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1 IntroductionFor the last ten years, many kinds of software architectures for the intelligent control of robotic systems havebeen designed. Di�erent techniques emerging from cognitive science as well as automatic control domainswere used. Although a complete robot control architecture includes various subsystems, developmentsgenerally focused only on few of them. Some approaches concentrate on system design, i.e. functionaldecomposition, while others mainly investigate implementation issues. Ad-hoc tools are then to be used inorder to complete the system design, while other important aspects like veri�cation of speci�cations andmapping of functional tasks on a hardware architecture fall in the gap ([26]). Let us examine the mainapproaches to the robot controller design problem.Some existing implementation-oriented approaches rely on dedicated real-time operating systems likeChimera [40], using for example fast interprocess communication tools ([32]). Powerful distributed machineshave been built ([28]), or layered software libraries have been designed ([5], [11]). However, although theseapproaches are e�cient at the lowest level, they do not consider other levels in a coherent way and theygenerally provide the end-user neither with friendly interfaces nor with any programming methodology.Hierarchical architectures like NASREM ([1]) have been proposed in order to enforce modularity andsoftware development methodology. Within this approach a measurement data path �ows from sensors tothe highest levels and a control data path is fed back to actuators. Such a structure is very rigid as all"intelligent" actions like planning using sensors can only be de�ned at the high level while communicationsbetween low or intermediary levels are limited. This is a major drawback to build, for example, real-timee�cient sensor-based control.High level programming of robots traditionally falls in the �eld of Knowledge-Based Systems and mainlydeals with planning and reasoning. Usually purely cognitive approaches resolutely ignore the basics ofmechanics, control and real time computing. This results in techniques which are not time-e�cient andhave di�culties in taking into account some of the uncertainties involved in the real world where robotsoperate. The application of behaviorism to robots was proposed by Brooks as a counterpart to such classicalA.I. approaches ([12]). Behaviorism was �rst introduced as a model of animal and human psychology ([41]).Within this theory, the activity of living beings may be modeled by a set of behaviors. Each elementarybehavior is characterized by a reaction to a set of stimuli coming from the environment. The global behavioris considered as a simple juxtaposition of elementary ones using low level inhibition mechanisms withoutcoordination from an upper mind level. This very mechanistic view of mental processes was not con�rmedby experimentation and was fought by both psychologists and philosophers ([31]).When applied to robots, behaviorism led to layered control based on the so-called subsumption architec-ture. The layered control system is organized as communicating software modules corresponding to levelsof competence. New behaviors are added whenever more complex behavior is required. Con�icts due tocompeting reactions are solved by inhibiting the outputs of the lowest priority modules. A top-level su-pervisor therefore does not exist: control of the overall behavior is distributed along a set of modules andbecomes di�cult to analyze and validate, as soon as the set of elementary behaviors increases. Althoughsmall insect-like robots have been built according to this approach, unexpected responses may be generated,as mentioned in ([6]). Another drawback comes from the subsumption architecture: running permanently allthe behaviors even when not necessary, and simply adding new processors when new behaviors are required,is clearly not cost-e�ective.Nevertheless this reactive approach made a fruitful breach in the classical A.I. point of view and receivedfurther modi�cations. Let us quote for example the "State Con�gured Layered Control" ([6]) where subsetsof behaviors are grouped into states under control of a state transition diagram. Using such a supervisionlevel allows a more comprehensive control of applications and improves real-time e�ciency.Finally, hybrid architectures which gather the best features of the previously mentioned approaches arenow emerging. The Rational Behavior Model ([13]) is an example of them: a mission is speci�ed usinga rule-based strategic level and concurrent repetitive behaviors are implemented in a tactical level. Theiroutputs are used by servo-loops at the execution level. Other interesting examples of hybrid approaches canbe found in [9] and [19].The work described in this paper falls in this last category and is based upon the following main con-siderations:� most actions to be performed by robots can be stated as control problems which can be e�ciently solved2



in real-time by using adequate feedback control loops. We believe that control theory should be used as faras possible to specify complex actions. In this framework, the Task-Function approach, ([36]) speci�callydeveloped for robotic systems which may involve sensor-based control tasks, is the one used here;� a robotic system should ideally be accessible to users with di�erent competences. In particular the end-user of the system should be provided with high level functions, allowing him to concentrate on applicationspeci�cation and veri�cation rather than on low level programming tricks. Besides, the control scientistmust be provided with e�cient design and programming tools. In the approach we propose, every type ofuser has his speci�c access to the system.� since the overall performance of the system �nally relies on the existence of e�cient real-time mechanismsat the execution level, particular attention is paid to their speci�cation and their veri�cation.� robotic control often requires the use of complex algorithms, the programming and test of which take along time. This is why Object-Oriented Design and Programming are used here in order to improve softwarereliability and reusability ([15]). Automatic code generation is also used as much as possible.This paper is organized as follows: the next section gives an overview of the Open Robot ControllerComputer Aided Design system (Orccad). In section 3, the Robot-Task concept is analyzed in depth.Section 4 gives two examples of applications of Orccad, and section 5 presents a few issues about theOrccad software environment. Further developments of these issues are sketched in the conclusion andcan be found in [22] and [38].2 The Orccad Concept2.1 General ViewA robotic process may be de�ned as a set of robot actions organized such as to carry out a given applicationlike an assembly operation or the mission control of a mobile robot. The design of a robotic processrequires expertise in several domains: knowledge in mechanics is often required to properly de�ne the taskto perform, automatic control theory is involved in the design of control laws and tools from computer scienceare needed to produce e�cient runtime software. Several key points in the design and the implementationof an application can thus be identi�ed. In a �rst step, it is necessary to de�ne all the elementary tasksinvolved. These are for example the atomic entities handled by a planning system. For each of them,issues from automatic control and implementation aspects have to be considered: de�nition of a regulationproblem which may be signi�cantly related to the elementary task, choice of a suitable control law, selectionof the events liable to be considered during the task execution and de�nition of the associated reactions,decomposition of the task into synchronized real-time subtasks. Finally, all the de�ned real-time subtasksshould be mapped on a target architecture ([37]).Many of degrees of freedom are therefore given to the control designer in order to match an end-userspeci�cation. The aim of the Orccad system is to help the user to exploit these degrees of freedom inthe more e�cient way. The associated controller itself is naturally open since quali�ed users have access toevery control level: the application layer is accessed to by the end-user of the system, the control layer isprogrammed by an automatic control expert and the lowest one, the system layer, is the charge of a systemengineer.Let us now take from [10] and [16] a few essential de�nitions for understanding the following:� a Robotic System is a set of cooperating devices (such as robots and sensors) associated with a controlsystem.� a Robot Controller is the set of hardware and software resources involved in the on-line control of a roboticsystem.� an Application is a set of actions performed by the system in order to reach a goal speci�ed by an end-user.� a Robot-Task ( �RT� ) is a multitask program representing robotic actions. It gathers algorithmical andlogical aspects and constitutes the elementary task previously evoked.� a Module-Task ( �MT� ) is a real-time task. Therefore, a RT is made of a connected set of MTs.The Orccad system is a set of CAD tools allowing to design, test and implement applications, Robot-Tasks and Module-Tasks as de�ned above. The description of Robot-Tasks, down to the speci�cation of itstemporal parameters, is made through a speci�c Human-Machine Interface, while veri�cation and simulationtools are available at the implementation level. 3



Because of the particular importance of the Robot-Task, we now present its design methodology, as itappears in the Orccad philosophy. The RT structure itself will be further detailed in section 3.2.2 The Orccad Methodology for the Design of Robot-TasksFigure 1 illustrates the successive steps involved in the creation of a RT. Let us focus on the main items.
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Mapping ofRobot-Tasktheof ControlSoftware onHardwareFigure 1: Robot-task creation process2.2.1 Step 1: Speci�cation of a Robot-TaskA new RT speci�cation is provided by the end-user whenever a suitable RT cannot be found in the Orccadlibrary. This description is done in a natural-like language. It includes a physical description of the roboticssystem to be used and a description of the task specifying in particular:� the action to be performed during its execution, including the associated performances indices to bemonitored (for example, the maximum allowed tracking error);� the events to be taken into account during the task execution and the actions to be undertaken uponreception of the generated exceptions;� the conditions authorizing the task to start and the ones generated at its completion.From this description, the automatic control expert can then propose symbolic descriptions in continuoustime of the control laws liable to carry out the speci�ed action. This formal speci�cation of control lawsis given in terms of block-diagrams and/or equations. As said before, a systematic way to design controllaws from the task speci�cation is the "Task-Function approach". Owing to this approach, and at least forrigid robot arms, a speci�c control law can be derived from a generic control scheme. Inside this generalstructure the RT designer can select adequate items among a large choice of models and algorithms.2.2.2 Step 2: Time Constrained Speci�cationThe control algorithm may now be split into smaller tasks, the so-called Module-Tasks. The MTs commu-nicate via message passing, using synchronization mechanisms and ports described in section 3.2.1.A MT owns temporal properties like its computing duration and its activation period. These propertiesare attributes added at this step to the continuous time speci�cation of the control law.4



The set of MTs, of their temporal properties and of the chosen synchronization scheme de�nes theTime Constrained Speci�cation (TCS) of the Robot-Task. Many properties would now be checked at theTCS level before implementation. From the control aspect the available analysis tools unfortunately donot give quantitative results on such non-linear systems driven by sampled, distributed and multi-clockedcontrol loops. Besides, liveness properties must also be checked on the synchronization scheme to avoid, atleast, dead-locks. Although using Timed Petri Nets and Synchronous Languages description are currentlyinvestigated for this purpose, formal tools do not exist yet to check the correctness of the temporal schemeof RTs. So far, the only solution is by simulation.The simulation phase associated with this step is the �rst one proposed in Orccad. It takes intoaccount not only the algorithmical and temporal attributes of the TCS, but also the physical behavior ofthe controlled system, modeled as a set of di�erential equations. Thus it may help the RT designer to tuneperformance-related parameters, such as the values of gains and the sampling periods of control loops.2.2.3 Step 3: Implementation of the Robot-TaskOnce the �rst simulation phase allowed the designer to conclude that an implementation was feasible, theMTs have to be mapped on a target architecture which is often distributed.It is well known that optimal task scheduling is a NP-hard problem. Although many algorithms havebeen developed, only few of them take into account real time constraints like the respect of deadlines andsampling periods. In that framework, the facilities o�ered by Orccad simply consist in allowing the easyspeci�cation of a distribution and the validation by a dedicated simulation step. New attributes related tothe operating system calls used to instantiate and activate real time tasks are thus added to the MTs in thisstep of task placement.3 The Robot-Task in DepthThe Robot-Task is a keystone concept in the Orccad framework: it is the minimal granule to be handledby the end user at the application level, while it is the object of maximum complexity to be consideredby a control designer. It characterizes in a structured way the control scheme in closed loop, the temporalfeatures related to implementation and the management of associated events. It is de�ned in a formal wayas follows:A Robot-Task is the entire parametrized speci�cation of:� an elementary servo-control task, i.e. the activation of a control scheme structurally invariant along thetask duration;� a logical behavior associated with a set of signals liable to occur previously to and during the task execution.An Object-Oriented approach was chosen for modeling the Robot-Task. A given Robot-Task is thenfully speci�ed by the instantiation of the concerned objects. As seen in the previous section, this requiresthe de�nition of the elementary servoing task: in a �rst step, the formal speci�cation in continuous timehas to be established. That characterizes the task from the automatic control point of view. Then, it hasto be extended to take into account implementation issues: discretization, variable quantization, delays,computation times, periods... Finally, starting, stopping, killing the task and controlling it require to de�neadequate signals and to build an automaton managing the overall behavior. Let us now describe the di�erentaspects successively.3.1 Continuous Time Control Speci�cation3.1.1 IntroductionIn its present implementation, the system is dedicated to the design of control schemes and to the de�nitionof tasks for a particular class of mechanical systems: the rigid robot manipulators. Nevertheless, a largevariety of mechanical structures can be modeled owing to the connection of Orccad with Act, a robotics-oriented CAD system ([29]). Moreover, considered tasks include the use of exteroceptive sensors: force,range, proximity, vision, which is one of the Orccad originalities. Let us now examine, brie�y since itis not the aim of this paper, the proposed control scheme. Its full theoretical study and the discussion ofvarious examples may be found in [20] and [36]. 5



The basic principle consists in separating, in the design step, the speci�cation of the task to be performedfrom the determination of the low-level control law, while properly melting both aspects in the achievementof the global control scheme. The �rst aspect deals with expressing the user's objective under the form of anadequate output function e(q; t), called task function. The second consists in choosing the set of models to beimplemented and in tuning the various parameters. That way, changing a robot for a given task, specifyingvarious tasks for a given robot or re�ning a control law for a given couple {task, robot} are handled withina single framework.3.1.2 A General Control SchemeThe dynamic (state) equation of a n�jointed robot, with joint coordinates denoted as q is:� = M(q)�q+N (q; _q; t) (1)where � is the n�vector of joint actuator torques, M is the kinetic energy matrix, and N gathers all otherdynamical terms. Let us consider a n-dimensional C2 task-function, e(q; t), to be regulated to zero during thetime interval [0; T ], starting from an initial position q0. The simplest example of such a function correspondsto trajectory tracking in q-space: e(q; t) = q � qd(t). Many more interesting choices, sometimes complex,are o�ered to the user in the Orccad system (see Appendix).If there exists a C2 solution to the equation e(q; t) = 0 and if some regularity conditions of the task-jacobian @e@q(q; t) are satis�ed, the control � can be found. By writing:_e = @e@q (q; t) _q + @e@t (q; t); �e = @e@q (q; t)�q + f(q; _q; t); (2)it may be seen that a control which ideally decouples and ensures an asymptotically stable behavior of e is([36]): � = M�@e@q��1[�kG (�De+ _e)] +N �M�@e@q��1f (3)where G and D are positive matrices and k and � positive scalars.The ideal control scheme (3) is based on a perfect knowledge of all its components. In Orccad, thiscontrol is implemented under the more general form:� = �kM̂ c@e@q!�1G �De+ c@e@q _q + c@e@t!+ N̂ � M̂ c@e@q!�1f̂ (4)where, �nally:- k(:) is a positive scalar gain, possibly variable. It has the intuitive meaning of a velocity gain, while thepositive scalar � may be interpreted as the ratio between velocity and position gains.- G and D are constant positive adjusting matrices, generally diagonal.- M̂(q; t) is a n� n symmetric positive matrix chosen as a model of the system kinetics energy matrix.- N̂(q; _q; t) is a n�dimensional vector function chosen as a model of the sum of the terms of gravity, friction,Coriolis and centrifugal forces.- b@e@q (q; t) is a n�dimensional vector function chosen as a model of the task-function jacobian matrix, whileb@e@q�1(q; t) is the model chosen for its inverse.- b@e@t is a n�dimensional vector function chosen as a model of the time partial derivative of the task function.- f(q; _q; t) is a n�dimensional vector function chosen as a model of the terms coming from the second-orderdi�erentiation of e (cf eq. (2)).In general, constraints on actuators and joint limits also exist, and an integral term can be added to equation(4).Now, the elementary servoing task is fully speci�ed in continuous-time when all functions, models andparameters involved in equation (4) are de�ned. 6



3.2 Implementation IssuesThe passage from the above continuous-time speci�cation to a description taking into account implementa-tion aspects is done in a strongly structured way in the Orccad approach. In fact, we have at this level tohandle temporal properties, i.e. discretization of the time, durations of computations, communication andsynchronization between the involved processes. This is done by de�ning the basic entity calledModule-Task,which is a real-time task used to implement an elementary process of the control law.The MTs will be distributed over a multiprocessor target architecture: in order to improve programmingmodularity the MTs will therefore communicate using message passing and typed ports. Moreover, in orderto ease the automatic code generation from the graphical HMI, the structure of the MTs is given by �gure2 (for a periodic task): Initialization code;while(1){Reading all input ports;Data processing code;Writing all output ports;}Figure 2: Structure of a Module-TaskSuch a structure clearly separates calculations, related to control algorithms issues, and communications,related to implementation aspects and calls to the operating system.When building the communication graph, the I/O ports are the only visible parts of the MTs. EachMT owns one input port for each required data and one output port for each produced data. The onlyoperations that a MT may perform on a port are "Send" or "Receive". Implementation-related properties,like the name of the connected task and the type of synchronization to be used on the pair of ports, aregiven by the designer of the RT. This allows the reuse of the MTs as objects in di�erent RT schemes withno need of modi�cation of their internal data structure.3.2.1 Message passing and synchronizationIn general-purpose computers and networks systems, communication protocols emphasize data integrity,using large bu�ers and recovery procedures to avoid loss of data. On the other hand, in a closed-loopcontrol system where most of the tasks are periodic, the exchanged data describe the state of the system:therefore the best data to be read for control purpose is the last produced. Moreover, it is often moree�cient to occasionally lose data and to wait a while for the next one, or to reuse the last available data,than to start a long recovery process.Often, in a rather complex structure like a RT, we may found loops running at di�erent sampling periods.For example, the data related to the feedback part of the control law must be updated faster than the onesof the feedforward parts. It has been shown also that the performance of the control is in�uenced by themore or less tight coupling of the cooperative tasks, according to their respective durations ([2] [14]).We therefore provide the RT designer with a set of 8 communication and synchronization mechanismsto be run by the pairs of MT ports, providing the following services (P means �Producer� and C means�Consumer�):� P/asyn-C/asyn: Each task is running freely, and is never blocked by the communication.� P/syn-C/syn: The �rst task to reach the rendez-vous is blocked until the second one is ready.� P/asyn-C/syn: The producer is running freely. The consumer is blocked until the next data productionexcept when a new data has been produced since the last consumption.� P/syn-C/asyn: A symmetric protocol: the producer is blocked until a new reading if there was no pendingdemand; the consumer is running freely.� P/asyn-C/synF: The producer is running freely, the consumer is always pending until a new data produc-tion.� P/synF-C/asyn: The producer is synchronized with a new demand while the consumer is running freely.� P/asyn-C/synD: The producer is requested to send data by the consumer.7



� P/asyn-C/synDF: The producer sends its next producted data upon request of the consumer.These protocols were encoded using the synchronous language Esterel [30] (see section 3.4.3).3.3 The Related Data Structure: an Object-Oriented ModelAn object-oriented approach was selected to model Robot-Tasks for the following reasons:� the set of all possible choices of models and the set of all task functions to be reasonably proposed lead toa �nite but large number of possibilities to be structured;� the design of a control law, which is not trivial, is done through the use of a dedicated Human-MachineInterface (HMI) which is itself Object-Oriented;� because of the complexity of the general control scheme, any modi�cation should be done without dis-turbing the coherence of the overall scheme;� most functional components of the system may be easily described by tree models with natural inheritanceproperties.3.3.1 The ClassesThe Orccad system presently handles the following classes, all detailed in [22]� four classes related to the control scheme (4): task functions, trajectory generation, models, controls;� two classes related to the physical entities involved by the system: physical resources, components;� two classes related to the event-based behavior of the Robot-Task: observers of the elementary servoingtasks, automaton of the robot task.As an example, �gure 3 presents the class hierarchy of the class "task-function". Appendix 1 gives a fewexpressions of the considered task-functions.
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Figure 3: Hierarchy of the class Task-Function3.3.2 Objects and GraphsAs detailed in the next section, a terminal leave in any of the class hierarchies is a single object with twokinds of attributes: the attributes relative to the continuous-time speci�cation and the attributes associatedwith the temporal properties. When considering only the �rst ones, the object is partly instantiated, andcalled a functional object (F-object). When both types of attributes are considered, the instantiated object8



is called a Module-Task object (MT-object). We may now de�ne two important representations of a Robot-Task:� The functional graph of a Robot-Task is an oriented graph. Its nodes are the F-objects instantiated forthe Robot-Task, and its edges correspond to the existence of formal data transfers between F-objects.� The graph of time-constrained speci�cation (TCS graph) of a Robot-Task is an oriented graph. Its nodesare the MT-objects instantiated for the Robot-Task, and each of its edges corresponds to the transfer of avariable from a Module-Task to another one.The functional graph is close to the classical representation called block-diagram in automatic control. TheTCS graph allows the immediate visualization of the temporal properties associated to each MT by simply"clicking" into a port. Figure 15 gives an example of the TCS graphs attributes. The graphs, which may beeasily edited by the user through the HMI, provides the user with a complete and synthetic representationof a Robot-Task.3.3.3 Attributes and MethodsThe objects in a Robot-Task include all information necessary to the generation of the functional and TCSgraphs. Therefore, two sets of attributes are de�ned for every object, brie�y:i) the functional set (name and constant non-temporal parameters of the MT; names of the MTs to beconnected) andii) the TCS set (period and duration of the MT; communication issues between MTs, i.e. port character-istics (name, type, synchronization, name and type of exchanged variables, etc...); localization of associatedcodes (initialization, computation) and name of the dedicated processor.)Finally, three sets of methods operate on these attributes: test of coherence between parameters (for example,dim(e)=dim(q) in equation (4)), automatic generation of the MT's C++ code and generation of the datarequired by the simulation system.3.4 The Event-based BehaviorIn a sense, a Robot-Task is atomic for the application designer. However it follows an internal sequenc-ing which the designer has not to see in normal (failure-free) circumstances. Nevertheless the RT has toexchange information with other RTs, in order to synchronize and/or condition their activation. In theOrccad framework these two aspects are considered in a single way. Thus the RTs can be also consideredas reactive systems ([25]) and the event processing can be programmed using the synchrony assumption ([7]):signals are emitted from and to an automaton which speci�es the Robot-Task behavior. This automaton,called RTA, is encoded using the synchronous language Esterel ([8]).3.4.1 Event GenerationSignals are emitted by objects from the "observers" class. Formally, an observer is: as an F-object, anobject belonging to the single class allowed to communicate with the RTA class and as an MT-object, anyModule-Task provided with at least one output port handling an "event-type" variable.Note that, due to this de�nition, some objects may also become observers (i.e. belong to two di�erentclasses by multi-instantiation) by adding the adequate port. Let us give some examples of the observersde�ned in the class hierarchies: one may monitor the task function, in order to verify that the error remainssmall, the occurrence of singularities (in the task-jacobian or issued from the kinematics), the approach ofa joint or actuator limit, the evolution of some selected variables, the output of an external sensor (partpresence, obstacle detection, DC motor overheating...), etc. All the generated exceptions are handled by theRTA.3.4.2 Signal HandlingIn Orccad, all signals and associated processing must belong to well-de�ned categories.Signals. We distinguish:� the pre-conditions. Their occurrence is required for starting the servoing task. They may be:9



_ pure synchronization signals: �ags, signals associated with a rendez-vous._ signals related to the environment (also called measurement pre-conditions). An information issued fromthe environment is here required, usually through a sensor (part presence, physical resource availability...).�the exceptions. They are exclusively emitted by observers in case of failure detection (see section 4.2).�the post-conditions. Like pre-conditions they are of two kinds:_ logical synchronization signals emitted by the RTA itself in case of correct termination.;_ signals related to the environment, issued from a sensor: for example, �nal assembly force reporting.Processing. We do not present treatments associated with pre- and post-conditions since they are quitesimple. The exception processing is more speci�c of Orccad and is structured as follows:� type 1 processing: the reaction to the received exception signal is limited to the modi�cation of the valueof at least one parameter in MT-objects. For example, when coming near to a task-jacobian singularity, theregularization parameter � (see appendix 1) is progressively set from 0 to 1.� type 2 processing: the exception requires the activation of a new Robot-Task. The current one is thereforekilled. When the ending is correct, the nominal post-conditions are ful�lled. Otherwise, a speci�c signal isemitted towards the application, which knows the recovering process to activate. For example, if the robotreaches a joint limit while tracking the trajectory, a recon�guration Robot-Task is started, then the previousone can be activated again.� type 3 processing: the exception is considered as fatal. Then, everything is stopped. This occurs forinstance when the error norm kek becomes quickly too large, inferring an actuator failure or a collision.3.4.3 Implementation of the Robot Task AutomatonThe logical behavior of the Robot-Task, speci�ed in [38], is encoded using Esterel ([23]).The use of Esterel Brie�y, Esterel is a deterministic concurrent language dedicated to the program-ming of reactive real time systems. It is based on a model of synchronous parallelism and communicationwhich allows a high level modular programming style which is simpler and more rigorous than in an asyn-chronous approach. Esterel has an e�cient implementation based on well-de�ned mathematical semantics([24]) . Esterel programs are compiled into equivalent labeled sequential automata upon which analysisand proofs can be performed using veri�cation systems such as Auto ([39]) and Autograph ([34]). Somebasic features of Esterel are brie�y explained in examples provided in section 4.2.3 and a complete de-scription of the language is given in [8].The code of the Robot-Task automaton is distributed in modules: as a simple example, we give in �gure4a the Esterel code for a module awaiting the measurement post-condition post_mes and protected by awatchdog triggered by wait_time. A more complex example of Esterel code is provided in section 4.2.3.Automatic Code Generation In order to remain consistent with the whole Orccad philosophy, itis clear that the control designer should not have to write any Esterel code. Moreover, Esterel is animperative language, sensitive to programming style, and requires a speci�c expertise. This is why the codeinvolved in the RTA implementation is automatically generated in the Orccad system.Therefore, to specify the event-based behavior of the Robot-Task, the user has only to instantiate theMT-object "RTA" using the HMI. For example, when de�ning an input port, the window of �gure 4b mustbe �lled up.To demonstrate the e�ciency of the system, let us indicate that a simple RTA speci�cation using onemeasurement pre-condition, one exception of type-1, one exception of type-2 and one measurement post-condition leads to a 4 states and 13 transitions automaton (�gure 5). Writing such an automaton directlywould certainly have been less reliable and more tedious. Moreover, any modi�cation is immediately takeninto account by generating a new automaton.4 Two ExamplesWe will now illustrate theOrccad approach through two examples. The �rst one deals with TCS design andsimulation and the second one shows how Esterel can be used to program and verify RTs and Applications.10



module POST−MES:
input
    POST−MES,
    TIME−GUARD;
output
    TIME−ELAPSED;
[    do
          await POST−MES;
     watching immediate TIME−GUARD
          timeout emit TIME−ELAPSED;
     end
] end moduleFigure 4: (a) Code of a Robot-Task Automaton module � (b) HMI panel for RTA speci�cation
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Figure 5: A Robot-Task Automaton11



4.1 TCS Simulation of a Joint-Space ControlIn this �rst example we consider a three degrees of freedom direct-drive robot. We present successively theimplementation of a PID control law and of a Computed Torque control.4.1.1 Robot-Task descriptionThe PID control law has the advantage of requiring the knowledge of neither the model structure nor themodel parameters to solve e�ciently in most cases the regulation problem. The dynamic choices do be donein equation (4) are: M̂ = I and N̂ = 0.The task-function of a trajectory tracking in joint space can be easily written as: e(q; t) = q � qd(t)and therefore @e@q (q; t) = I. The G and D tuning matrices can be �xed as identity matrices.With the previous choices, the general form of the control (4) to which is added an integral actionbecomes: � = kpe(q; t) + kv _e(q; t) + ki Z e(q; t)dt (5)The trajectory to be tracked is speci�ed as:qd = q0(1 + cos(�t)); _qd = �q0�sin(�t) (6)with the initial position: q0T = [:5; :5; :5] rad.A single observer is associated to this RT. It raises a type 3 exception when a robot joint becomes near oneof its limits.4.1.2 The Control Block-DiagramThis control scheme is summarized �gure 6a. The names of the variables to be transferred and the kinds ofcommunication mechanisms are indicated for every port-to-port connection. The two parameters inside theboxes represent the activation period of the MTs and their assumed execution duration.The PR.MAN box is only used for simulation purposes as a model of the physical system. It handlesa state representation of the robot arm with the form:" _q�q # = " 0 10 0 # " q_q #+ " 0M(q)�1(N(q; _q)� �) # (7)to which are added �analog� functions like current loops, sensors non-linearities or torque limits.4.1.3 Robot-Task Simulation and Control law re�nementThe MTs durations of execution are estimated for a 16 MHz mc68020 processor. Several simulations wereperformed to �nd adequate MTs activation periods and to tune the PID parameters. To do this, the dataprocessing code of the MTs was not modi�ed; only the time constrained speci�cation was updated usingthe HMI for a new simulation. Therefore, the re�nement of the RT control law becomes an �easy� task andthe MTs can be reused in another scheme using a di�erent time constrained speci�cation.The PID simulation results were obtained with the following gain values:kp = 2500Nm rad�1, kv = 1000Nm s rad�1 and ki = 40000Nm rad�1 s�1.Figure 7a shows the tracking error for the �rst joint, using di�erent activation periods for the CO.JS controltask. The tracking error decreases with the period, although the gains remain constant. As a counterpart,decreasing the period could allow decreasing the gains in order to achieve a given tracking error, allowingthus a reduction of control noise and avoiding excitations of �exible modes of the robot.At the end of a simulation a timing diagram is given for each MT by the Simparc trace system. Figure8 shows the diagram produced for the CO.JS MT, where dark areas denote active instants of the task. Thisdiagram allows checking of the MT's timing constraints. It must be pointed out that, according to the typeof synchronizations used, output data are not always sent synchronously with the completion of an activeperiod. 12



4.1.4 A Computed Torque Control LawOwing to the modularity of the Orccad system, it is easy to modify a RT. The PID control law wastransformed in a Computed Torque Control law simply by adding a MT which computes more accuratemodels of the matrices M and N to the previous RT. Figure 6b shows the new block-diagram. The controllaw becomes: � = M(q)(kpe(q; t) + kv _e(q; t)) +N(q; _q) (8)The gravity terms are taken into account in the computation of N so that we can drop the integral action.Taking into account the main terms of the dynamics of the robot enables a smaller sampling rate of thecontrol loop and allows a considerable reduction of the gains kp and kv. In the following simulations, theperiod of CO.FS has been set to 5 ms, kp to 500Nm rad�1 and kv to 120Nm s rad�1.Figure 7b shows that the tracking error is not very sensitive to the sampling period of the MOD.DYNfeedforward dynamics computation task. Although the values of control gains are moderate, the trackingerror is smaller than the one obtained with the previous PID control, especially at high velocities. Figure 8ashows spikes on the control torque plot. These spikes are due to a kind of beating phenomenon between thecontrol task and the dynamics computation task, which are not computed at the same rate. These spikesvanish when the sampling rate of MOD.DYN is decreased to the same value as the one of CO.JS.4.2 Orccad-Oriented Speci�cation of an Undersea Mission4.2.1 Scheduling Robot-Tasks: the Application LevelThe application level is for the end user. It relies on a set of parametrized Robot-Tasks, the logical andtemporal organization of which de�nes its �nal behavior. From the end user's point of view, this level shouldremain far from the implementation issues. On the other hand, it has to cope with the user's concerns. Inorder to facilitate the communication with this user, these concerns have to be expressed using techniques,speci�c terminologies or description methods issued from the application domain and are necessarily di�erentfrom one domain to another. Obviously, the Orccad system cannot handle by itself such a large set ofpossible application areas: the mission of a Mars Rover will never be described in the same way as the �ttingof a windshield in automobile industry. Moreover, the application level would ideally have to be connectedwith various high level tools like planning or intelligent decision systems which for lie outside Orccad'sdomain.Nevertheless, we may reasonably consider that an invariant representation scheme of an applicationexists somewhere when moving from the application to the implementation level. This is why the applicationfeatures of Orccad are limited to such an intermediary level, aimed to describe in a precise way throughan automaton the logical and temporal dependencies between the involved Robot-Tasks.Again, in order to allow a dialogue with Robot-Task Automata, the intermediary level consists of anEsterel program. Just as Esterel code is automatically generated in RTs, it may be considered that theEsterel application program is the output of an higher level user-oriented language or interface dependingon the application domain.In the next section we present a detailed example of this upper level of Orccad.As already mentioned, Orccad was primarily dedicated to manufacturing robotics. In particular, theHMI exploits the general control structure which has been exhibited for rigid robot arms. Such manufac-turing applications may involve a rather large number of di�erent actions, running in a structured and wellknown environment. Thus the application speci�cation can be rather complex, while automatic recoveryprocedures might be simple since recovery actions may be performed by human operators. Programmingmobile autonomous robots leads to a somewhat di�erent situation. The set of possible actions of a mobilerobot is generally small, while reliability is a major issue. Recovery procedures, using external sensors andstate measurements, have to be very carefully designed in order to achieve the assigned mission, and toleave in all cases the robot in a safe recovery state. Simulating and/or proving the correctness of the missionbefore launching the robot in an uncertain environment is claimed to be necessary [27].Although many di�erences exists between application speci�cation in industrial plants and mobile robots,we will now demonstrate through a simple example that the Orccad approach may also be used in thedesign of control software for autonomous vehicles. 13
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4.2.2 Mission Speci�cationThis example was provided by J. Bellingham [6] to illustrate the �State Con�gured Layered Control ap-proach�. It is a mission speci�cation for the Sea Squirt autonomous underwater vehicle developed at M.I.T.The nominal mission is described by the following sequence of actions:� transit to a user-de�ned waypoint using dead reckoning;� dropping a transponder at the way point;� spiral search around the transponder until the target is found;� homing towards the home transponder;� surface for recovery.During the mission, the vehicle must avoid obstacles and shallow water. Several exception situations arespeci�ed:� homing if a low-power situation is detected during transit or spiral search;� homing if the target is found during transit;� surface if a very-low-power alarm is triggered at any time.� homing using dead reckoning if the transponder signal is lost. Go back to homing on transponder if thesignal is recovered.This speci�cation is summarized by the state transition table of �gure 9a, taken out from [6].4.2.3 A Possible Speci�cation Under OrccadThe control software should be organized around four RTs: transit to a way point using dead reckoning,spiral search around a transponder, homing to the home transponder, homing_dr using dead reckoning.Here, the MTs correspond to the behaviors of the original layered approach and the RTs to the grouping oflayers into states.
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task rather than the automaton in order to improve closed loop control e�ciency. These two MTs are reusedin the three others RTs with di�erent connections on their ports.� two observers check for low-power and target-found and trigger Type 2 exceptions.� a valued signal is used to read the waypoint coordinates. This is a measurement pre-condition.� Since Transit()() is a control task, it is assumed to be an endless loop and must be killed explicitly. Aspontaneous stopping of the task is considered as a serious failure and raises a Type 3 exception.The Automata of the RTs are triggered by the main mission program, and trigger themselves all thenecessary MTs. Following the structure given in section 3.4.3, an example of Esterel code correspondingto the local behavior of the Transit RT is given �gure 10 (declarations have been omitted for clarity).await NEW_COORD; WP_COORD := ?NEW_COORD; %measurement pre-cond.trap CRASH in %exit mechanism declarationstrap T1 intrap T2 intrap ARRIVED in[exec TRANSIT()(WP_COORD); exit CRASH; %triggers all the MTs||await LOC_LOW_POWER; exit T1;||await LOC_TARGET_FOUND; exit T2;||await LOC_WP_ACHIEVED; exit ARRIVED;]handle ARRIVED do emit WAY_POINT_ACHIEVEDend %normal completionhandle T2 do emit TARGET_FOUNDend %type 2 exceptionhandle T1 do emit LOW_POWERend; %type 2 exceptionhandle CRASH do emit FATAL %type 3 exceptionFigure 10: Source code for the automaton of transitLet us comment this typical piece of code. Signals are basic entities in an Esterel program: they canbe locals or used as the interface with the environment. They can be emitted or awaited using the emitand await statements, and are broadcasted inside their declaration scope.The exec()() statement is aimed to manage asynchronous extern tasks ([33]). For each exec statement,the compiler provides three interface functions: the start() and kill() functions are used to activate or suspendasynchronous tasks while the return() function signals to the automaton the completion of the extern task.The body of these functions must be �lled by the user (or by the HMI) with calls to the operating systemin order to manage all the real-time MTs to be activated within the current RT.The trap...exit...handle statement is an exit mechanism fully compatible with parallelism. It is exten-sively used in the RTs structure to manage exception handling. Another preemptive statement of Esterelis the do...watching statement, the basic construct in building watchdogs. Since physical time has noparticular meaning in Esterel, watchdogs can be triggered by any kind of signals.From the mission speci�cation point of view, the end user is provided with a library of RTs. Forexample, the public declaration of Transit looks like �gure 11. Using this library, the Esterel missionsource program for the squirt mission can then be written straightforward (the declarations are discardedin the source program given �gure 12).In this example, the very_low_power alarm signal must be checked during the whole mission execu-tion. Therefore, it is directly handled at the mission speci�cation level and triggers a watchdog embeddingthe nominal mission. Signals which can be emitted to the hardware in order to perform very simple op-erations, like dropping a transponder, are also handled at the mission level. The exec statements in the16



mission speci�cation activate the Robot-Task Automata, and are also used to pass parameters to the RTAs.The preemption mechanisms provided by Esterel are here very useful to encode the fault recoverybehaviors embedding the nominal mission. Another very useful statement is the parallel construct (jj). It isextensively used inside the RTs to wait for observers outputs. It can also be used at the application level,for example in splitting the main program in two parts, one related to generic actions like safety functionsand recovery behaviors, the other being related to the speci�c part of the mission.At compile time, this mission speci�cation is translated into the Application Automaton displayed byAutograph (�gure 13) where the transitions are labeled with signals receptions (?) and emissions (!).The simulation package provided with Esterel may also be used for mission debugging (�gure 14).A major advantage of synchronous languages is that they are deterministic so that formal veri�cation ofprograms can be performed: behaviors which are crucial from the reliability point of view can be checkedo� line. For example, looking at this automaton, one can easily check that in every state but the �rst one,the very_low_power signal is awaited and that its occurrence always drives the control system to therecovery con�guration. Note that this property was not true on the original, hand-made transition diagramgiven by �gure 9a. Obviously, building this Application Automaton through an high level language compileris less tedious and error prone that writing it directly.Such a programming approach, where the application is completely pre-de�ned and where on-line re-planning would be di�cult (due to the compilation process of Esterel), can be compared to the RationalBehavior Model-Forward paradigm [13], where the strategy is determined a priori by the designers. How-ever the RBM-F model may lead to con�icting transition paths, due to competing exception events. Thesecon�icts must be explicitly solved, using for example Prioritized State Transitions Diagrams. Using Es-terel, exceptions are handled by nested traps and watchdogs, the highest priority being assigned to themost external embedding exit mechanism. Thus, con�icts are solved at compile time in a deterministic way.5 Software environment of Orccad5.1 Human-Machine InterfaceIn all CAD systems, the e�ciency of the Human-Machine Interface a�ects the overall performance of thedesign system. In Orccad, the HMI is also a key tool, presently oriented towards users with an automaticcontrol background. Owing to its connection with the Simparc simulator (see section 5.2), it allows theeasy design and test of a Robot-Task through dedicated interfaces (�gure 15).The basis of the HMI is the object-oriented structure presented in section 3.3. Any speci�c actionmakes dedicated windows to appear where the user, guided by the system, enters its speci�cations andinstantiates the leaves of the hierarchies called F-objects, de�ned formally in section 3.3.2. Two F-objectscan be connected if a set of tests of coherence is satis�ed. The control law is speci�ed in continuous-time.The speci�cation of the port characteristics, as well as the temporal attributes of the leaves of thehierarchies, transforms the continuous-time model in the TCS model. Once the algorithmic and temporalattributes and the physical behavior of the system to control have been de�ned, the user can proceed to atemporal simulation. The HMI generates automatically the data processing code for every MT_object andcreates the environment reported for this simulation.task TRANSIT_RTA(R1,R2,R3,R4)(V1)Function: Transit to a way-point using dead reckoning, obstacleavoidance and shallow water avoidanceCall parameters: V1 (coord): coordinates of the way pointtypedef struct{float, float} coord;Exit conditions and Return parameters:R1 (boolean) true if LOW_POWER type 2 exceptionR2 (boolean) true if TARGET_FOUND type 2 exceptionR3 (boolean) true if WAY_POINT_ACHIEVED synchro. post-cond.R4 (boolean) true if FATAL_ERROR type 3 exceptionFigure 11: Public declaration of the Transit RT17



await START; % init signalWP_COORD := ?WAY_POINT; %reading way-point coordinatestrap CRASH intrap STOP indo %begin a watchdogexecTRANSIT_RTA(LOW_POWER,TARGET_FOUND,WAY_POINT_ACHIEVED,FATAL)(WP_COORD);if (FATAL) then exit CRASHelse if (WAY_POINT_ACHIEVED and (not TARGET_FOUND) and (notLOW_POWER))then emit TRANSPONDER_DROPPED;exec SPIRAL_RTA(LOW_POWER,TARGET_FOUND)()end if; end if;%the following loop toggles between homing using a%transponder and homing using dead reckoningtrap HOMING in[loop exec HOMING_RTA(AT_HOME, TRANSPONDER_LOST)();if (AT_HOME) then exit HOMING end;WP_COORD := ?HOME;execHOMING_DR_RTA(AT_HOME,TRANSPONDER_RECOVERED)(WP_COORD);if (AT_HOME) then exit HOMING end;end loop;] %mission achievedwatching VERY_LOW_POWER timeout exit STOP end; %watchdogend trap; %STOPend trap; %CRASHemit SHUT_DOWN; %hardware signal to drop safety ballastend module Figure 12: Source code for the mission speci�cationFinally, for achieving the hardware simulation and the downloading of the code generated, furtherattributes related to the processing boards and to the operating system calls used to instantiate real-timetasks must be added to the MT-objects.5.2 Simulation SoftwareOnce a RT has been speci�ed with Orccad, two simulation phases are required to validate the choicesmade by the designer: the �rst one deals with evaluation of the TCS properties while the second is veryclose to implementation and is the last step before downloading.Inside the general control scheme (4), the RT designer has to make many choices about the models tobe used and the temporal properties assigned to the MTs. Sometimes, simple but quickly computed modelscould lead to better overall performance than a slower sophisticated control law. As it does not appear thatgeneral answers exist, these choices will have to be checked for every new design.Control systems, and more especially robotics systems, are hybrid systems from the time point of view.The controlled system belongs to the physical world, and can generally be described by a set of di�erentialor partial derivative equations in continuous time. On the other side, the controller works basically inthe frame of discrete time. Simparc (Simulator for Multiprocessors Advanced Robot Controllers) ([3],[4]) was originally designed from scratch to handle these two aspects within a single simulation system.This simulation tool actually runs the user's control programs on the simulated target architecture whichis described as a set of communicating devices like processors, buses, converters and physical processes andsensors. Figure 16 shows the general organization of the software.Simulation results are available from the two sides of the software: on one hand, the user may select18
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Figure 13: Application Automatonevents of interest to be monitored and stored by Simparc. The analysis of the generated �le allows totrace relevant variables like CPU's load or bus contention and can help for task placement. Besides, datacoming from the continuous system simulation can be displayed. The analysis of tracking errors or of controlamplitude may for example help for tuning control loops gains.The Simparc software allows the simulation of user's programs which are very close to actual imple-mentation, thus further small e�ort will be necessary to produce code for downloading.During the early steps of a RT design, only MTs and ports have to be considered by the TCS designerin order to make easier the fast prototyping of control laws. These two kinds of objects are handled throughthe HMI, and the simulation code is then automatically generated. Therefore, all the basic mechanismsof the Simparc kernel, which are somewhat tricky to use, are hidden. Examples of TCS simulations areprovided in section 4.1.6 ConclusionIn the area of robot control, the Orccad system is original since it proposes a coherent approach fromthe implementation level to the application speci�cation level. In particular, the end-user of the systemis provided with powerful and well de�ned primitives: the Robot-Task concept encapsulates in a singleobject both re�ex actions related to control laws and reactive behaviors related to discrete time events.Encoding reactivity with the same synchronous language at both application and control levels allows theestablishment of strong links between them and the performance of sound veri�cations of programs. Finally,real-time e�ciency and reliability issues are considered at all the levels of the system.The modularity of the approach, the control schemes it implements, the use of the Esterel language andits design and validation tools (HMI, simulators) make of Orccad an open and powerful system which canbe successfully compared to other robot control design approaches. Nevertheless, the problem of designing ageneral robot controller (in the sense of the de�nition of section 2.1) is wide enough to ensure that relevantwork remains to be done in order to extend the possibilities of the present version of Orccad.A �rst point was already evoked: the Esterel language should be used as an intermediary level of theapplication speci�cation, not generally open to the end-user, who would like to express his requirementsin a more simple and natural way. Therefore it would be interesting to design, for a given application19



Figure 14: Simulation panel for Estereldomain, a set of Esterel-encoded primitives expressing in a friendly way, even with some restrictions, theuser's needs in terms of parallelism and synchronization. An application-speci�c interface would thus berealized. Moreover, the connection with a possible planning level would then be easier. As an example, letus mention that a �rst version of an application programming language is proposed in [17] and [18]. Aimedat the speci�cation of plans of actions at the level of sets of RTs, this language is provided with imperativecontrol structures and is de�ned in terms of temporal logic. A compiler translates plans written in theapplication language into Esterel code corresponding to their temporal de�nition. In this way the enduser of Orccad is o�ered a language enabling him to express a sequencing of Robot-Tasks with no needto investigate the details of the signal exchanges, dialogues and implementation issues for each particulararrangement of tasks. However, the problem of on-line planning in theOrccad approach remains non-trivialand deserves to be investigated.Let us emphasize again that Esterel allows the use of formal proof systems such as Auto. Absenceof deadlocks or properties more speci�c of the application may be checked. A debugger and an automatasimulation system are also available. Although already used, these tools are not yet well integrated in theOrccad framework. For example, the information handled by Esterelmay not directly be understandableby an end user in terms of natural variables. A non-trivial work to allow this matching remains to be done.To end with Esterel, let us mention that some recent works open still more interesting possibilities likelinks with the formalism of CSP and compiling Esterel programs into hardware circuits.Let us now take a sight nearer to the implementation. Here also, formal proof tools for checking thesynchronization graph of the Module-Tasks are necessary. This di�cult problem is not yet solved and ispresently under investigation. At the implementation level, the problem of downloading is in turn easy toaddress: now the simulation code can be automatically generated. By using similar methods, the generationof executable code does not seem to be very di�cult, although this development remains to be done. Besides,let us note that the Orccad requirements in terms of real-time primitives are minimal. Only a small subsetof primitives, existing in most of commercial Operating Systems, is therefore needed.20



Figure 15: HMI panel for TCS speci�cationA �nal point, which concerns the extensions of Orccad, is the one of control algorithms associated withRobot-Tasks. The present control scheme covers the area of rigid robot manipulators. It is now necessaryto propose other Robot-Task structures, dedicated for example to well-de�ned classes of autonomous mobilerobots.
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Figure 16: General Organization of Simparc21
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where �(t) is a regularization parameter in the following sense. We have:@e@q = @e0@q + �(t)In (10)and choosing �(t) as zero when @e0@q is nonsingular, and positive enough elsewhere ensures that det (@e@q ) is nonzeroeverywhere. In order to avoid in the last case too much disturbance of the original task function, y(t) may be givenby the �lter _y(t) + �(t)y(t) = �(t)q(t) (11)or more simply by y(t) = q(t � �). These expressions tend to keep the joint velocities small when crossing asingularity ([35]).Let us now give some examples of classical, or less classical, task functions.A.2 Trajectory TrackingA.2.1 In Joint SpaceIt is simply: e0(q; t) = q � qd(t) (12)where qd(t) is the desired trajectory.A.2.2 In 3 � SO3Let us consider the case where a frame linked to the end e�ector of a six jointed robot should track a given trajectory.We then have: e0(q; t) = � x(q)� xd(t)O(R(q); Rd(t)) � (13)where x is the cartesian position of the frame origin, and O(R(q); Rd(t)) is any 3-dimensional parametrization of theattitude error between the actual and desired frame.A.3 Redundant TasksThese task functions take advantage of a possible underdetermination of the speci�ed task with respect to the number,n of joint coordinates. Their form is: e0 =W ye1 + (In �W yW )g (14)where e1 is a m-dimensional primary (main) task vector, m < n, W is a full rank m�n matrix such that its null spaceis equal to the one of @e1@x , x representing an adequate working space, and g = @h@x is the gradient of a secondary taskto be minimized under the constraint e1 = 0. Many kinds of secondary tasks may be considered, for example tendingto remove the robot from joint limits, kinematical singularities, obstacles...A.4 Sensor-based TasksThey constitute a particular case of redundant tasks. The working space is 3 � SO3, with generic element �r. Thegoal is to set a sensor output s to a value sd(t), with dim (s)= p. We then have, in eq (14):e1 = D(s� sd) (15)Where the m � p matrix D, m � max(6; p) is shown ([36]) to be such that D = W @s@�r . Usually, h expresses atrajectory tracking in the working space, and the task is then called hybrid task.This approach covers the use of force ([21]), proximity ([36]) as well as vision ([20])sensors.B Appendix: Glossary of abbreviationsHMI: Human-Machine InterfaceF-object: Functional objectMT: Module-TaskOrccad: Open Robot Controller Computer Aided DesignPID: Proportional-Integral-Derivative 24



RT: Robot-TaskRTA: Robot-Task AutomatonSimparc: Simulator for Multi-Processors Advanced Robot ControllersTCS: Time-Constrained Speci�cation
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