Real-time and delay-dependent control co-design through
feedback scheduling

Daniel Simon, Olivier Sename!, David Robert and Olivier Testa
INRIA Rhone-Alpes, Equipe POP ART, 655 avenue de I’Europe, 38330 Montbonnot, France
{Daniel.Simon, Olivier.Sename }@inrialpes.fr

Abstract

Control systems are often designed using a set of
cooperating periodic modules running under control
of a real-time operating system. As a correct be-
haviour of the closed-loop controller requires that the
system meets timing constraints like periods and la-
tencies, the structure and timing parameters of the
controller must be set according to control require-
ments. To take into account timing uncertainties, e.g.
due to preemption, a delay-dependent feedback loop
has been designed; the scheduling controller regulates
the resource utilisation according to the estimated ex-
ecution times. The aim is here to control the Qual-
ity of Service consisting of computing resources utili-
sation and quality of control contribution (evaluated
here through the tracking error and the robustness
w.r.t to control delay). The actuators are the tasks
periods and a H, control approach provides robust-
ness w.r.t. modelling errors. A simulated example
with two pendulums enlightens the approach.

1 Introduction

Most feedback control systems are essentially peri-
odic, where the inputs (reading on sensors) and the
outputs (posting on actuators) of the controller are
sampled/hold at a predefined rate. While basic dig-
ital control theory deals with systems sampled at a
single rate, it has been shown, e.g. [19], that the con-
trol performance of a non-linear system like a robot
can be improved using a multi-rate controller : some
parts of the control algorithm, e.g. updating param-
eters or controlling slow modes, can be executed at a
pace slower than the one used for fast modes. In fact,
a complex system involves sub-systems with different
dynamics which must be further coordinated. There-
fore the controller must run in parallel several control
laws with different sampling rates inside a hierarchy
of more or less tightly coordinated layers.

Digital control systems are often implemented as a
set of tasks running on top of an off-the-shelf real-time
operating system (RTOS) using fixed-priority and pre-
emption. The performance of the control, e.g mea-

lon leave from Laboratoire d’Automatique de Grenoble,
ENSIEG-BP 46, 38402 Saint Martin d’Héres Cedex, FRANCE

sured by the tracking error, and even more impor-
tantly its stability, strongly relies on the values of the
sampling rates and computing latencies® (delays) [2].
Therefore it is essential that the implementation of
the controller will respect an adequate temporal be-
haviour to meet the expected performance. However,
control science and real-time computing most often
evolved independently leading to misconceptions and
lack of efficiency in the implementation of real-time
control algorithms.

This paper deals with real-time scheduling and con-
trol co-design. First, as in [5], we are interested in
feedback scheduling, i.e. we aim to adjust on-line the
sampling periods of the controllers in order to meet
the computing resource requirements. Thus, the pro-
cess control parameters are changed on-line according
to the required sampling periods. Furthermore the
process control design takes into account control de-
lays that are unavoidable in real-time control [3]. We
here provide a state feedback control law for discrete
systems with control delay, the parameters of which
depend on the sampling period of the controllers.

The outline of the paper is the following. Section
2 recalls the state of control theory w.r.t. sampling
and delays while section 3 enlightens some deficiencies
between popular real-time paradigms and control re-
quirements. Section 4 provides guidelines for a static
implementation of closed-loop control systems. Sec-
tion 5 presents the considered architecture for feed-
back scheduling and the Quality of Control (QoC)
specifications. An illustrative example of a multi-
tasks control system is presented in section 6 where
the advantage of the proposed methodology is empha-
sised. The paper ends with some concluding remarks
and further research directions.

2 Control and timing

Once a control algorithm has been designed, a first
job consists in partitioning it into tasks and then in
the assignment of timing parameters, i.e. periods of
tasks and I/O latencies, so that the controller’s im-

lthe latency is the delay between the instant of a measure
gn on a sensor and the instant when the control signal U(gy) is
sent to the actuators.

plementation satisfies the control objective. Control
theory for linear systems sampled at fixed rates, pos-
sibly with fized and known pure time delays, has been
established a long time ago. Some more recent re-
sults deal with varying or unknown delays or sampling
rates in control loops, still in the framework of linear
systems, e.g. [13], [9]. Unfortunately most real-life
systems are non-linear. The extrapolation of timing
assignment through linearising often gives rough esti-
mations of allowable periods and latencies or even can
be meaningless. Thus slicing the control algorithm
and setting adequate values for the timing parame-
ters rapidly falls into case studies based on simula-
tion and experiments. Such case-studies may benefit
from off-line control/scheduling co-design, e.g. [16]
using off-line iterative optimisation, to compute an
adequate setting of periods, latencies and gains re-
sulting in a requested control performance according
to the available computing resource and implementa-
tion constraints.

Control systems are often cited as examples of
“hard real-time systems” where deadline violations
are strictly forbidden. In fact experiments show that
this assumption may be false for closed-loop control.
Any practical feedback system is designed to obtain
some stability margin and robustness w.r.t. the plant
parameters uncertainty. This also provides robust-
ness w.r.t. timing uncertainties: closed-loop systems
are able to tolerate some amount of sampling period
and computing delays deviations, jitter and occasional
data loss with no loss of stability or integrity, but only
disturbances. The hard real-time assumption should
be changed for a ”weakly hard” one, where absolute
deadlines would be replaced by statistical ones, e.g.
the allowable output jitter compliant with the de-
sired control performance. Even if computing such
statistics is out of the scope of current control the-
ory, this intrinsic robustness of closed-loop controllers
gives an additional degree of freedom which can com-
ply with Quality of Service (QoS) computation and
flexible scheduling design.

3 Traditional real-time models

Usually, real-time systems are modelled by a set
of recurrent tasks assigned to one or several proces-
sors and a worst case response times technique is used
to analyse fixed-priority real-time systems as initi-
ated in [10]. Well known scheduling policies, such
as Rate Monotonic for fixed priorities and EDF for
dynamic priorities [23], assign priorities according to
timing parameters, respectively sampling periods and
deadlines. They are said “optimal” as they maximise
the number of tasks sets which can be scheduled with
respect of deadlines, under some restrictive assump-
tions. They are very popular but they must not be
used blindly.

They hardly take into account precedence and syn-
chronisation constraints which naturally appear in a
control algorithm. The relative urgency or criticality
of the control tasks can be unrelated with the timing
parameters. Thus, the timing requirements of con-
trol systems w.r.t. the desired control goal expressed
as a performance index do not fit well with schedul-
ing policies purely based on schedulability tests. It
has been shown through experiments, e.g. [3], that
a blind use of such traditional scheduling policy can
lead to an inefficient controller implementation; on
the other hand a scheduling policy based on applica-
tion’s requirements, associated with a right partition
of the control algorithm into real-time modules may
give better results.

Another example of unsuitability between comput-
ing and control requirements arises when using prior-
ity inheritance or priority ceiling protocols to bypass
priority inversion due to mutual exclusion, e.g. to
ensure the integrity of shared data. While they are
designed to avoid dead-locks and minimise priority
inversion lengths, such protocols jeopardise at run-
time the initial schedule which was carefully designed
to meet control requirements. As a consequence la-
tencies along some control paths can be increased to
values far over their desired value, leading to a poor
control performance or even instability.

Design and off-line schedulability analysis rely on
a right estimation of the tasks worst case execution
time. Even in embedded systems the processors use
caches and pipelines to improve the average comput-
ing speed while decreasing the timing predictability.
Another source of uncertainty may come from some
pieces of the control algorithm. For example, the du-
ration of a vision process highly depends on incoming
data from a dynamic scene. Also some algorithms are
iterative with a badly known convergence rate, so that
the time before reaching a predefined threshold is un-
known (and must be bounded by a timeout). Finally,
in a dynamic environment some control activities can
be suspended or resumed and control algorithms with
different costs can be scheduled according to various
control modes leading to large variations in the com-
puting load. Thus real-time control design based on
worst case execution and strict deadlines inevitably
leads to a low average usage of the computing re-
source.

4 Control systems and off-the-shelf RTOS

The controller is most often implemented as a set of
modules, each of them encoding a piece (function) of
the control algorithm. At run-time the control mod-
ules are basically periodic and are scheduled using the
basic features of the RTOS, i.e. priority based pre-
emption and synchronisation primitives.

4.1 Priority assignment

A control system for a robot, and more generally
for process control, can be split into several calcula-
tion paths [1] : the direct control path computes con-
trol set-points from tracking errors and must run with
a small period and a low latency to ensure the process
stability. The respect of the above timing constraints
is critical w.r.t. the control performance, i.e. this part
of the controller has a high relative urgency. Others
urgent activities are critical tasks which monitor the
system’s activity and which are triggered by the de-
tection of deviations from the nominal behaviour. In
fact some of these error recovery procedures can be
better triggered by interrupts rather than by periodic
polling.

Other tasks are used to update slowly varying pa-
rameters of the non-linear plant model. These tasks
are often data-handling intensive, e.g. using trigono-
metric functions or matrix inversion. Their duration
can be far longer than the period assigned to the di-
rect path, but delaying their ending instants has a
weak effect on the controller performance, e.g. the
control jitter or the system’s stability. Thus they can
be assigned a low priority so that their execution is
preempted by every execution of the direct path cal-
culation [19].

The whole system is usually run over a single CPU,
or on a limited number of CPUs with a static parti-
tion of the tasks. Priorities must be assigned to tasks
according to their relative urgency, so that a high crit-
icality module can preempt the execution of a less ur-
gent one when it becomes runnable. This also ensures
that in case of overload the tasks which are serviced
on time will be the most critical ones ; obviously pro-
vision must be made to avoid an operating system’s
crash in case of overload or repeated deadlines miss.
As far as the control algorithm does not change, the
relative urgency of modules does not change either
so that priorities inside the control algorithm can be
statically assigned. Anyway the relative urgency be-
tween tasks may change during a restructuring of the
system, e.g. for admission of new control tasks ; in
that case this is done at a rate imposed by the con-
trolled system and environment’s dynamics, not at the
scheduler’s rate like in EDF.

However, using only preemption is not enough to
accurately specify the controller, in particular it can-
not efficiently take into account the precedence con-
straints between subsets of the control algorithm.

4.2 Synchronisation and communication

A partial synchronisation of tasks allows for the
specification of precedence constraints and thus im-
proves the control performance by minimising the la-
tency on critical paths.

Generally, the best data to be used in a closed-loop
control algorithm is the last one produced, thus the

buffers between modules may have only one slot, and
the incoming data overwrites the old one. The follow-
ing basic communication/synchronisation schemes are
of particular interest to implement closed-loop con-
trollers :

- Synchronising the starting of a module on the end
of another module (data production) is of prime inter-
est to specify data dependency and to ensure latency
minimisation on some critical control paths [19]; such
one way synchronisation with a system’s clock is also
a good way to provide for periodic tasks.

- Asynchronous communication must be used be-
tween modules with unrelated sampling rates. As mu-
tual exclusion on shared data using mutex introduces
side effect run-time synchronisation (priority inver-
sion), lock-free shared data protection mechanisms,
e.g. [20], must be preferred;

- Strong synchronisation (the well known rendez-
vous) must be sparingly used, and its appropriateness
w.r.t. the application requirements must be carefully
considered as it is a very efficient dead-lock generator.

Some comprehensible rules, based on control al-
gorithm analysis, layers of static priority and care-
ful synchronisation, allows for the design of rather
complex controllers taking into account the control
requirements; they also lead to off-line analysis inde-
pendently of the priority assignment, e.g. [18].

However, the design and schedulability analysis of
systems based on static values of the scheduling pa-
rameters assumes the a priori knowledge of the worst
case execution time of the tasks [15]. This is always
difficult to measure, and can lead to a severe under-use
of the computing power when the computing load has
large variations, e.g. in vision-based control. Another
source of timing uncertainty arises from variable com-
munication delays when the controller is distributed
over a local area network, leading to measuring jit-
ter. Perturbations on the system’s computing load
also arise during restructuring due to admission or
cancellation of control activities upon occurrence of
events coming from a dynamic environment. Adap-
tion against timing uncertainties could be provided
by more flexible scheduling policies.

5 Further results on feed-back scheduling

It is expected that an on line adaption of the
scheduling parameters of the controller may increase
its overall efficiency w.r.t. timing uncertainties com-
ing from the unknown controlled environment. Also
we know from control theory that closing the loop may
increase performance and robustness against distur-
bances when properly designed and tuned (otherwise
it may lead to instability). Thus the idea of feed-back
scheduling recently arose both from the control side

[6, 5] and from the real-time computing side [22, 11].
Anyway the design of efficient feed-back schedulers
must start with a safe design of a real-time imple-
mentation based on control requirements as previously
described (i.e. algorithm partition, precedence con-
straints and priority assignment).

Figure 1 gives an overview of a feed-back sched-
uler where an outer loop (the scheduling controller)
has been added to the process controller to adapt in
real-time the scheduling parameters ; it takes as input
measures taken on both the controlled process output
(e.g. the tracking error) and on the computer’s activ-
ity (e.g. the computing load). Besides this controller
working periodically at a rate which is itself to be
determined, the system’s structure may evolve along
a discrete time scale upon occurrence of events, e.g.
for new tasks admission or exception handling. These
decisional processes are handled by another real-time
task, the scheduling manager, which is not further
detailed in this paper. Preliminary studies and ex-
periments show that the tools needed to handle the
measurements and actuation tasks, e.g. precise time-
stamping of events, already exist in most off-the-shelf
RTOS ; thus these housekeeping tasks can be built in
a middleware layer between the kernel and the appli-
cation tasks and we do not need to patch an existing
real-time kernel.

Scheduling
Controller

Middlewar e hougek eepi
Computer activity
measurements

Process Controlfer

Scheduling
. Manager
Desired load QoS processing
Admission/Reject Requests processing
Exception handling
Processus based decisions

Measured load

RTOS (Linux/RTAI)

Figure 1: Feed-back scheduler structure

The problem can thus be stated as QoC (Quality
of Control) optimisation under constraint of available
computing resources. During experiments an estimate
of the current utilisation may be computed as:

where C; is the estimated execution time of the task
i, and h; the sampling period assigned to task i.

Preliminary studies [6] suggest that a direct synthe-
sis of the scheduling regulator as an optimal control
problem leads, when it is tractable, to a solution too
costly to be implemented in real-time?. Practical so-
lutions will be found in the available control toolbox

2?recall that the feed-back scheduler will be itself a real-time
task loading the shared computing resource. ..

or in enhancements and adaptation of current control
theory. For instance the calculation of the new task
periods can be done by the rescaling [4]:

U

inominal U
sp

hpev = h

where Uy, is the utilisation set-point.

The feedback scheduler then controls the processor
utilisation by assigning task periods that optimise the
overall control performance.

5.1 A new feedback scheduling architecture

In order to adjust on-line the scheduling parameters
of the control tasks, a control-scheme should be estab-
lished for the scheduler, as done in [5]. As any control
design problems, the important issues are therefore
the specification of control inputs, measurement out-
puts and control structure.

5.1.1 Control structure: Feedback schedul-
ing is a dynamic approach allowing to better use the
computing resources, in particular when the workload
changes e.g. due to the activation of an admitted new
task. We propose in figure 2 a hierarchical control
structure. The feedback scheduler controls the CPU
activity according to the computing resource availabil-
ity (measured through some computing load metric)
by adjusting the periods of the tasks used in the pro-
cess controller(s).

Task | o
QoS Feedback penods: Computing ! CPU activity
Scheduler | resources w
| |
1 |
Cho |
' —\perturbation |
reference | C 1: Controlled
T | po L ‘ Process | Output
| Control | =
I
| N
T ‘

Figure 2: Hierarchical control structure

On the other hand the internal process controller is
here designed to take into account timing uncertain-
ties, e.g. due to preemptions which are unavoidable
in real-time control and difficult to accurately predict
in a dynamic environment. Indeed unknown input-
output latencies can deteriorate the process perfor-
mances and stability; thus the considered Quality of
Control measure is composed of the usual tracking er-
ror and the robustness w.r.t to control delays.

Note that in this preliminary study this structure is
simplified compared with the one of figure 1 : ideally
the QoC measured from the controlled process would
be also fed back to the scheduler and be taken into
account in the QoS computation.

5.1.2 Sensors and actuators: As stated in
section 4, priorities must be assigned to control tasks
according to their relative urgency ; this ordering re-
mains the same in the case of a dynamic scheduler.
Dynamic priorities, e.g. as used in EDF, only alter
the interleaving of running tasks and will fail in ad-
justing the computing load w.r.t. the control require-
ments measured by the QoC. In consequence we have
elected the tasks periods to be the main actuators of
the system running on top of a fixed priority sched-
uler®. Anyway, to be compliant with control require-
ments the control algorithms must be first adequately
sliced into sets of ordered synchronised and commu-
nicating real-time tasks as in the static case.

Our aim is to adjust on-line the sampling periods
of the controllers in order to meet the computing re-
source requirements. The control inputs are then the
periods of the control tasks. The measured output is
the CPU utilisation, estimated through the execution
time, in a similar way as in [5]. Thus, for each period
of the scheduler hg, the CPU utilisation is estimated
from job execution-time measurements of the control
tasks, as:

— < ci(khs)
Ulkhs) = 2 3~ Dhs)

U(khs) = AU((k—1hs)+ (1 —NU(khs) (1)
where, for each period of the scheduler, h;(khg) is
the sampling period currently assigned to the control
task 4, and ¢;(khg) is here the mean of the measured
execution-times of the control task ¢ during each pe-
riod of the scheduler. Samples for the measured out-
put (i.e. CPU utilisation) are taken here at the period
of the scheduler to be controlled, which is usual for
identification purpose. In (1)X is a forgetting factor,
chosen as A = 0.3, which ensures a fast estimation.

5.1.3 Control design and implementation:
Our aim is here to provide a new control scheme for
the feedback scheduler. First one should note that,
if the execution times are constant, then the relation,
U=37",Cifi (where f; = 1/h; is the frequency of
the task) is a linear function (while it would not be
as a function of the task periods). For the considered
application with two control tasks, illustrated in sec-
tion 6, we obtain the following static map. This linear
characteristic of the static behaviour of the scheduler
implies that we can consider a linear model for the
scheduling controller design. Now, using (1), the esti-
mated requested CPU load is:
. 1-Ng ! &
0 (khs) = =2 Soekho)fikhs) @
where ¢ stands for the shift operator. For the con-
trol design, we have chosen to consider a “normalised”

3Possible secondary actuators are variants of the control al-
gorithms, with different QoS contributions to the whole system.
Such variants should be handled by the scheduling manager
working on a discrete events time scale

CpuLoad (Exectime) vs fl and f2

Figure 3: CPU utilisation vs control tasks frequencies

control model (i.e independent on the execution time)

as H(z71) = % As illustration, in the two con-
trol tasks system presented in the following section,
the control scheme is therefore as in figure 4 where the
estimated execution-times are used on-line to adapt

the gain of the controller for the original CPU system

(2).

Saturation Inverse block
fmin\& f € fmaz y(@)=1/z

Figure 4: Control scheme for CPU resources

According to this control scheme, the design of the
controller K can be made using any advanced control
methodology. For the considered application (see sec-
tion 6), we have chosen the H, control theory which
can lead to a robust controller w.r.t modelling errors
(see [21] for details on Hy, control). Moreover it pro-
vides good properties in the presence of external dis-
turbance, as it is emphasised in the illustrative exam-
ple.

5.2 A QoC criterion: robustness w.r.t. delays

In most of computer-controlled systems, the com-
puter must do in each period: sampling of the process
output, executing of the control algorithm, sending
the new control signal to the process. This implies
that the control task is supposed to have a fixed pe-
riod and that the input-output latency (i.e the control
delay) is small and without jitter. If not, this should
be considered in the control design. In fact such de-
lays may be of two-fold: first the communication be-

tween the sensor and the controller, and between the
controller and the actuator, as well as the computa-
tional delay corresponding to the control computation
cost. The latter is generally less than a sampling pe-
riod. However when the control task is preempted by
higher priority tasks, this may lead to delays larger
than a sampling period. In this framework, these de-
lays may be lumped in a single input delay. Hence, we
will consider in the sequel discrete time-delay systems
as:

Yq: z(k+1) = Axz(k)+ Bu(k—d) (3)

where z(k) € R" is the state vector assumed to be
measured, u(k) € R" is the control input vector, d is
the positive unknown delay value, A and B are real
matrices of appropriate dimensions. Let us recall that
in this formulation, d is the input unknown delay.

Remark 1 Control theory for linear systems sampled
at fized rates, including fized and known delays, has
been much studied for ten years. Let us cite [2] where
an augmentation approach is used for sampling a sys-
tem with time-delay and obtain an equivalent free de-
lay representation. However if the delay vary the di-
mension of the non-delayed system will vary accord-
ingly, which is not acceptable. Since the delay is here
assumed to be unknown, such an approach cannot be
applied. This motivates the need in real-time control,
to consider discrete-time representations with time-
delay. On the other hand specific methods to time-
delay systems could be used to derive a discrete-time
representation with delays [7] from a continuous-time
one. O

For systems (3), the following family of state feedback
control laws is considered:

u(k) = Kz (k) (4)

Using the control law (4), the closed-loop system is
then:
z(k+1) = Az(k) + BKz(k — d)

Since the closed-loop system is a state-delayed sys-
tem, specific method to study the stability of such
systems must be used in order to design the feedback
gain K. Two kinds of stability results can be ob-
tained: either delay-independent, or delay-dependent
ones. For discrete-time systems let us cite the papers
of [9, 12] as they consider systems with unknown de-
lay, with uncertainties, and eventually a disturbance.
In the considered framework of real-time control with
delays, experiments may allow delay measurements
(see for instance [14]). Even if the exact delay val-
ues are unknown, it can be possible to estimate a
bound on the control delay, i.e. a maximal delay. We
then focus here on delay-dependent methods for dis-
crete time-delay systems, that ensure stability for a
maximum allowable delay. In [17] an Linear Matrix
Inequality approach has been used to design a mem-
oryless delay-dependent state feedback control law of

the form (4) that ensures asymptotically stability for
the closed-loop system (3-4) for any time-delay d sat-
isfying0 < d<d.

6 Illustrative example

In this part, we describe our methodology for the
feedback-scheduling of control tasks in the case of two
linearised pendulum systems presented in [6], i.e.

Ca(t) (5)

0 1 0

[wd —2wo]’ B = [wo/g] and
C=1[1 0], with§ =02, g =981, wg = 3.77
for the first pendulum, wy = 4.08 for the second one.
y is the controlled output and z is here assumed to be
measured. The corresponding system is the pendu-
lum in the upright position (i.e an unstable open-loop
system).

<

—~~
~~

~
Il

{a‘:(t) = Az(t) + Bu(t)

where A =

According to the choice of a sampling period h,
and including a control delay d, the following discrete
model is obtained:

w(k+1) = Apa(k)+Buulk—d) (6)

where A, and By are the corresponding system ma-
trices.

In this case, the nominal sampling period is 0.1sec,
and is assumed to be changed between 0.02s and 0.5s
by steps of 0.02s. Note that this is larger than re-
quired by the usual criterion for the choice of sampling
period [2]: 0.1 < wh < 0.6. The corresponding satu-
ration block in figure 4 is then such that f,,;, = 0.02
and fy,4. = 0.5. To this model, the control delay must
be added to lead to the considered system representa-
tions (3).

6.1 Process control design

The methodology described in section 5.2 has been
used to design delay dependent state feedback control
laws for system (6). This methodology is compared
to a classical pole placement control law, designed as-
suming there is no control delay.

As precised in [5], on-line recalculations of the con-
trol law are often too costly, particularly here where
convex optimisation (LMI) is used. The considered
solution is then to calculate off-line the parameters
of the controller for a range of sampling periods, and
store them in a table, as we have done for the consid-
ered range of sampling period, i.e. [0.02 — 0.5] with a
step of 0.02s.

6.2 Feedback scheduling design
The feedback scheduler is here implemented as an
application task that runs in parallel with the control

task, with a higher priority. It executes as a peri-
odic task, with a period hg, larger than the sampling
period of the control task, in order not to change two
often the sampling period of the control tasks, i.e. the
control parameters. We have chosen here hg = 2s.

As precised before in section 5.1, The H,, control
theory is here applied . Such a control method uses
some weighting functions that have to be chosen to
satisfy the performance specifications, i.e.here mainly
a closed-loop system with a rise time of 4s and a mod-
ule margin higher than 0.5 for robustness. Using the
classical methods available in control design softwares,
the solution of the H, control problem gives the con-
troller K = [K; K] with K;(z) = K»(z) and:

Ki(z) = —0.1938622 + 0.45195702 + 0.647501122
e = 0.8412522 — 0.1573669z + 22

6.3 Simulations

Simulations have been performed using Truetime,
a Matlab/Simulink toolbox for real-time control [8].
Here the first pendulum has an higher priority than
the second one. On figure 6 the presented results
are then only given for this lower priority pendulum.
Moreover we assume here that the control delay is
half a nominal sampling period, i.e. 0.05s.[2mm] The
scenario used here is the following. At ¢ = 0 the con-
trol tasks begin. At ¢t = 2, the scheduling controller
is switched on, and the feedback control of the com-
puting resources is realised around 60% of utilisation
(which is the nominal CPU load). At ¢t = 25s, a ref-
erence step input is sent, representing an decrease of
30% of ressource availability, leading to a increase of
the control sampling periods. In both cases (classical
and delay dependent control laws) the performances
are few affected by this change, due to the adapta-
tion of the control parameters (stored in tables). At
t = 50, the set-point of resources availability is set
back to 60%. At ¢t = 70s, a disturbance task, with an
higher priority than the control tasks, but for which
we cannot measure its execution time, appears. As
seen on figure 5, this task implies important preemp-
tions in the lower pendulum control task, leading to an
increase of the control delay. As shown in figure 6 the
classical pole placement control law, design without
account for delay, becomes unstable. On the contrary,
the memoryless delay-dependent control law ensures
robust stability of the system, despite the presence
of unknown and varying control delay. This gener-
ates some temporal uncertainties in the execution of
the control task These results point out the interest
of feedback scheduling, allowing an adaptation of the
control law parameters under resource availability, as
well as the importance of taking into account the con-
trol delay in the design of the process control law, as
done in part 5 in the process modelling and control
steps. If not the process can become unstable due to
such temporal uncertainties.

5 T T

4 | |
111
2

T T
10 i 1 13 [5 16

Figure 5: Zoom on process control behaviours

7 Conclusion

In this paper, a new methodology for scheduling-
control co-design is proposed. We have provided a new
architecture and design method for feedback schedul-
ing. Indeed the control synthesis of the feedback
scheduler has been provided using the H,, control
theory, and the gain of the controller is adapted on-
line using the measured execution times of the con-
trol tasks. An integrated control-scheduling approach
is proposed, where the state feedback control law has
been designed according to a range of sampling peri-
ods (for adaptation under computer resources require-
ments), and taking into account some control delay
(mainly due here to the preemption in the controllers).
Some simulation results have been given, which em-
phasises the interest of this approach.

Obviously simulations are not accurate enough to
model a real system, and ongoing experiments run-
ning on top of an actual RTOS must be further de-
veloped to better assess this new approach; in par-
ticular the computing overload due to such method
must be carefully evaluated and must be integrated
in the overall QoS computation. However even simu-
lations show that setting the scheduling controller pe-
riod, estimating the CPU load and choosing the QoC
criterion are not trivial tasks. Finally, besides control
related aspects, the role and structure of the schedul-
ing manager must be detailed to efficiently integrate
exception handling and control modes in a safe and
flexible control system.

References

[1] K.-E. Arzén, A. Cervin, J. Eker, and L. Sha.
An introduction to control and scheduling co-design.
In 89th IEEE Conference on Decision and Control,
Sydney, Australia, december 2000.

[2] K.J. Astrom and B. Wittenmark. Computer-
Controlled Systems. Information and systems sciences
series. Prentice Hall, New Jersey, 3rd edition, 1997.

[3] A. Cervin. Towards the integration of control
and real-time scheduling design. Technical Report Li-

2 Classical pole placement control law
A o e
0 v"v I

-1 I I I I I I I
0 10 20 30 40 50 60 70

3 T T T T T T T
Memoryless delay dependant control law (\ i
f I\

Sampling period of control task
L L L L L L L L L
0 10 20 30 40 50 60 70 80) 100

Figure 6: Feedback scheduling and process control be-
haviours

centiate thesis ISRN LUTFD2/TFRT-3226-SE, De-
partment of Automatic Control, Lund Institute of
Technology, Sweden, May 2000.

[4] A. Cervin and J. Eker. Feedback scheduling of
contol tasks. In Proceedings of the 39th IEEE Con-
ference on Decision and Control, Sydney, Australia,
December 2000.

[5] A. Cervin, J. Eker, B. Bernhardsson, and K.-
E. Arzén. Feedback-feedforward scheduling of control
tasks. Real Time Systems, 23(1):25-54, 2002.

[6] J. Eker, P. Hagander, and K-E. Arzén. A feed-
back scheduler for real-time controller tasks. Control
Engineering Practice, 8(12):pp 1369-1378, 2000.

[7] A. Fattouh, O. Sename, and J.-M. Dion. Pulse
controller design for linear time-delay systems. In
IFAC Symposium on System Structure and Control,
Prague, 2001.

[8] D. Henriksson, A. Cervin, and K.-E. Arzén.
Truetime: Simulation of control loops under shared
computer resources. In Proceedings of the 15th IFAC
World Congress on Automatic Control, Barcelona,
Spain, July 2002.

[9) Y. S. Lee and W. H. Kwon. Delay-dependent
robust stabilization of uncertain discrete-time state-
delayed systems. In IFAC 15th World Congress,
Barcelone, Spain, 2002.

[10] C.L. Liu and J.W. Layland. Scheduling algo-
rithms for multiprogramming in hard real-time envi-
ronment. Journal of the ACM, 20(1):40-61, 1973.

[11] C. Lu, J.-A. Stankovic, G. Tao, and S.-H.
Son. Feedback control real-time scheduling: Frame-
work, modeling, and algorithms. Real Time Systems,
23(1):85-126, 2002.

[12] M. S. Mahmoud. Robust A, control of discrete
systems with uncertain parameters and unknown de-
lays. Automatica, 36:627-635, 2000.

[13] P. Marti, J. Fuertes, G. Fohler, and K. Ramam-
ritham. Jitter compensation for real-time control sys-
tems. In 22nd IEEE Real-Time Systems Symposium,
London, UK, 2001.

[14] J. Nilsson. Real-Time Control Systems with De-
lays. PhD thesis, Department of Automatic Control,
Lund Institute of Technology, Sweden, January 1998.

[15] P. Puschner and A. Burns. Guest editorial :
A review of worst-case execution-time analysis. Real
Time Systems, 18(2-3):pp 115-128, 2000.

[16] M. Ryu, S. Hong, and M. Saksena. Streamlining
real-time controller design: from performance speci-
fications to end-to-end timing constraints. In IEFEE
Real Time Systems Symposium, 1997.

[17] O. Sename, D. Simon, and D. Robert. Feed-
back scheduling for real-time control of systems with
communication delays. submitted to IEEE Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation, Lisbon, Portugal, september 2003.

[18] D. Simon and F. Benattar. Design of real-time
periodic control systems through synchronisation and
fixed priorities. Technical Report RR4677, INRIA,
december 2002.

[19] D. Simon, E. Castillo, and P. Freedman. Design
and analysis of synchronization for real-time closed-
loop control in robotics. IEEE Trans. on Control Sys-
tems Technology, 6(4):445-461, july 1998.

[20] H.R. Simpson. Multireader and multi-
writer asynchronous communication mechanisms.
IEE Proceedings-Computer and Digital Techniques,
144(4):241-244, 1997.

[21] S. Skogestad and I Postlethwaite.
Multivariable Feedback Control: analysis
and design. John Wiley and Sons, 1996.

http://www.chembio.ntnu.no/ skoge/.

[22] J. Stankovic, C. Lu, S. H. Son, and G. Tao. The
case for feedback control real-time scheduling. In 11th
Euromicro Conference on Real-Time Systems, York,
England, 1999.

[23] J.A. Stankovic, M.Spuri, M. Di Natale, and
G. Buttazzo. Implications of classical scheduling re-
sults for real-time systems. IEEE Computer, 28(6):16—
25, 1995.

