Design of Control Procedures for a Free-floating Underwater

Manipulation System

D. Simon, K. Kapellos*
INRIA Sophia-Antipolis, B.P. 93
06902 SOPHIA-ANTIPOLIS Cedex, FRANCE

Abstract

In this paper we present a preliminary study concerning
the stabilization of an underwater free-floating Remotely
Operated Vehicle fitted with a redundant manipulator.
The controller structure follows the Orccad approach for
robotic systems programming, which gathers control laws
in continuous time at the low levels and discrete time logi-
cal aspects at higher levels. After being designed and ver-
ified, the basic actions of individual subsystems are logi-
cally composed to build more complex procedures upto a
full mission design. While the system’s performance can be
checked using realistic simulations, crucial properties such
as dead-lock avoidance, safety and liveness are formally
verified at both levels, using in particular some advantages
of synchronous programming and associated tools. The
approach is illustrated through simulation results while ex-
periments are in progress.

1 Introduction

Underwater manipulation and inspection tasks are
commonly encountered in maintenance or decommi-
sioning of underwater structures, e.g. in oil or sub-
sea cables industries. Although some applications in
shallow water can be carried out by divers, underwater
robots have increasingly been used since the late 1970s
as cost effective systems in both deep and shallow wa-
ter.

However currently used Remotely Operated Vehi-
cles exhibit a very low level of automation thus in-
creasing the load of the operator and the overall time
of operation. For example, before an inspection task
with a teleoperated arm the R.O.V. must be clamped
on the underwater structure with purpose built suck-
ing pads after a cleaning operation with a water jet.

*This work is funded by the Esprit III Basic Research Action
UNION

B. Espiau
INRIA Rhone-Alpes, 655 avenue de I’Europe

38330 MONTBONNOT ST MARTIN, FRANCE

It is expected that increasing the level of automa-
tion can increase the efficiency of underwater manip-
ulation systems by avoiding the design of specialized
devices and by cancelling unuseful tasks. In the frame-
work of the CEC UNION Basic Research Action ([9])
preliminary research was conducted to assess active
stabilization of the underwater platform using extero-
ceptive sensors and closed-loop control, thus building
virtual links between the vehicle and the environment
rather than mechanical ones. The experimental plant
under consideration is made of the Ifremer’s Vortex ve-
hicle fitted with a 7 d.o.f. arm while the control struc-
tures were designed following the ORCCAD approach.
We present here a preliminary study to evaluate the
possibility of stabilization of a free-floating vehicle us-
ing sensor-based control during arm motions.

This paper is organized as follow: in the next sec-
tion we recall the main requirements of a robotic con-
trol system and the corresponding features in ORC-
CAD. In section 3 the experimental plant and planned
experiments are described. Section 4 details the design
process of basic actions of the system. These basic
actions are further composed to build more complex
procedures as explained in section 5. Guidelines for
the future are given in the conclusion.

2 The ORCCAD Architecture

Requirements A complete robotic system includes
a lot of various subsystems coming from various fields
of science and technology like automatic control, sen-
sor data processing and computer science. The goal
of the control architecture is to organize coherently all
these subsystems so that the global system behaves in
an efficient and reliable way to match the end-user’s
requirements.

Robotics primarily deals with physical devices like
arms or vehicles. These devices are governed by the
laws of physics and mechanics. Compared with pure

computing systems they exhibit inertia and their mod-
els are never perfectly known. Usually their behaviour
can be described by differential equations where time
is a continuous variable. Their state can be measured
using sensors of various kind which themselves are not
perfect. Control theory provides a large set of meth-
ods and algorithms to govern their basic behaviour
through closed-loop control ensuring the respect of re-
quired performance and crucial properties like stabil-
ity.

Robots of any type interact with their physical envi-
ronment. Although this environment can be sensed by
exteroceptive sensors like cameras or sonars, it is only
partially known and can evolve through robot actions
or external causes. Thus a robot will face different sit-
uations during the course of a mission and must react
to perceived events by changing its behaviour accord-
ing to corrective actions. These abrupt changes in the
system’s behaviour are relevant of the theory of Dis-
crete Events Systems.

Besides the correctness of computations the effi-
ciency and reliability of the system relies on many
temporal constraints. The performance of control laws
strongly depend on the respect of sampling rates and
computing latencies. Corrective actions must be usu-
ally executed within a maximum delay to insure the
mission success and the system’s security.

Therefore robotic systems belongs to the class of
hybrid reactive and real-time systems which need to
use a lot of different methods and tools to be pro-
grammed and controlled. The ORCCAD[12] environ-
ment is aimed to provide users with a set of coherent
structures and tools to develop, validate and encode
robotic applications in this framework.

The ORCCAD approach In ORCCAD, two entities
are defined in order to capture the aforementioned
requirements. The Robot-Task (RT) models basic
robotic actions where control aspects are predomi-
nants. For example, let us cite hybrid position/force
control of a robot arm, visual servoing of a mobile
robot following a wall or constant altitude survey of
the sea floor by an underwater vehicle. The RT char-
acterizes in a structured way continuous time closed
loop control laws, along with their temporal features
related to implementation and the management of as-
sociated events. These events are pre-conditions, post-
conditions and exceptions which are themselves classi-
fied in type 1 (weak), type 2 (strong) and type 3 (fatal)
exceptions.

For the mission designer this set of signals and as-
sociated behaviours represents the abstract view of the
RT, hiding all specification and implementation details

of the control laws. The characterization of the inter-
face of a RT with its environment in a clear way, using
typed input/output events, allows to compose them
in an easy way in order to construct more complex
actions, the Robot-Procedures (RPs): briefly speaking,
they specify in a structured way a logical and temporal
arrangement of RTs in order to achieve an objective in
a context dependent and reliable way, providing pre-
defined corrective actions in the case of unsuccessful
execution of RTs.

The Robot-Procedure (RP) paradigm is used to logi-
cally and hierarchically compose RTs and RPs in struc-
tures of increasing complexity. Usually basic RPs are
designed to fulfill a basic goal through several poten-
tial solutions e.g a mobile robot can follow a wall us-
ing predefined motion planning or visual servoing or
acoustic servoing according to sensory data availability
and analysis. RPs design is recursive so that common
structures and programming tools can be used from
basic actions up to a full mission specification.

These well defined structures associated with syn-
chronous composition allows to systematize and thus
automatize formal verification on the expected con-
troller behaviour. This is also a key to design auto-
matic code generators and partially automated verifi-
cation. Formal definitions of RPs and RTs together
with associated available formal verification methods
may be found in [4].

3 Experimental plant and scenario

Let us now focus to the significantly complex case
study which will be considered in the sequel. This ex-
ample is currently developed in the framework of the
Union project[9] to assess the design and verification
methods of Orccad with an underwater testbed appli-
cation. The mission will take place in a pool, using
the Vortex vehicle fitted with a manipulator.

Vortex is a Remotely Operated Vehicle (ROV) de-
signed by Ifremer as a testbed for control laws and
control architectures. It is equipped with a set of six
screw propellers and with a traditional sensing set such
as compass, inclinometers, depthmeter and gyrometers
allowing to measure most of its internal state. A video
camera is used for target tracking tasks and a belt with
eight ultrasonic sounders allows to perform position-
ing and wall following tasks. Vortex is also equipped
with an electric powered Mitsubischi Pal0 arm with 7
degrees of freedom to perform manipulation tasks.

The vehicle control algorithms are computed on an
external VME backplane running Pirat, a C++ li-
brary of objects dedicated to underwater vehicles con-

trol. At a higher level, i.e. control laws and mission
management, the reactive synchronous ESTEREL lan-
guage ([2] is used to design Robot-tasks and Proce-
dures, consistently with the ORCCAD approach. The
control algorithms for the arm are run on a second
VME backplane. As the two controllers only have a
low bandwidth communication capability, control laws
for Vortex and the Pal0 arm run independently and
only short synchronization messages are exchanged on
the communication link. This system depicted in fig-
ure 1 is used to test the ORCCAD approach given the
following informal end-user’s requirements.

Mission o tor
programmir A Pe;a or's
simulation intertace
ﬁﬁ LN
® Ethernet @
VME backplane VME backplane
PIRAT1 Synchro. PIRAT2 Servo
VORTEX Control Events rivers
Mission Management PA10 Control

FDDI link
Power

Figure 1: An underwater experimental plant

Starting from the initial position, Vortex is set in
station keeping mode. After completion of all neces-
sary initialization it navigates in wall following mode
up-to reaching the working area. The working phase is
then started to inspect some locations on a pipe with
the arm tip while Vortex is stabilized in a pool’s corner
facing the pipe to inspect. Once the arm operation is
finished an operator call sets it again in parking posi-
tion while the vehicle comes back to its initial position
under the crank.

At any time the detection of a water leak or of an
hardware failure must lead to a mission abortion leav-
ing the system in a safe situation, i.e. setting an alarm
and emergency surfacing with the arm locked in folded
position. Other exceptions more specific to a given sys-
tem or control algorithms are also defined inside the
subtasks involved in the mission.

This mission scenario naturally lead to split the
mission in five main procedures: INITCRUISECONFIG
consists in preparing the vehicle for cruising. REACH-
WORKINGAREA is used to navigate in the pool until
the vehicle reaches the inspection place. DOINSPEC-
TION is used to coordinate actions of the platform and

of the arm in order to accomplish the main task which
is inspecting the pipe. GOHOME is in charge of driving
the vehicle to its homing position and preparing it to
be pulled out. EMERGENCY is always active to han-
dle permanent recovery behaviors like triggering a fast
ascent in case of water leak. Figure 2 summarizes the
tasks and procedures which were designed to achieve
this mission.

Procedures Sub-Proc. and Tasks Main Events Comments

InitCruiseConfig Using absolute position

Vortex: StationKeeping A forded and ooked

Pal0: GoToPark Parked

ReachWorkingArea | Vortex: SwimAhead WallDetected Navigation

WallFollowing | CornerDetected Using US sensors
Pal0: GoToPark

Dolnspection
Vortex: KeepStableBase | StopKeepStable Stabilization in workspace
Pal0: Pal0_Working Operator's calls Inspection with arm tip
Pal0BrakesOff P Brakes are released
GoHome
Vortex: GoToPoint WayPointReached Come back to initial position
Pal0: GoToPark
Emergency Hardware failure Emergency recovery behaviour

Vortex: GoUp Water leak

Pal0: GotoPark Operator's interrupt

KeepStableBase \iey KeepStableCamera| TargetFound

Visual servoing
KeepStableUS TargetLost

Distance towalls servoing

[Palo_Working | Pal0: Palo_TT_JS
Pal0_TT_SE3 JointLimits

Pal0_Teleop Operator's calls

Traj. tracking in joint space
Traj. track. in operationnal space
Teleoperation mode

GoToPark
Pal0: PalU_T;(I'_JS ParkPosReached Arm folded
Pal0BrakesOn | ArmLocked Arm locked by brakes

Figure 2: Summary of tasks and procedures

4 Control laws and Robot-tasks design

The design of the robot controller begins with the
design and test of basic actions when the necessary ac-
tions do not pre-exist in the Robot-task library. Ide-
ally, from the control point of view the Vortex/PA10
system should be considered as a single global 13 d.o.f.
dynamic system. However, due to the lack of a suit-
able and well calibrated model of the global backward
dynamics we choose in this preliminary study to sep-
arately control the vehicle and the arm having hope
that each control law will be robust enough to remain
stable despite the disturbances due to the inertial cou-
pling. Let us now describe some of the control laws
and RTs which were designed for the PA10 arm and
the Vortex R.0.V., both being based upon the Task-
function approach [11].

Modular Specification in Continuous Time
The control law which is used for the PA10 manip-
ulator belongs to the class of decoupling/feedback lin-
earization in a dedicated task space. Its general ex-
pression is given in (3). The goal assigned to the ma-

nipulator is defined as the regulation to zero of an
n—dimensional output function e(q,t), where ¢ is a
vector of generalized coordinates, aimed to represent
in a clever way the user’s objective.

In the present case, the output function includes
the tracking by the arm tip of a trajectory in the 6-
dimensional space of frames (SE(3)). Since the robot
has 7 joints, one degree of freedom is available for
achieving simultaneously a secondary task, which can
be expressed as the minimization of a scalar cost hs(g).
Classical secondary goals of that kind are the avoid-
ance of kinematic singularities or of joint limits, the
minimization of the velocity norm, etc.... The two
tasks are finally gathered into a single one through
the expression:

Ohs
e=Jlei+a(ls— Jin) 30 (1)

where e; expresses the trajectory tracking task:

_(P@)-P)
el_(Alg, t)) @

A being a parameterization of the attitude error, P
the position of the tip and « a positive weighting fac-
tor. J; = %{1 is the jacobian matrix of e;.

The final control law is given below.

~ —1 ~ ~ o~ -1

S (o P W
(3)

Here, I is the array of control actuator torques, M and
N gather the Lagrangian dynamics, and k, u, G, D
are tuning parameters. The “hats” indicate that more
or less complex models of the concerned terms can be
used. In fact, it should be emphasized that the RT de-
signer may select easily the adequate models and tun-
ing parameters in ORCCAD, since they belong to some
predefined classes in an object-oriented description of
the control ([12]) available through the graphical in-
terface depicted by figure 3. On the basis of these in-
formation and requirements, a set of objects defined in
the RT modeling[5] can now be instantiated by setting
adequate numerical values. A complete description of
a similar RT may be found in [7].

The task-function approach can also be used to
specify sensor-based tasks, i.e. where the d.o.f. of the
robot are regulated with respect to the environment.
Too such control laws have been developed for Vortex:
stabilization in a pool’s corner using acoustic sensors
and visual servoing facing the pipe. They are detailed
in [15] and [10] respectively.

Time-constrained Specification The resulting
specification defines the action from a continuous time

tf_Rd
R na =
TFRT
tf R in1]jachtf_d:
Topaty 2t
kin Re
pro_a -
— KIN_PALO
FrA Rina co_dq
—Er= EEw CO_RED
PALO gt T Proo—e—
CE Rt I i
Fra_a £ oRdl =9
prd_at [Jo] Frb_a DIFF_pato | P52 - et

OutZ_jacp inZ_jac TO_PALO

Fnm

DYN_PALO

OT_PAL0

q ot
BUT_PAL0 atr-oul AR

Figure 3: Graphical Representation of the Robot-task
Specifying a Trajectory Tracking Action in the Frame
Space

point of view, i.e independently of time discretization
and other implementation related aspects which are
considered in a next design step. The passage from the
above continuous time specification to a description
taking into account implementation aspects is done by
associating temporal properties to modules, i.e. sam-
pling periods, duration of computations, communica-
tions and synchronizations between the processes. It is
also finally necessary to enter the localization of data
processing codes.

At this stage of specification the basic entities are
Module-tasks, i.e. real-time tasks, usually periodic,
which implement an elemental functional module of
the RT. Since MTs may, possibly, be distributed over
a multi-processor target architecture they communi-
cate using typed ports and specific synchronization
mechanisms. As inter-tasks synchronization may lead
to dead-locks a Petri net model of the synchroniza-
tion skeleton of the RT can be automatically build.
Its analysis allows to conclude with dead-lock freedom
and with the temporal coherency of the design [14].

The logical behaviour of the RT is automatically
encoded through a graphical window. Thanks to the
strong typing of events and exceptions the code gen-
erator was proven to be correct and thus guarantee
that crucial properties like safety and liveness are true.

([3)-

Simulation of a Robot-task Simulations can take
place after this first logical verification phase. We now
present a few simulation results concerning the global
underwater system.

Compared with others simulation softwares com-
monly used in robot control a main characteristics of

Simparc ([1]) is that it allows to simulate both the
plant dynamics and important temporal characteris-
tics of the controller like sampling rates and communi-
cation delays, including the basic features of real-time
operating systems. Figure 4 shows the model of the
controller of the underwater system depicted in fig-
ure 1. The coupled dynamics (including drag, lift and
hydrostatic forces) is computed using some classes of
the Dynamechs software ([8]) integrated in the former
model of Vortex. The simulation uses ray tracing mod-
els for the video and acoustic sensors. According to the
limits of the actual hardware the sampling rates of the
vehicle control and arm control are set to 100ms and
10ms while the acoustic sounders are triggered every
360ms.

ENVIR,ONMENT’S MODEL
recorder : (] J

& 3

I_ [%_facet: U _facet : U2
+_facet : Ul
& 3

ntinuous [*_facet : U1? " facet : U267
(J k3 3
c_dac: UL

"t adc:UI2] rog mem:| [facet : UL ® facet : U2!]
¢ l =I.7

-— & Ed
[*_facet: U2? " facet : U2

SYSTEM’S DYNAMICS

c_rtc: U7
1

c_pi: U9 o—mTl ﬁ $
l ".J'acet H U3?\—

mec 68020: UL

c pi: U8 ¥*

'c_po: ULl

CAMERA and ACOUSTIC SENSORS

Vi
CONVERTERS

. adc: U36] rog_mem:| memory : U

L}
]~
¢ rte: U307 — SHARED MEMORY

1

c_pi: USZWI ‘7/ ARM CONTROLLER
o

68020 :
c_pi: U1 Y po:u34

Figure 4: Simulation model of the underwater system
hardware

Figure 5 shows the pitch and roll orientation er-
rors of the vehicle stabilized in a pool corner using
the sounders during a fast motion of the arm. The
first and second joints are turned by 90 degrees in 3
seconds. Thanks to a rather large hydrostatic stabil-
ity of Vortex, the vehicle does not capsize even if it
is not actively controlled. However, closed-loop stabi-
lization with the U.S. sensors reduces both transient
and steady-state errors.

Tuning some parameters of the simulation file
rapidly shown that the main limitation in the ROV
stabilization performance come from the low sampling
rate of the acoustic sensors. Therefore improving
the stability of the underwater platform would better
come from an upgrade of the hardwired electronics of
the sensors rather than first increasing the computing
power, a very interesting information for the system

designer.

rads

0.23699

Roll (open loop)

0.08983

-0.01017

-0.11017

o.o000 o.100 o.z00 o.300 o.a00 o.s569

Figure 5: Roll and pitch errors during arm motion

5 Design and Analysis of Procedures

We now detail the specific procedure DOINSPEC-
TION in order to enlighten the specification and anal-
ysis process we propose for basic actions composition.

The DOINSPECTION procedure aims at performing
manipulation operations with the arm while ensur-
ing the stability of the base. Since the base and the
arm are controlled separately despite of mutual distur-
bances, an important requirement is that the arm can
only move when the base is stable enough and stops
its motion otherwise. Motions of the arm can be per-
formed again after recovering platform stability. It is
clear that the need to handle concurrency, preemption
and synchronization is very strong in this procedure
as well as the stability of the overall physical system;
these reasons justify our choice to present it in detail.

Since the camera sampling rate is about three times
faster than the U.S. sensors, it is expected that the first
one will be more robust with respect to the distur-
bances coming from the arm motions. However, if the
camera looses the target, we can switch to sounders
stabilization until being able to recover the target
tracking mode. This redundancy is useful to increase
the safety and efficiency of the system and such a sit-
uation where several RTs are exceptions of each other
is a typical structure in our procedures.

More precisely, the procedure can begin when the
vehicle has reached the working area, i.e. it is more
or less accurately positioned in front of the cylinder
to be inspected. During arm operations the vehicle
is stabilized using the KEEPSTABLECAMERA task (a

RP::Dolnspection RP::KeepStableBase

RT: KeepSt abl eUt

Tar gef Found
RP:Pal0Working

RT: Pal0TTJS RT: Pal0TTSE3 | | RT: Pa10Tel eop Start $tfabl e

i ntLi
SeB(Tra)
Jof nt Li i t

Joysti ck)

Tel eo
e
- \%/K
o
%2
q

RT: KeepSt abl eCa

eepStableBaseBehaviour

Target Lost

End(Tr aj
38([Traj)

St bl eCal

Pall

Wor K|
Orerteatiing 5

RT: BrakesOf

Ar nRel eased

7 |
‘\V Rel easeBr akes
RS
Local i i
Chserver DolnspectionBehaviour

I npec
St opl nspe
GoodEnd

Figure 6: Outline of the Dolnspection procedure

vision-based servoing task using geometric features of
the cylinder). The presence of the video signal is moni-
tored all along the procedure. Loosing this signal, e.g.
due to an uncontrolled motion of the vehicle, raises
a TargetLost signal switching to the KEEPSTABLEUS
task up to stability and video signal recovery (Target-
Found).

Once the vehicle is stable in front of its target the
actions concerning the arm can be run concurrently
with the platform stabilization on the second con-
troller. The PA10TELEOP may begin under control
of predefined signals coming from the operator’s in-
terface and keyboard to touch some locations on the
target and store their coordinates. Upon an opera-
tor’s command, the arm controller is set in the mode
of automatic trajectory tracking in operational space
(PA10TTSE3 task) to point again the visited loca-
tions. In both modes, a platform unstability tempo-
rary blocks the arm motions (PA10BRAKESON task)
up to recovering vehicle control. The corresponding
control code is given down below. It is written using a
mission programming language currently designed in
the UNION project [16].

PAR{

SEQ(do SEQ(do
Pal0BrakesOn loop

until BaseStabilized: BaseSearchTarget;
repeat 2 times emitBaseStabilized

Pal0SafeMovelS; KeepStableBase;
Pal0SafeMoveSe3; endloop
end repeat)L}!nt” (InpectionOK)
do
PalOSafeMovels

until ParkingPositionReached
emit InpectionOK

);

The left branch of the parallel statement states that

the Pal0 actuators are blocked until the base is stable.
A soon as this condition is satisfied the arm is driven
to inspect two locations in two steps: a motion in the
joint space drives the arm in the region of interest and
sequently a new motion in the tip frame space moves
the end-effector in front of the inspection point. We
remark that the meaning of ‘safe’ motion is that the
base and the arm do not move concurrently. Finally,
the arm reaches the parking position and signals that
the inspection is finished.

The second parallel branch states that the base is
situated in front of the target such that the axis of the
cylinder is exactly in the center of the camera’s image
with the right appearance. Sequently, it signals that
the base is in a motionless position and keeps it using
KEEPSTABLEBASE. We remind that this procedure
handles the loss of the video signal and that the ‘loop’
instruction aims precisely to come back to the vision
based control. InspectionOK signal, emitted by the
branch of the parallel instruction handling the PalO
activity interrupts the stabilization of the base and
the procedure terminates.

At compile time the control code of this procedure
expands in more than 300 ESTEREL statements thus
alleviating the burden of the programmer while pre-
serving formal verification capabilities.

Logical Behaviour Verification Firstly, the sat-
isfaction of crucial properties is checked. Concerning
the safety property (any fatal exception must always
be correctly handled) we proceed as follows. Knowing
the user’s specification defining the fatal exceptions
and the associated processing, we build a criterion de-
fined by abstract actions like:

“Error = [Water_Leak? and not [Accent!”.

The abstraction of the global procedure automaton
with respect to this criterion is then computed. The
absence of the “Error” action in the resulting automa-
ton proves that the safety property is verified.

The liveness property (the RP always reaches its
goal in a nominal execution) is proved in a similar
way. The “Success” signal is emitted at the end of
all successful achievements of a RP. The abstraction
of the procedure automaton crossed with an adequate
criterion built with this signal must be equivalent by
bisimulation to a one state automaton with a single
action, the “Success” one.

Conflicts detection We are interesting here to check
that during the RP evolution it does not exist instants
where two different RTs are competing for using a
same resource of the system. We consider the phys-
ical resources controlled by the RTs (the arm and the
vehicle) as well as the software resources used by the

controllers (real-time tasks). For example, we want to
verify that the RTs KEEPSTABLECAMERA and KEEP-
STABLEUS never compete to apply different desired
force screws to Vortex thrusters during all the RP evo-
lution. We reduce the global automaton to the only in-
teresting signals StartServoing Vortex and StoppedSer-
voing Vortez. Thus we can check that these two signals
alternate during the RP life insuring that a control law
can be started only after confirmation that the previ-
ous one is stopped.

Finally, the conformity of the RP behaviour with
respect to the requirements is verified. We want
to certify that the arm is motionless when the plat-
form is recovering stabilization using the ultra-sonic
sensors. The actions involved in this property are
KEEPSTABLEUS and PA10TTSE3 and therefore the
signals in respect of which we observe and reduce
the global automaton are STARTKeepStableUs, BF-
KeepStableUs, STARTPal0ttse3, BFPal0ttse3 and
AbortPal0ttse3. The resulting abstract view is given
figure 7. We remark that the two tasks always run in
sequence: from the state ‘0C3’ either KEEPSTABLEUS
is executed (state ‘0c4’) or PA10TTSE3 (state ‘OC5’).
In particular, if KEEPSTABLEUS run from state ‘0C5’
the PA10TTSES3 task is aborted and only re-activated
after the end of the KEEPSTABLEUS task.

oc1 ISTART_RTPal0TTSe3

?BE_RTPA10TTSe3
tau /
Y4/ [START_RTPal0TTSe3 ?7BF_RTKeepStapleUsVortex

oc3 OC/ 0C8
OC1abort rt_Pa10TTSe3
ISTART. RTKeepStabIeUsVonex

ISTART_RTKeepStableUsVortex

?BF_RTKeepStableUsVortex

/ ?BJI—}RTPaloTTSe’a‘ . _exit
0co
)

oea

Figure 7: Abstract view at RT level of Dolnspection

Validation of Smooth Switching After the ver-
ification of the logical behaviour of the procedure we
focus now on a particular phase of the system’s evolu-
tion: the transition between two control tasks. The
switching mechanism must ensure that two control
laws are mutually exclusive, i.e. they never compete
to control a given subsystem, and that the transition
must be as fast as possible to maintain the system’s
stability ([13]). This mechanism manages the real-time
tasks involved in the successive RTs and is also en-
coded using ESTEREL (only for single processor/single
rate tasks up to now). The abstract view given fig-
ure 8 shows that the stopping and starting signals are
correctly ordered and that the transition takes place

in a single automaton transition thus minimizing the
latency.

@tOKivortex
X

fore:

?INitOK_ Vorte

'ActlvaleRTKeepStableCamVorlex .
-FinTransite_Vol

'L StartTransite. VOrlex

2INitOK_ Vo
- StartTransnte " Vortex

#CmdStopOK_Vdiex
Sc17
2CmMdStopOK_Vo)

rte.
‘AcllvateRTKeepSlableUsVorlex .
IL-FinTransite_Vortex

©,

]

O —! >0OC0

tau

Figure 8: Abstract view of the switching mechanism

Logical analysis provides no information about the
transient behaviour of the physical system during RT
switching. Structures to generate simulation programs
of RP as sequences of RTs were also developed. A
characteristic of these simulations is that the simulated
discrete event controller is the same as the one which
will be used for execution in real world[6].

Figure 9 presents a 15 sec simulation of the DOIN-
SPECTION procedure. The two plots at the top of the
figure illustrate the evolution of the x and y coordi-
nates of the base, while the lowest plot represents the
evolution of the x coordinate of the origin of the end-
effector frame of the arm. Vertical lines indicate the in-
stants of detection of the aforementioned events which
imply a Robot-task switching in the procedure. The
results appear to be satisfactory since the switching is
smooth enough to allow the video signal recovery.

6 Concluding remarks

Although the mission we describe in this paper
looks simple compared with a real operation at sea,
the interleaving of events and activities of the full mis-
sion automaton justifies our hierarchical design and
verification process, where we design complex actions
from already validated ones lying at a lower level. As
an illustration of the complexity, let us mention that
the overall automaton of the application has 715 states
and 8,597 transitions, which clearly excludes to build
it by hand or to verify it visually. This size is a conse-
quence of the existence of a true parallelism between
arm and vehicle controls all along the operation. It

E EBaszeI3tphilized Syenallost SigaalFoond BaseStabilized
.‘._ =1 ———
- SearchTarger KeepStablel an
5 - Keep3tablelf=s

: KeepStableflam SearchTarger

"

E

- =i

-

=

L

-

5 —

a

v TTSeS

. TTSe3 BraklesTn

= BrakesCn

@ | | |

OI - oS TPeD Tawe

Figure 9: Simulation of Dolnspection

is expected that distributing the control code as syn-
chronized automatal3] could help to reduce this com-
plexity while preserving the formal verification capa-
bility. This solution is currently implemented on the
Vortex/PA10 controller.

Since tools for the verification of temporal features
and hybrid systems are not mature enough, we only
verify the logical behaviours of robotic actions involved
in the application. Thus, realistic simulations remains
useful to check numerical properties, i.e. tasks syn-
chronization delays or control law performance. Pre-
vious experience has shown that this kind of simulation
is helpful to prepare experiments and to save time on
the real site. Experiments are currently being carried
out with the real system in Ifremer’s pool and it is
expected that preliminary experimental results will be
available by the time of the conference.

References

[1] C. Astraudo, J.J. Borrelly, “Simulation of Multipro-
cessor Robot Controllers”, Proc. IEEE Int. Conf. on
Robotics and Automation, Nice, May 1992.

[2] G. Berry, G. Gonthier: “ The Synchronous Program-
ming Language ESTEREL: Design, Semantics, Imple-
mentation”, Science Of Computer Programming, Vol
19 no 2, pp 87-152, 1992.

[3] G. Berry: “Communicating Reactive Processes”, in
Proc. 20th ACM Conf. on Principles of Programming
Languages, Charleston, Virginia, 1993.

[4] B. Espiau, K. Kapellos, M. Jourdan, and D. Simon
On the Validation of Robotics Control Systems. Part I:
High level Specification and Formal verification, Inria
Research Report no 2719, November 1995

[5] K . Kapellos: Environnement de programmation des
applications robotiques réactives, PhD dissertation,
Ecole des Mines de Paris, Sophia Antipolis, France,
November 1994.

[6] K. Kapellos, S. Abdou, M. Jourdan, B. Espiau “Spec-
ification, Formal Verification and Implementation of
Tasks ans Missions for an Autonomous Vehicle” 4th
Int. Symp. on Ezperimental Robotics, Stanford, USA,
June 30- July 2, 1995.

[7] K. Kapellos and B. Espiau, Implementation with Orc-
cad of a Method for Smooth Singularity Crossing in a
6-DOF Manipulator, Inria Research Report no 2654,
September 1995

[8] S. McMillan, D. Orin and B. McGhee, “Efficient Dy-
namic Simulation of an Underwater Vehicle with a
Robotic Manipulator”, IEEE Trans. on Systems, Man
and Cybernetics, vol. 25, no 8, August 1995.

[9] V. Rigaud e.a., “UNderwater Intelligent Operation
and Navigation: Main objectives and first results”,
in Proc. 6th TARP workshop on Underwater Robotics,
Toulon, France, March 1996.

[10] P. Rives and J.J. Borrelly: “Visual Servoing Tech-
niques Applied to an Underwater Vehicle”, submitted
to Int. Conf. on Robotics and Automation, 1997

[11] C. Samson, M. Le Borgne, B. Espiau: Robot Control:
the Task-Function Approach, Clarendon Press, Oxford
Science Publications, U.K., 1991.

[12] D. Simon, B. Espiau, E. Castillo, K. Kapellos: *
Computer-aided Design of a Generic Robot Controller
Handling Reactivity and Real-time Control Issues”,
IEEE Trans. on Control Systems Technology, vol 1,
no 4, December 1993.

[13] D. Simon, K. Kapellos and A. Santos: “Smooth task
switching mechanisms”, UNION project deliverable no
D2.5, September 1995.

[14] D. Simon, E. Castillo and P. Freedman, “On the Vali-
dation of Robotics Control Systems. Part II: Analysis
of real-time closed-loop control tasks”, Inria Research
Report no 2720, November 1995

[15] D. Simon, K. Kapellos and B. Espiau: “Control Laws,
Tasks and Procedures with OrccAD: Application to
the Control of an Underwater Arm”, in Proc. 6th
IARP workshop on Underwater Robotics, March 1996,
Toulon, France.

[16] N. Turro and E. Coste-Maniere: “Mission Program-
ming Language”, UNION project deliverable no D2.2,
July 1996.

