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Abstract— This paper deals with the robust control of an Au-
tonomous Underwater Vehicle (AUV), using the H∞ approach
for Linear Parameter Varying (LPV) polytopic systems. This
method seems to be adapted to this kind of system because
of the important non-linearities and the uncertainties on the
hydrodynamics parameters.

After the presentation of the nonlinear model of the AUV
considered for the study, an LPV model was built, regarding
the mass of the vehicle as unique varying parameter. Then
the methodology of the control law applied is exposed and
simulation results are presented. In particular, a comparison
with the H∞ approach will show the interest of the method in
terms of control performance.

I. INTRODUCTION

For system with important non-linearities and large uncer-
tainties on parameters, the use of a robust control, such as
the H∞, may not be sufficient to obtain good performances
for the closed loop system over all the parameters variation
range. The Linear Parameter Varying (LPV) theory, based on
robust control, improves the method by taking into account
the non-linearities and variations of the system at design time
[1]. The obtained controller is then scheduled by a set of
parameters, and is on-line adapted at the working points.

In this paper the H∞ approach for LPV system will be
applied to an Autonomous Underwater Vehicle (AUV). The
use of AUV for the exploration of seabed, and the control
of these vehicles has been of large interest for researcher
in the past two decades. Many different control laws were
studied along the years : decoupling steering, diving, and
speed control by PID [2], coupled PID and anti-windup
control [3], sliding mode control [4], [5] and H∞ control
[6], [7].

The control of these vehicles is made difficult by numerous
non-linearities, due to cross-coupled dynamics and hydro-
dynamic forces. Moreover the knowledge about the vehicle
parameters is very poor : it may reach up to 70% ([8]) for
the off-line estimation of hydrodynamics parameters. On the
other hand the performance required by the payload may be
high, e.g. the roll and pitch velocities must be kept inside
tight bounds to perform high quality imaging using a side-
scan sonar.

E. Roche and D. Simon are with INRIA Rhone-Alpes,
NeCS team, Inovallee, Montbonnot, 38334 Saint-Ismier
Cedex, France Emilie.Roche@inrialpes.fr,
Daniel.Simon@inrialpes.fr

O.Sename is with GIPSA-lab - Department of Con-
trol Systems, ENSE3, rue de la Houille Blanche,
BP 46, 38402 Saint Martin d’Heres Cedex, France
olivier.sename@gipsa-lab.grenoble-inp.fr

This work is partially supported by the Agence Nationale de la Recherche
(France) under grants Safenecs (ANR-05-SSIA-0015-03) and CONNECT
(PSIROB06-174215)

Hence robust control is necessary to perform safely au-
tonomous missions : in this paper we use the ability of LPV
based control to combine performance specification in the
H∞ framework and the extended adaptation to parameters
variations inside a specified range provided by the LPV
approach.

Fig. 1. The AsterX AUV operated by Ifremer

The AUV considered in this paper is an AsterX like
vehicle, developed by the Ifremer (French Research Institute
for Exploitation of the Sea)1. It is actuated by a main screw
propeller for moving in the longitudinal direction. Two fins
in the front part of the vehicle (canard fins), and two couples
of fins at the tail of the vehicle (horizontal and vertical plan)
allow for the steering of the vehicle around its roll, pitch
and yaw angles. The AUV has several navigation sensors : a
Doppler loch to measure the speed, an inertial system (using
gyroscope, accelerometers and magnetometers) to compute
in real time its attitude (roll, pitch and yaw angle) and
update its position, and also an acoustic sensor for (low rate)
absolute positioning.

The mission considered here is the cartography of sea
floor. In terms of control objectives, that means moving at
constant speed, at a constant altitude with respect to the sea
floor, with constrained roll and pitch velocities, so that the
reconstruction of the map by collected data will be possible
with limited post-processing.

For this mission, only motions in the vertical plan will be
considered : the control of the yaw angle and speed will not
be taken into account.

The paper is organized as follows. Section 2 presents
the nonlinear model of the AUV considered for the study,
and also the derived LPV model. Section 3 explains the

1http://www.ifremer.fr/fleet/r&dprojets.htm



computation of the LPV controller that will be applied on the
system (definition of the structure and weighting function, as
well as the computational point of view). Finally, section 4
contains simulation results of the LPV controller, and also a
comparison with an H∞ controller designed with the same
specifications.

II. AUV MODEL

The model description of the autonomous underwater
vehicle (AUV), is based on two referentials :
• The referential linked to the vehicle : R(C,X, Y, Z)

(the origin C is the hull center).
• The inertial referential : R0(O,X0, Y0, Z0). This refer-

ential can be taken as linked to the earth in the case of
AUV moving at slow speed.

For the description of the vehicle behavior, we consider a 12
dimensional state vector : X =

[
η(6) ν(6)

]T
.

η(6) is the position, in the inertial referential R0, describ-
ing the linear position η1 and the angular position η2: η =[
η1 η2

]T
with η1 =

[
x y z

]T
and η(2) =

[
φ θ ψ

]T
where x, y and z are the positions of the vehicle in the
inertial referential : R0(O,X0, Y0, Z0), and φ, θ and ψ are
respectively the roll, pitch and yaw angle.
ν(6) represent the velocity vector, in the local referential

R describing the linear and angular velocities (first derivative
of the position, considering the change of referential, see
equation (2)) : ν =

[
ν1 ν2

]T
with ν1 =

[
u v w

]T
and

ν2 =
[
p q r

]T
As given in [9], [8], [10], the physical model is given by

the following dynamical equation:

Mν̇ = G(ν)ν +D(ν)ν + Γg + Γp + Γu (1)

η̇ = Jc(η2)ν (2)

where:
- M is the inertial matrix. It contains the real mass of the

vehicle augmented by the ”water-added-mass” part,
- G(ν) represents the action of Coriolis and centrifugal

forces,
- D(ν) is the matrix of hydrodynamics damping coeffi-

cients,
- Γg correspond to the gravity effort and hydrostatic force,
- Γp represents disturbing forces and moments (e.g. due

to waves, ocean currents. . . )
- Jc(η2) is the matrix for the change of referential.

R(C, xyz) towards R0(O,X0Y0Z0),
- Γu represent the forces and moments due to vehicle

actuators. The considered AUV has a propeller for the control
of velocity in Ox direction (forward force Qc) and 3 pairs
of fins :
• 2 horizontals fins in the front part of the vehicle

(controlled with an angle β1)
• 2 horizontals fins at the tail of the vehicle (controlled

with an angle β2)
• 2 verticals fins at the tail of the vehicle (controlled with

an angle δ1)

The model obtained is nonlinear and includes 12 state
variables and 4 controls inputs. For the computation of the
controller, a linear model is proposed. The equilibrium point
is chosen as [u v w p q r] = [1 0 0 0 0 0] : all velocities are
taken equal to 0, except the longitudinal velocity taken equal
to 1m/s, the cruising speed chosen by the operator according
to the payload requirements.

Tangential linearisation around the chosen equilibrium
point yields to a model of the form :

{
ẋ = Ax(t) +Bu(t)
y = Cx(t) +Du(t)

where

• x stand for the state : x = [x u y v z w φ p θ q ψ r]T

• u for the control input u = [β1 β2 δ1 Qc]T

• y for the measured output

All the matrices A, B, C and D depend on the model
parameters : hydrodynamical parameters, mass of the
vehicle, dimension of fins. . . Note that most of these
parameters are uncertain.

In this preliminary approach, the mass of the vehicle M is
chosen below as the unique varying parameter. Indeed, the
mass is one of the parameter varying during the navigation
(because of the water-added terms uncertainty, or due to the
casting off of payloads during a mission). The choice of this
unique varying parameters allows for keeping the controller
reconstruction simple. More complex sets of varying param-
eters could be chosen in future studies to enlarge the set of
operating conditions, such as the speed of the vehicle like in
[11] for missile control. However, the considered application
(cartography) allows to assume almost constant speed.

The behavior of the non linear model of the AUV is then
approximated by a Linear Parameter Varying (LPV) system,
where the matrices of A, B, C and D are linearly dependent
of a set of parameters θ as shown by the equation :

{
ẋ = A(θ(·))x(t) +B(θ(·))u(t)
y = C(θ(·))x(t) +D(θ(·))u(t)

When parameters can be bounded by θ (minimum
value of the parameter θ) and θ (maximum value), a
controller can be computed, valid for all variation of
θ ∈ [θ, θ]. Here a polytopic model has been used : a
polytope (convex polyhedron) is constructed by tacking
combination of bounds of parameters as vertices. In the case
of a single varying parameter θ, we have 2 vertices : θ and θ.

As the model obtained by linearisation is already linear
according to the mass, only the equations of the model at
the vertices of the polytope are required (corresponding to
the bounds of the variation of the parameter).

The system G, corresponding to a mass M belonging to
the interval [M,M ] can be given by the convex combination



of Gmin and Gmax :
GM = α1 ×Gmin + α2 ×Gmax

with
α1 = M−M

M−M
and α2 = M−M

M−M

The model obtained is polytopic : a controller adapted
to this kind of system has to be computed for the mission
considered (to follow the see bottom at constant altitude).

III. LPV CONTROLLER

In this section a LPV controller will be designed for the
above LPV model.

A. Structure and weighting function

The method is based on the H∞ control design. The first
step is to choose a structure and weighting functions that will
be placed in the control loop for setting some specifications
(response time in closed loop, tracking error...).

We choose the following classical structure, with :

Fig. 2. Structure chosen for the control design

• We a weight on the tracking error, for fixing specifica-
tions on the controlled outputs (u and z) :

1
Weu,z

=
s+ wbε
s

Ms
+ wb

with
– Ms = 2 for a good robustness margin.
– ε = 0.01 so that the tracking error will be less that

1%.
– wb = 0.46 for having a response time of 5 seconds.

• Wu is chosen to account for actuator limitations (all
action where normalized, so we choose the identity
matrix of size 4 for Wu).

• Wy to restrict the evolution of q (pitch speed) and p
(roll speed), to help the post-processing reconstruction
of sea bottom map. Wy is chosen as Wyp,q = 10−2.

Then the problem is rewritten in the standard form (Fig 3) :
This LFT formulation allows to study the transfer function
between w (exogenous inputs : reference and disturbance)
and z (controlled output), y are the measured output and u
the control input. P is the augmented plant : it contains the
model of the system and the weighting functions.

To solve the problem, the H∞ control approach for LPV
polytopic systems is considered, as described in the next
section.

Fig. 3. Problem on standard form

B. H∞ control for LPV polytopic systems

A dynamical LPV system can be described in the follow-
ing form:

Σ(θ) :

 ẋ
z
y

 =

 A(θ) B1(θ) B2(θ)
C1(θ) D11(θ) D12(θ)
C2(θ) D21(θ) D22(θ)

 x
w
u


(3)

where x define the state,, w, u, z and y as previously seen.
θ(.) ∈ Θ is the set of varying parameters that describe a set
of systems. A ∈ Rn×n, B1 ∈ Rn×nw , B2 ∈ Rn×nu , C1 ∈
Rnz×n, D11 ∈ Rnz×nw and D12 ∈ Rnz×nu , C2 ∈ Rny×n,
D21 ∈ Rny×nw and D22 ∈ Rny×nu .

A LPV controller is defined by:

S(θ) :
[
ẋc

u

]
=
[
Ac(θ) Bc(θ)
Cc(θ) Dc(θ)

] [
xc

y

]
(4)

where xc, y and u are the state, the exogenous input and
controlled output respectively of the controller associated to
the system (3). θ(.) ∈ Θ is the set of the varying parameters
associated to the controller. Ac ∈ Rn×n, Bc ∈ Rn×ny , Cc ∈
Rnu×n and Dc ∈ Rnu×ny .

The LPV closed-loop system is defined by:

CL(θ) :
[
η̇
z

]
=
[
A(θ) B(θ)
C(θ) D(θ)

] [
η
w

]
(5)

where η, w and z are the state, the input and output respec-
tively of the closed-loop system. A ∈ Rn×n, B ∈ Rn×nw ,
C ∈ Rnz×n and D ∈ Rnw×nz depend on θ.

The aim of the LTI/H∞ synthesis is to minimize the H∞
norm (γ∞) of a system ensuring the internal stability (K >
0). From the linear dissipative systems theory, finding such
a controller leads to the Bounded Real Lemma (BRL) given
by inequality (6) [12], [13]see. ATK +KA KB CT

BTK −γ2
∞I DT

C D −I

 < 0 (6)

(6) is a Bilinear Matrix Inequality (BMI) so far, hence
a non-convex problem has to be solved. Via a change of
basis expressed in [13], and assuming D22 = 0 (in (3)),
we can find a non-conservative LMI (7) that expresses the
same problem in a tractable way for Semi-Definite Programs
(SDP),




AX + XAT +B2C̃ + C̃

T
BT

2 ∗ ∗ ∗
Ã +AT + CT

2 D̃
T
BT

2 YA+AT Y + B̃C2 + CT
2 B̃

T
∗ ∗

BT
1 +DT

21D̃
T
BT

2 BT
1 Y +DT

21B̃
T

−γIm ∗
C1X +D12C̃ C1 +D12D̃C2 D11 +D12D̃D21 −γIq

 < 0

[
X In
In Y

]
> 0

(7)

Solving (7) leads to the H∞ optimal solution. Then the
controller is obtained solving:

D̃ = Dc

C̃ = DcC2X + CcM
T

B̃ = Y B2Dc +NBc

Ã = Y AX + Y B2DcC2X +NBcC2X
+ Y B2CcM

T +NAcM
T

In the LPV framework, the controller has to reach these
objectives for the whole set of varying parameters. Hence
the previous BRL (6) becomes, A(θ)TK +KA(θ) KB(θ) C(θ)T

B(θ)TK −γ2
∞I D(θ)T

C(θ) D(θ) −I

 < 0 (8)

that can be turned into an LMI in the same way as
described in equation (7), where θ holds for the varying
parameters. As θ is varying between upper (θ) and lower (θ)
bounds, the LMI based problem results in an infinite set of
LMIs to solve. Different approaches to reduce this problem
into a finite number of LMIs are commonly used:

1) Griding parameter space
2) Linear Fractional Transformation (LFT)
3) Polytopic set of parameters
In this paper the polytopic approach is used, which is

appropriate when the parameter dependency enters in a linear
way in the system definition, and when the number of
varying parameters is small. Applied to the H∞ problem,
such an approach consists in finding a common parameter
independent Lyapunov function K > 0 and a minimal γ∞
that solve the previous LMI problem at each vertex of the
polytope defined by system (3). Then the applied control is a
convex combination of these controllers and can be expressed
as follows:

S(θ) =
2i∑

k=1

αk(θ)
[
Ack

Bck

Cck
Dck

]
(9)

where,

αk(θ) =

∏i
j=1 |θ(j)− Cc(Θk)j |∏i

j=1(θ(j)− θ(j))
(10)

and,
2i∑

k=1

αk(θ) = 1 , αk(θ) > 0 (11)

where i is the number of varying parameters and k =
2i, the number of vertices of the polytope. Finally, Cc(Θk)
represents the complementary of Θk, which is simply the
kth vertex of the polytope.

Note that the size of the resulting controller is the same
as the original H∞ controllers at the vertices, and that the
on-line overhead is due to the computation of the αk(θ)
polytopic coordinates of the varying parameter and to the
weighted sum of the vertex controllers, and that only one
off-line synthesis is needed to handle all the variation range
of the considered parameter. Moreover the LPV approach
ensures the stability of the closed-loop systems whatever are
the variation speeds of the parameters inside the specified
polytope, which is not secured when using a bank of con-
trollers synthesised for discrete values of the parameters.

By solving the H∞ problem for the LPV system using
the Yalmip interface and the Sedumi solver we obtain γopt =
10454. This large value of γ is due to the behavior of the
system at very low pulsations (≤ 10−8), so the influence on
the time response will be limited.

IV. SIMULATION RESULTS

A. H∞ controller

First, a H∞ controller is synthesized at the nominal mass.
The considered mission consists in moving at constant speed
while following the sea bottom at a constant height. The
simulations are made on both the linearized and nonlinear
systems : the linear system is the one used for the synthesis
and serves as reference, while the nonlinear one is more
realistic and represents the real system, this second model
will be used to validate the control approach. For the
comparison, the same structure and weighting functions are
considered (see Subsection III-A). Figures 4 and 5 show the
results of simulation for the control of the cruising speed u
and of the altitude z for the linear and nonlinear systems,
using the H∞ controller.

The results obtained are quite good : however the longitu-
dinal speed u presents oscillations during altitude variations
(due to the rejection of the perturbation on u due to the
trail effort when z varies) and there is an overshoot on z at
changes of the requated slope. Above all the response time
is too slow to reach the specified performance.

B. LPV controller synthetized for 20% of mass variation

The LPV controller obtained in section III-B is applied on
the AUV which mass is fixed at the nominal value.
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Fig. 4. Longitudinal speed u, H∞ controller
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Fig. 5. Altitude z, H∞ controller
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Fig. 6. Longitudinal speed u, LPV controller, nominal mass
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Fig. 8. Pitch speed q, LPV controller, nominal mass

Figures 6 and 7 show the simulation results for the control
of the cruising speed u and of the altitude z for the linear
and nonlinear systems with the nominal mass, using the LPV
controller synthesized for mass variations between + and −
20% of the nominal value.

Conversely with the previous (purely robust) case the
specifications fixed for the synthesis are now reached. For the
longitudinal speed, the response time fits to the one fixed at
design step. On the nonlinear model, the change of reference
on z (which influences u because of the trail effort) are well
absorbed and the static error is less than 0.1%. The altitude z
follows the reference fixed (the slope considered here is the
largest one that can be achieved considering the fins actuators
without stalling the AUV), while the pitch speed is small
enough for the map reconstitution (see figure 8. Moreover,
the actuator’s limits are respected.

C. Adaptation of the controller at the working point

The LPV approach requires an on-line measure or esti-
mation of the varying parameter (here the mass). We have
seen that, thanks to the robustness brought by the method,
the LPV controller synthetized for the nominal mass works
without adaptation with little loss of performances provided
that the mass uncertainty around the nominal value is small
enough ((+ or − 20%).



To improve these performances, the adaptation of the
controller w.r.t. to the working point is implemented. We
consider the case of a sudden change of mass at 50s (e.g.
casting off a known payload) from 800kg to 640kg. Figures
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Fig. 9. Longitudinal speed u, LPV controller, adaptation to mass variation
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Fig. 10. Altitude z, LPV controller, adaptation to mass variation

9 and 10 show the simulation results. The performance are
still correct, whereas the use of the pevious H∞ controller
leads to the instability of system.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, an LPV controller was designed and then
applied to an Autonomous Underwater Vehicle (AUV) op-
erated in bottom following mode. The main interest of
the method is its robustness w.r t. the variations of the
mass of the vehicle, chosen here as the varying parameter.
Indeed by considering small variations around the nominal
mass, the nominal controller (synthesized at the nominal
mass) robustly works without adaptation at the price of a
deterioration of performances. The adaptation to the value
of the varying parameter lead to even better results.

Along these preliminary experiments, several combina-
tions of exogenous inputs and controlled outputs have been
tested (although not all reported here). Unexpected difficul-
ties often occurred during control synthesis (as for example

illustrated by the large value of γopt reported in section III-
B). In other cases the synthesized controller behaves well to
control the linearized system, and fails to control the non-
linear plant. In fact such an AUV controlled by fins has weak
controllability properties for some directions, e.g. motions
along the z and around the pitch axis are not separable. It is
believed that some of the problems encountered came from
that some information about the complex coupling between
the degrees of freedom and the actuators of the AUV is lost
during the linearisation process. Conflicting constraints may
also arise from the set of clumsy chosen control objectives, in
particular regarding the under-actuated nature of the vehicle.

However these first encouraging results foster ongoing
research to better understand how the LPV approach can
be used to efficiently and robustly control such autonomous
vehicle. In particular the control objectives deserve to be
more accurately captured taking account the controllabil-
ity properties of the vehicle. These enhancements will be
necessary to fully control the AUV, involving even more
complex dynamics and cross coupling, e.g. to handle more
complex missions like 3D following a concentration gradient
to localize an emissive source.
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