cycle time A\¢ € Ry, a cyclicity s¢ € N, and a transient
period ke € N, such that for all transitions ¢ € C and all k > k¢,

Vy(k +sc) = Vy(k) + scAc. (1)

Note that the activity process of this SCC is therefore periodic of period s¢Ac.
This period is an integer under the assumptions that we made on the firing durations.

3.2 Time Contraction

We denote by S1(t),t € R the activity process of Gy, defined by S1(¢) =1 if at time
t a transition in Gy is active and S1(¢t) = 0 otherwise. This function is assumed to
be periodic of period T, where T is an integer.

We define I' & fOTl — S1(7)d7r (under our assumptions, I' is also an integer
number), and F : R — R by

F(t)= /Ot 1 — Si(7)dr.

Figure 8 gives a representation of S; and F. During each period T, G is active
for T units of time. Also, F' is pseudo-periodic of period T and increment I': i.e.
F({t+T) = F(t)+T. We construct F~! as the unique left continuous function such
that F(F~1(t)) =t.

Let X, (k) def F(X4(k)) for all ¢ € Q. By definition, we have, X,(n) = F_I(X,’l(n)).
As shown by the following lemma, the sequences { X (k)}, which give the firing times
of transition ¢, after this time contraction, are also ultimately pseudo-periodic.

INRIA
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S'(t)

[ ] I

Figure 8: The contraction function F' associated with an activity S.

Lemma 3.1. For all SCC C in isolation, we have:
i- if C C I, then for all transition ¢ € C and for all n > ke, Xy(n + scT) =
X! (n) + scAcT.

i- If C C O, we have all transition ¢ € C and for all n > ke, Xy(n + s¢) =
X('I(n) + scAc.

Proof. i- Since no transition in I is preempted, for all transitions ¢ € C C I, X4(n) =
Vq4(n). Moreover, by equation (1), Vg(n + s¢) = Vg(n) + scAc for n > k¢. Therefore,

X (n+semT) = F(Xq(n+semT))
= F(Vy(n+ semT)
= F(Vy(n) + semTAe)

= F(V4(n)) + secmAcl
= X, (n)+ scmAcT.

11- Recall that all transitions of SCC’s belonging to O are simultaneously pre-
empted by the activity of Gi. Therefore, in contracted time, the behavior of the
every SCC in O considered in isolation is the same as in real time. O

The only difference in contracted time compared with the net in real-time is that
the arrivals stemming from the SCC’s of I have to be replaced by those obtained

RR n° 3778



16 F. Baccelli, B. Gaujal, D. Simon

from the sequences {X;(n)}, ¢ € I defined above. These arrivals are accelerated by
the time change, but remain nevertheless pseudo-periodic as we just saw.

We then get from the results following Lemma A.l in the appendix that the
sequences {X;(n)}, ¢ C C € O which give the firing time of the global system in
contracted time become ultimately pseudo-periodic. More precisely, let us define the

quantities A, as follows: if C C I, then A, def Acl/T. If C C O, then A def Ac.
These quantities are the inverse of the firing rate of the transitions in contracted
time. There are two cases:

1. Either the system is stable (see Appendix A.3), which happens if and only if

. ! !
min \- > max \.-.
cer €7 ¢ceo ¢

Let then Cy be a SCC such that

. ! !
min A, = A\ .
cer € Co

In this case, all sequences {)? ¢(n)} couple in finite time with a pseudo-periodic
regime such that

)?('I(n + s¢,mT) = )?:I(n) + scemAc, T,

where m is an integer such that mT € N and mA¢ € N forall C € I. In
this case, the marking in all places is bounded, and both the marking and the
activity processes are ultimately periodic functions of time.

2. Or the system is unstable, which happens if and only if

min A; < max Ag.
cel CeOo

In this case, some places have a marking which tends to co. All sequences
{X;(n)} couple in finite time with a pseudo-periodic regime which we will
not study here because this case corresponds to an unproper behavior of the
System.

At this point, a few remarks are in order:

INRIA
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e The condition of stability of the whole system is stronger in the preempted
case than in the non-preempted case since the stability region in this last case
reads

min ¢ < max Ac.
cel Ceo

e The fact that the system is ultimately periodic in contracted time implies that
it is also periodic in real time (as we see when applying back the function F~!
to the ultimately periodic sequences of interest).

e In the stable case, the activity process becomes ultimately periodic both in
contracted and in real time, which allows one to proceed by induction when
the number of levels N is larger that 2.

3.3 Analysis of a simple example

Consider the model of Figure 9, which is made of two SCC. The clock synchronizes
the activity of the second SCC (O) and is not preempted. The second SCC is
preempted by a system with an activity process with period T' = 5 and such that
F(T) = 3. This preemption process is similar to the activity of G; in Figure 11, for
example. The firing times of the clock transition is ¢ = 4. The firing times of the
two transition in O are 2 and 1 respectively.

Figure 9: A clock and its synchronous circuit.

The stability condition can be tested here: first, note that with the data given in
Figure 9, we have T'=5,I"' = 3. In contracted time, for the clock:

X!(n+5)=X|(n)+4x3

For the system O, we have: )?é(n +1) = (fé(n) ®3) D )?{(n)

RR n~°3778



18 F. Baccelli, B. Gaujal, D. Simon

Therefore, although when there is no preemption the system is stable: A\; =4 >
Ao = 3, under preemption, we have | = 12/5 < X, = 3 and the system becomes
unstable. The marking of the place “tick” goes to infinity.

From the real-time computing point of view, this means that the task represented
by O is restarted before completion, leading to a system failure.

4 Detailed Analysis of the Periodic Regime

In this section, we will consider further properties of the periodic regime of the
system.

In application to robot tasks, one important property that the system must satisfy
is a real time constraint of the following form: each task has to be executed once
between two ticks of its clock.

In the marked graph model, as mentioned in Section 2.7, this corresponds to
verifying whether a token produced by the clock finds an empty place (the constraint
is met) or not (the previous task has not been executed before the new clock tick,
and the constraint is violated).

4.1 Formulation of the problems in the (max,plus) algebra

The following arguments will be done in contracted time. We focus on a system
with one initial component C; in I and one component Cy in O. Cy is connected to
Cy through a place (called “tick” in Figure 9). The output transition of place “tick”
(which belongs to Co ) is numbered ¢ .

Let us denote u(n) the epoch of the nth arrival of a token in place tick, in
contracted time. We have u(n) = F(t,), where t, is the date of the n-th arrival in
tick in real time.

We also define 7(n) = u(n + 1) — u(n).

Note that using Lemma 3.1, {u(n)} is pseudo-periodic with period 7" and u(n +
T) = u(n) + ol

As for the process of Co, under contracted time, it is a marked graph identical
to the original marked graph without preemption (in isolation). Again, this is a
consequence of Lemma 3.1). Therefore, under contracted time, the whole system is
an open (max,plus) system which can be represented under the form

X(n) = A® X(n—1) ® B®u(n). 2)

INRIA



Analysis of Preemptive Periodic Real Time Systems 19

We will denote by ng, ¢,y the coupling, cyclicity and maximal eigenvalue of matrix
A, respectively (see Appendix A.1 and A.3 where (max,plus) notations and their
relations with the dynamics of marked graphs are described).

Algebraic formulations of the problems

Lemma 4.1. Problem P; can be written as
Xi(n) —u(n+1) <0, Vn>1, (3)

where X1(n) is the n-th firing time of transition q1 and Problem P, can be written
as

Xi(n) —u(n+1) <0, Vn = nyg, (4)
where ng s the time when the periodic regime is reached.

Proof. X1(n) is the instant when transition ¢; removes the nth token in place “tick”
while u(n + 1) is the instant when the n + 1th token is put in place “tick” by the
clock. If X1(n) > u(n + 1), then there are at least two tokens in place “tick” during
the interval [u(n + 1), X1(n)). O

In the following, we will assume that
X1(1) = u(1). (5)

This assumption is natural in our context: it means that the system is ready to start
as soon as the clock emits its first signal.

Remark In the case where the clock is a simple recycled transition (as in Figure
9) with firing duration o, we have u(n) = F(no), n > 1. We can also give an exact
representation of the whole clock under contracted time, displayed in Figure 10.
This construction is simply based on the following observation. Under contracted
time, the first token must arrive in place “tick” at time F'(o); the second token at
time F'(20), and so forth, with a period T'.

This allows one to derive response times in contracted times which can be con-
verted in real time by applying F~!.
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" r»@» @+|\—:“5—»{©

F(2

@<_|<_@/ F(To) — F((T - 1)o)
F((T —1)o) = F((T - 2)o)

Figure 10: Representation of the clock in contracted time

4.2 Problem P,

- The first case is when the clock cycle time (¢I'/T') is smaller than the maximal
eigenvalue -y of matrix A. In this case, X;(n) is of the same order as ny when n goes
to infinity and u(n +1) is of order noT'/T. Therefore, there exists some ng such that
u(n + 1) > X1(n) for all n > ng. In this case none of the properties P, and P are
satisfied.

- Now, consider the case when oI'/T > v (Assumption H1). We define the vector
Z(n) = X(n) —u(n +1). Since oT'/T > 7, X(n) is also ultimately pseudo-periodic
with period T and cycle time oI'/T (see Lemma 3.1).

Therefore, the variable Z(n) is ultimately periodic with period T.

Z(kT+s)=Z((k—1)T+s), Vk>=ky, YO<s<T-1. (6)

Using the formula for X (kT + s), we also have forall k > 1 and 0 < s < T — 1,
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Z(kT +s) = X(kT +s)—ukT +s+1)
= AX(KT+s-1)®BQ (u(kT +s) —u(kT +s+1))
= AQD(—7(kT+5s)®Z(kT+s—-1)@®B® (—7(kT + s))

= A®D(—71(kT +s))® (A QD(—71(kT +s5s—1))Q Z(kT + s — 2)

®BQ (—7(kT + s — 1))) ®BQ (—7(kT + 9))

= AT @ D(—oT)® Z((k — 1)T + s)

T-1

ey <A®i®D(—T(kT+s) — o= 7(kT 4 s — 1)) ®B),

i=0
where D(z) is the diagonal matrix with z on the diagonal. All of this is true using
the fact that the diagonal matrix D(.) commutes with everything.

Let M = AT ® D(—oT) and
T-1 .
C(s) = P A @D(—ukT +5+1) +u(kT + s —i)) ® B.
=0

Using Equation (6), we can rewrite the last relation
Z(kT +s8)=MQZ(kT +s)®C(s), Vk=ko. (7)
Since the matrix M has a maximal eigenvalue which is negative by Assumption H1,

then the matrix M* exists (see Appendix A.2 for the definition and the condition of
existence of matrix M*) and the minimal solution of (7) is equal to

Z(KT +s) = M* @ O(s), V& > ko. 8)

Theorem 4.2. Property P» is satisfied if and only if coordinate 1 in M* ® C(s) is
non-positive for all 0 < s < T — 1.

Computation Complexity The computation of Z (kT + s) requires the calcula-
tion of A®2 ...  A®T which takes O(T|Q|?) units of time. The computation of M*
takes O(|Q|?) units of time and the computation of C(s) for all s takes O(T') units
of time. The bottleneck will be given by the computation of A®2 ... A®T  Note
however, that it is important to have a complexity which is linear in 7', since T" may
be large.
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4.3 Initial Phase Issues

It is often the case that the different tasks of the operating systems may have different
initial phases each time the system is started anew.

Theorem 8 gives a test for Problem P, for a fixed given phase, however, we would
like to derive a test to ensure that the time constraint is satisfied for all possible
phases between the preemptive system and the preempted one. Such problems have
been studied in [6] for example.

Since time is slotted, the total number of phases ¢ is finite, equal to T'. A brute
force formula to check problem P, under all possible phases is to check whether

T-1T-1

@ @M* ® C¢(8),

¢=0 s=0

has a non-positive first coordinate, with Cy(s) defined as above with 7(kT + s) re-

placed by 74(n) def ug(n + 1) — ug(n), where the variables ug(n) def F(t, + ¢) are
the clock ticks under phase ¢.

However, the complexity of this formula is in O(T3), which could be prohibitive
when T grows (this happens in particular when the preemption gets very complex,
like in the case of the superposition of several preemptive tasks).

We now derive a better formula, by characterizing the worst possible phase be-
tween the two systems.

We consider the first coordinate of Z (kT + s), and the case where B is the vector
(0, —00, -+ ,—00). Then

Z(kT+S)1 = (M*(XJ(@AZ@D( U¢(kT+S+1)+u¢(kT+S—Z))®B>)
1

T-1
— @M*AZn@ (—ug(kT + 5+ 1)) ® ug(kT + s — 9).

=

Now, we maximize over all s and all ¢,
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— @(1\/_{*,41')1,1 (—up(kT + s+ 1)) @ uy(kT + s — 1)
= (M* A%, (—ugp(s +1i+ 1)) @ ug(s).

We choose s* = s*(i) such that t;4145+ — ts» < tjp145s —ts forall 0 < s <T. We
choose ¢* such that F(tjt14sx + ¢*) — F(tsx + ¢*) < F(tit14s+ + @) — F(ts« + ¢) for
all0<i<Tandforall 0 < ¢ <T.

Now, for all %, using the fact that F' is non-decreasing, we have

—ugr (8" +i+ 1) tug(s") = —Fltivr4s +¢") + F(ts + ¢7)
> —F(tiv14s +¢) + F(ts + ¢)
= —up(s+i+1) +ug(s),

for all s and ¢. Therefore, the worst case is reached with s = s* and ¢ = ¢* = ¢* (7).
Checking Problem P, for all possible phases to done by checking whether

T-1
K =@(M*A7)11 ® (—uge (s* +i + 1)) ® uge (KT + s¥)
=0

is non-positive.

Complexity Note that the construction of the worst phases for the clock as well
as for the preemption process has to be done for all possible values of 7. For a fixed
1, this computation can be done independently of the rest. The computation of s*
takes O(T') units of time, as well as the computation of ¢*.

Therefore, checking problem P; for all possible phases can be done in O(T?) units
of time instead of O(T?) with a the brute force computation.
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4.4 Transient Issues: Problem P,

In this section, we show how to check property P;. For this we have to study the
transient period.

We recall that A is ultimately pseudo-periodic with coupling time ng and period
c. The process 7(n) is ultimately periodic with coupling time mg and period T'. The
vector e is the vector of size |Z| with each component equal to 0.

We will derive an upper bound on the length of the transient period of the global
system. Then, the verification of property (P;) can be done simply by computing
the behavior of the system up to that bound and checking (P;) at each step.

To derive this upper bound, we use the variable W(n) = X(n) — u(n) which
satisfies an equation similar to Equation (7)

W(n+1) = A®D(—7(n))@W(n)® B, Vn>1. (9)

Note that W (n) > 0 for all n. We set H(m,n) = A2~ @D(—7(n)—---—7(m+1))
if m <n and F(n,n) = Id.

Lemma 4.3. For all m > 0, H(m,n) has coupling time ty = max(ng, mgy) and is
pseudo-periodic in n with period p = lem(T,c), where ¢ is the cyclicity of A.

Proof. Indeed, for all n > tg,

H(m,n+p) = AP~ @ D(—7(n+p)— - —7(n+1))
®D(—7(n) — -+ —71(m +1))
= (yp/c—0olp/T)® AB(—m) D(—71(n) —---—71(m +1))

= (yp/c—oTp/T)® H(m,n).
Note that this is true for all values of m. O

As for W(n), we get for all £ > 1,

to+k
W(to+kp) = H(0,tg+kp)@W(1)® (épH(i,to +kp)® B
- to+kp
= k(yp/c—oTp/T) @ e® H(0,t) @ W(1)® € H(i,t + kp) ® B.
i=1
Choosing
k> B d;f H(O,to) ® W(l) 41, (10)

—vyp/c+ olp/T
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which is positive, we have
(k—=J)(yp/c —olp/T) @ e ® H(0,4)) @ W(1) <0, j=0,L (11)
And choosing
P+t0H . B
k> g, % e@@Y° H(i,to +p) ® ey (12)
—yp/c+ olp/T
we also have
H(i,to+ (k- j)p) ® B<0, VI<i<p+ty, j=0,1 (13)
Therefore, for k larger than 81 V B2, we get
to+kp
Wi(to+kp) = €D H(i,to+kp)®B (14)
i=1
to+kp
= P HGt+kp)®B (15)
1=p+to+1
to+(k—1)p
= P HGt+(k-1)p) B (16)
i=to+1
= W(to+ (k—1)p), (17)

where Equation (14) comes from Inequality (11), Equation (15) comes from Inequal-
ity (13), both with 5 = 0, and (16) from the fact that H(i,ty + kp) = H(i — p,to +
(k —1)p), for all i > p +t,. Equation (17), comes from the fact that using (10) and

(12), Inequalities (11) and (13) are also valid for j = 1.

Finally, W (to + kp) = W (to + (k — 1)p) means that W has reached its periodic
regime before step tg + (k — 1)p). Once W has reached its period, then this means

that all the system also reached its periodic regime.

Theorem 4.4. The periodic regime is reached after a transient period of length at

most:

e® H(0,to) ® (W(1) & @57 Hloyto +p) ® B

t
ot —v/c+ ol /T

where W (1) has to be computed, using the initial conditions of the system.
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Note that ¢y can be replaced by a larger bound (but easier to compute):

e® (I @A) @ (BoW(l))
—v/c+ol/T '

to +

4.5 Application to the Examples of § 2.5

Case 1 can be solved by a simple application of Lemma A.1, because it does not
contain preemption. This is a simple marked graph. In that case neither P, nor P
are satisfied. Indeed, task MT1 is executed every 20 units of time. The ASYN/SYN
communication between MT1 and MT2 imposes that task MT2 will eventually be
executed every 20 units of time. However, it has a clock period requirement of 15
units of time, which will not be met from its second execution on. This is a case in
which Assumption H1 does not hold.

Case 2, with parallel tasks (as given in Figure 6) contains preemption.

e The first thing to do is check whether the cycle times of all tasks are all well
ordered so that the system is stable (Assumption H1).

The sub-system (S1) made of clock 1, MT1 and MT?2 is stable : (2.5 > 0.1 and
2.5 > 0.01).

Now, we consider the second connected component, made of Clock 2, MT3,
MT4, MT5 and MT6 (S2). This sub-system is preempted by the first com-
ponent, which has an activity of period 2.5, with T" = 2.5 and I's = 2.39.

Therefore, for the stability of the second component, we have to check that
5x %% 5015 5x32>01, 5x %% >0.343, which is true.

The last component (S3) is preempted by both sub-systems S1 and S2. The
whole preemption process has period T' = 5, and a total non busy time of
I's=5—((0.1+0.01) x 24+ 0.154+ 0.1 4+ 0.343 4+ 0.1) = 4.087.

The stability property becomes: 10 X % > 2.48. We can conclude that the
whole system is stable.

e The second test is to check whether property P» is satisfied. We will apply
Theorem 4.2 for all sub-systems.
Sub-system (S1) satisfies P» because its period is one and because it is stable.

Sub-system (S2) is preempted by sub-system 1. However, it also has period 1
(in terms of number of firings). The input under contracted time is: u(n) =
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u(n — 1) + Ty, with T'y = 4.88. Its structure can be reduced to a scalar version
of Equation (2): z,(n) = ag ® za,(n — 1) ® u(n), with ag = 0.1.

In that case, we obtain

Zg(k' + 1) = T2 (k’) — u(k + 1) = (a2 — FQ) ® ZQ(k) D —FQ,
the maximal solution of which is ze(k+1) = (ag —I'2)* ® —I'2, once the periodic
regime of 2o is reached (here, when k > 1).

The numerical solution is zy(k + 1) = —I'y = —4.22, which is negative.

As for sub-system (S3), we get similarly, a periodicity equal to 1, and a solution
z3(k) = (a3 — T'3)* ® —T'3 with I's = —8.174 and a3 = 2.48. The solution is
z3(k) = —8.174. Therefore, Property P, is satisfied in the three sub-systems.

e Finally, one has to consider the transient regime of all marked graphs, to verify
problem P1. Here, all systems have period 1 (in number of firings) as well as a
transient regime of length 1. The periodic regime is reached immediately and
property P; is verified without using Theorem 4.4.

Case 2, in the sequential case (as given in Figure 7) also contains preemption.
The analysis is similar to the previous case.

e cycle times:
The sub-system (S’1) made of clock 1, MT1-MT2 is stable : (2.5 > 0.11).

Now, we consider the second connected component (S’2), made of Clock 2,
MT3- ... -MT6. This sub-system is preempted by the first component, which
has an activity of period 2.5, with 7' = 2.5 and I's = 2.39. Stability of (S'2)
holds since 5 x % > 0.693.

The last component (S’3) is preempted by both sub-systems S’1 and S’2. The
whole preemption process has period T = 5, and a total non busy time of
s =5—((0.14+0.01) x 24+ 0.15+ 0.1 4+ 0.343 4+ 0.1) = 4.087.

The stability property holds: 10 x % > 2.48. The whole system is stable.
e Property P»:
Sub-system (S’1) satisfies P as in the parallel case.

Sub-system (S’2) is preempted by sub-system 1. However, it also has period
one(in terms of number of firings). The input under contracted time is: u(n) =
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u(n — 1) + Ty, with T'y = 4.88. Its structure can be reduced to a scalar version
of Equation (2): zo(k+1) = 29, (k) —u(k + 1) = (ag — '2) ® 23(k) & —T'g, with
as = 0.11. The solution is zo(k + 1) = (ag — ['9)* ® —T'9s = —T's = —4.21 < 0,
once the periodic regime of 2o is reached.

As for sub-system (S’3), we get similarly, a periodicity equal to 1, and a solution
z3(k) = (a3 — T's)* ® —T'3, with a3 = 2.48. and I'3 = —8.174. The solution is
z3(k) = —8.174 < 0.

e Transient regime:

All systems have period 1 (in terms of number of firings) as well as a transient
regime of length 1. The periodic regime is reached immediately and property
P, is also satisfied immediately.

5 A More General Model

Some of the qualitative results which where established in the previous sections
(periodicity) can actually be shown for more general models. However quantitative
results do not extend easily to the most general models.

5.1 A Refined Preemption scheme

The model presented in Section 2 can be generalized by making the preemption
more general by choosing a subset of preempting transitions in G; and a subset of
preemptable transitions in G; which are completely general ( and not limited to the
set O; and O;). More precisely, to each marked graph G;, we associate P; which is
the set of preemptive transitions and R; which is the set of preemptable transitions.
Now, if G; > G;, then no transition in R; may fire at the same time as a transition
in P;j. Note that the previous model corresponds to the case where P; = O; and
R; = O;. One can even imagine that the sets P; and R; depend on the couple (4, j),
in which case we would denote P(;;) the set of preemptive transitions in G; over G;
and R; ;) the set of transitions in G; preempted by G;. This case is not treated in
the following of the paper but only requires extra technical details to be handled.

An example of such a system with two graphs G; > Gs is given in Figure 11.
P1 ={q1,} and Ry = {go,}. As for the firing times, we choose o1, = 3,01, = 2 and
09, = 4,00, = 2,09, = 1.
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Gi

G

Figure 11: A system with G; > Go.

5.2 Behavior of the System

If g € G;, we denote by X;, (n) the epoch when transition ¢ starts its n-th firing.

For every graph G;, we define the isolated version of G;, denoted H;, in which no
transitions are ever preempted. More formally, H; is a version of G; with R; = 0.
The behavior of H; is denoted U;(n). In the event graph #; with constant firing
times (oy,), the variables U(n) = (Ui(n),--- ,Ug(n)) satisfy an evolution equation
of the form (see [1]),

Ui, (n) = max (Ui, (n — M, q)) + 04,)- (18)

We also know from [1] that Equation (18) has the following property: there exists

Mg, ki, and A;, such that for n > n;,

U; (’I’L) = Uiq(n — kiq) + Aiqkiq-

In Figure 12, the functions Si(t) as well as Xo,(t) and Xg9(t) are displayed.
Note that since transition g2, is not preempted, and is not dependent on the other
transitions in Qg, its behavior is not affected and X, (t) = Us, (¢) for all ¢.

However, the behavior of g9, is affected by the preemption. Note that the func-
tions X and U verify, Xo, (t) < Us,(?).

Also note that if G; # G, then the behavior of G; does not depend on the behavior
of G;. As a consequence, if G; is not preempted by any other graph, its behavior can
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Figure 12: the activity of G; and the behavior of Gs.

be determined in isolation, that is Vg € Qj,n € N, X; (n) = U;,(n). In this case,
we have the following property: there exists n;y, k;, and A;, such that for n > n;,,
Xi,(n) = Xi,(n — ki,) + Ni ki

g

Definition 5.1. The sequence of expanded firing times 0;, of a transition q in G; are
defined as follows:
If g € R;, then

z+u
0i, (z) = inf{u : / 1{Sj(t):O,j>-i}dt = O'iq} . (19)
If g € Ri, then for all z,

8, (z) = 0 (20)

q°

This definition implies that (G;, o;) has the same dynamical behavior of (#;, d;)
in the following sense:

Xiy(n) = max X, (n — M;(r,q)) + 6, (Xi, (n — Mi(r, q)))- (21)

This equation looks like a classical (max,plus) equation describing the dynamic
of a marked graph, the only difference here being that the firing times depend on
the current state.
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5.3 Qualitative Analysis for N =2

In the following, we will keep the assumption that time is slotted. The slot duration
will be the time unit and all durations will be multiples of this unit.

We first study the case where N =2, G; = Gy and P; and R9 are not empty.

Therefore, for n large enough and for all transitions ¢ € Q1, X1, (n) = X1,(n —
qu) + )\lqqu-

Let T % lemgeg, (A1, k1,)- The activity S1(t) is a function which becomes even-

tually periodic with period T after a transient period of ny def maxy X1, (tp) units of
time.

Lemma 5.2. The behavior of transition q in Go is either finite (q fires a finite num-
ber of times) or pseudo-periodic with period pyks,. In the latter case, there ewists
integers a and py and p such that Vg € G;, Vn > a,

Xo, (1 + pgka,) = Xo,(n) + puT.

Proof. If transition g fires an infinite number of times, then the preempting activity
is not always equal to 1 in its period. This implies that the mapping z — dg, (z) is
bounded.

Now, let ko def lemgeg, ko, We consider the marking M (nkoT) in all places at
time nkoT, n > max(ngy,n1,), as well as the residual firing time vector at time
nkoT, denoted R(nkoT). Since dy,(z) is bounded and integer valued for integer z,
and since all the involved quantities are integer numbers, then there exist integers
a > b > max(ng,,no,) such that M(akoT) = M (bkeT') and R(akeT) = R(bkoT).

The whole process is such that the preemption as well as the initial condition are
the same at times akoT and bkoT. Therefore, the system evolves periodically. This
implies that for each transition g Xo, (n + pgka,) = Xo,(n) + pT, for all n > akoT,
where pgks, is the number of firings of q between times akoT and bkoT, and p =
bk}Q - a,kg. O

The following technical lemma will be useful in the proof Theorem 5.4, which is
the main result of this section.

Lemma 5.3. Let @ be a component-wise non-decreasing function from Rg — Rg,

Then, if v def limy, oo @™ (zo)/n ezists and v > 0, then, for all z > zy,

lim &™) (z)/n = 1.

n—o0
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Proof. Since v > 0, then the sequence ®(™ (z() is increasing to infinity. Therefore,
for all z > =z, there exists integers n and m such that ®™(zy) < z < &™) (z).
Therefore, ® %) (z5) < &%) (z) < ®MHK)(z4) for all k. We finish the proof by
letting k go to infinity. O
Theorem 5.4. There exists a constant -y, such that

nli_)Igngq (n)/n = .

Moreover, this constant does not depend on the initial conditions, X1(0) and X2(0).
Proof. The sequence X, (n) is pseudo-periodic and non-decreasing. Therefore, the
T
qu2q ’
evolution equation (21) does not depend on 7 since the firing times of transitions in

Ho, are constant. We have the following evolution equation in this framework:

Xo,(n) = max Xa, (n — Ms(r,q)) + 02, (X2, (n — Ma(r,q)))- (22)

above limit «y exists and v = Furthermore, the function d, given by the

For all z, the function z — z + d9, (z) is non-decreasing in z, since the integral is
taken over a non-negative function. Therefore, the function

$:N0 — N9 (23)
X - (glea.chr—f—égr(X,«)), (24)

is component-wise non-decreasing. Also note that

X2q (n) = (I)q(X21 (n — Ms(1,q)),- 7X2Q (n — M2(Q, q)))-

By using lemma 5.3, we know that the limit of Xy (n)/n does not depend on the
initial value of (X71(0), X2(0)). O

Within the graph G, we can distinguish the behavior of the different strongly
connected components.

Corollary 5.5. If two transitions, q and r belong to the same strongly connected
component in Go, then they have the same cycle time: vy = v and the same period:
DPq = Dr-

Proof. Suppose that v, # .. Then we have |Xo, (n) — X3,(n)| — oco. This means
that the marking in a path between transitions ¢ and r is unbounded, which is
impossible in a strongly connected component. Moreover, if  and ¢ are in the same
component, then ky, = ko,. Therefore, the cycle period is equal for both of them, in
which case we get: p; = p;. ]
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5.4 Generalization to arbitrary N

We consider the case where N is arbitrary as well as »=. We further assume that
each marked graph G; is strongly connected.

The general case can be reduced the case N = 2 when using the following argu-
ments. When one studies a marked graph G;,

e all graphs G;,% > j are not taken into account.

o All graphs Gj,i > j are aggregated into a single activity process, O(t) =
max;y; S;(t) with period T' = lem Tj.

e All the proofs are done by induction w.r.t. the order .

Therefore, we have the following results by directly using these arguments and the
results obtained for N = 2.

Theorem 5.6. For alli, X;(n) is pseudo-periodic. The cycle time, lim,_, . X;(n)/n
(denoted ;) does not depend on the initial conditions, (X1(0),--- , Xn(0)).

Corollary 5.7. If G; is strongly connected, The expanded firing times of G; are
pseudo-periodic.

Proof. The proof holds by induction with the order . Assume that X}, ; is cyclic,
then S; is periodic with period T}. By Lemma 5.2, X; is pseudo-periodic with period
T;. Therefore, the expanded firing times §; are periodic using the expression for
expanded firing times given in (19). O

Critical Graph In general, we can note that the critical graph of H; is different
from the critical graph of G; in general. However, this is not the case when R; = Q.
Determining the critical graph of G;, (and hence the length of the period) as well as
the influence of the initial conditions are still open problems.

Homogeneity and Monotonicity Using the representation given in Equation
(21), it is not difficult to see that the global state of the whole system, X =
(X1,-+-,Xn) is monotone and homogeneous.
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We define M & max{M;(r,q),r,q € Q;, i€ {1, N}}, the maximal marking in
any place of the whole system. We construct the global evolution function

T: (N9 x...x Ne~v)M -  N@ x...x N¢»~
(Xi(n —1),--- , Xn(n — 1))

: = (Xi(n), -, Xn(n))
(Xi(n— M),---, Xn(n— M))

Since the function d,(z) is increasing in z for all r, then the function ¥ is
component-wise increasing.

Also, by construction, ¥ is homogeneous, that is U(X + h) = ¥(X) + h.

Therefore, all the results concerning topical functions can be used in this case,
see [2].

6 Summary

In this paper we have developed a new technique to analyze the quantitative temporal
behavior of a set of periodic tasks. We assume that the tasks are scheduled using
preemption and fixed priorities, and that their deadline equals their period. The
model also takes into account synchronizations between tasks enforcing precedence
constraints. Under these assumptions, the set of tasks can be modeled by Timed
Marked Graphs which have a linear model in the (max,+) algebra.

Using this model we derived tests to check some temporal properties of the system
such as periodicity, cycle time, response time and respect of deadlines, both for the
transient regime and for the steady state regime. The method is quite general and is
not limited to a particular scheduling policy like rate monotonic thus leaving freedom
to choose the priority assignment according to, e.g., automatic control performance
constraints.

The technique presented here was applied to the particular case of the orccad
environment, however, it is rather general and can be used in a more general frame-
work of systems with preemption and fixed priority. As for problems with shared
resources, potentially involving priority inversions this is not currently tackled and
needs some further investigations.

A Appendix: (max,plus) algebra and marked graphs

In this section we will list several properties of the so-called (max,plus) algebra. All
of these results can be found in [1], where they are presented in full details.
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A.1 The (max,plus) semi-ring

Rynag is the semi-ring (RU{—oo}, ®,®), where @ stands for the max operation and
® stands for the + operator.

These operations are extended to vectorial operation in the canonical way, If A
and B are matrices with appropriate dimensions on R,,,;, then C = A @ B is a
matrix with Cj; = A;; ® B;; and D = A ® B is a matrix with D;; = @, A ® By;.
For simplicity, A ® A will be denoted A®? or A%2. When a is a scalar and A a matrix,
in Rypqz, then a ® A is a matrix with each component equal to a ® A;;.

A.2 Elements of spectral theory

Let A be an irreducible matrix over Ry, , then there exists a coupling time ng € N,
a cyclicity ¢ € N, a unique eigenvalue A € R and at least an eigenvector v such that

ARu=AQu (25)
and
Vn > ng, AB(He) = \®¢ g 43 (26)

If A is an irreducible matrix with a non-positive eigenvalue, then, the equation
X = A® X + b, where X is the unknown vector and b is a fixed vector, admits a
unique finite solution X = A* ® B, where A* is the finite matrix:

A E R 4% (27)
=0

A.3 Marked Graphs

To any marked graph G with an initial marking bounded by one, one can associate
matrices, A(k), k € {0,1}, of size Q x @, where the entry (7,7) in matrix A(k) is
oj, the delay or lag time of transition j, if there exists a place between transitions
gj and g; with k initial tokens, and —oo otherwise.

Let A(0)* = @52, A(0)!, and A = A(0)* ® A(1). Let X,(k) be the epoch when
the k-th firing starts in transition g. Then if there are no input transitions, the
(-dimensional vectors satisfy the recurrence relation

X(n)=4A4X(n—-1), n=>1
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If there is an input transition with arrival process u, where u(n) gives the epoch
of the nth release of a token by the input, then

X(n)=A® X(n—-1)® B®u(n),
where B; = 0 if there is a place between the input and transition g and —oo otherwise.

By using the spectral theory with timed marked graphs, we get the following
result.

Lemma A.1. For all SCC C in isolation, there exists a cycle time A\¢ € Ry, a

cyclicity sc € Ny and a transient period k¢ € N, such that for all transitions g € C
and all k > k¢,

Va(k + s¢) = Vg(k) + scAc. (28)

As for the whole system G (all SCC considered together), in the case with no
input, we have the following result : we denote C — C’ if the SCC C precedes the
SCC (' for the topological ordering.

If

max{)\c|C — C,} > Acr, (29)

then the SCC C’ has the same cycle time as the preceding SCC achieving the maxi-
mum in Equation (29).
If

max{\¢|C = C'} < A¢r, (30)

Then the SCC C’ (and hence the whole system) is said unstable (the marking in
some places will grow to infinity).

A similar result holds for a marked graph with a pseudo periodic input u. In
particular, if the inverse of the input rate is larger than or equal to the maximal cycle
time of all SCCs in isolation, then the system is stable. Otherwise, it is unstable.
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