
Analysis of Preemptive Periodic Real Time Systems using the (max,plus)

Algebra

With applications in robotics

François Baccelli∗, Bruno Gaujal†and Daniel Simon‡

Abstract

In this paper we present the model of a system of periodic real-time tasks with fixed priorities, pre-
emption and synchronization, performed by a robot controller, using Marked Graphs.

Then, with the help of the (max,plus) algebra, we derive simple tests to check real time constraints
on those tasks such as response times and the respect of deadlines. This method takes into account
precedence and synchronisation constraints and is not limited to a particular scheduling policy.

keywords Periodic real-time systems, synchronisation, fixed priority preemption, marked graphs,
(max,plus) algebra.

1 Introduction

Marked graphs can be used to model processes with highly synchronous behaviours, see [1, 2, 3] for example.
Here, we focus on the study of several marked graphs which interact via certain preemption schemes.

Such systems appear in the modelling of sets of tasks performed by on-board processes in a robot controller.
Some tasks have high priority and therefore must preempt the low priority tasks. All tasks, regardless of
priority, have real time constraints to meet : each task is triggered by events (by a clock or by a precedent
task), and is made runnable at each occurrence of these events. Each task must run to completion before
the next activation period. The Orccad system presented in Section 2 is a good example of such a system.

This paper gives simple answers to a series of problems with an increasing degree of difficulty, all related
to the quantitative behaviour of such systems :

• (max,plus) representation. We provide a (max,plus) representation of the system via a Petri net model
using different time scales associated to the different priority levels (contracted time in Section 3 and
expanded time in Section 5)

• Periodicity. A first structural problem that we address is the periodicity issue. Under rather general
assumptions, we show that the whole system reaches a periodic regime after some transient behaviour.

• Cycle time. Another key practical problem is to compute the speed of the system once it has reached its
periodic regime. When the contracted time model is valid, the answer to this question is quite simple
and is given as the ratio of the cycle time without preemption by the busy period of the preemptive
tasks (see section 3.2).

• Response times. A more precise performance measure is the response time of each task defined as
the duration between the time it becomes runnable and the time of its completion. A (max,plus)
representation of this quantity is given in Section 4.2 whereas a brief presentation of the (max,plus)
algebra is given in appendix.

• Real time constraints. Finally, we give a simple test to check whether the system complies with its
real time constraints, during the transient phase as well as during the periodic regime (Section 4.4).

The use of the (max,plus) framework to address a real time problem is rather new, especially when
preemption is possible as it is the case here. Traditional techniques [4, 5] use worst case response times

∗François Baccelli is with ENS, 45 rue d’Ulm, Paris, Francois.Baccelli@ens.fr
†Bruno Gaujal is with Loria, 615 rue du jardin Botanique, Villers lès Nancy, Bruno.Gaujal@loria.fr
‡Daniel Simon is with Inria Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, Daniel.Simon@inrialpes.fr

1

to analyse fixed-priority real-time systems. The method proposed in this paper considers the interleaving
between tasks to obtain less conservative estimates of system response times. Moreover the computational
complexity of the method is lower than the computational complexity associated with a full search of the
reachability graph of the system.

In the last part of the paper, we show that this approach can be partially generalised to an arbitrary set
of Marked Graphs equipped with partial order relations between sets of transitions. In that case, we cannot
always use the contracted time approach but rather expand the firing time of the transitions. The main
result shows that the system reaches a periodic regime which does not depend on the initial conditions (see
Section 5).

2 Modelling of a Real Time System : The Orccad Framework

This section is primarily a motivation section. We consider a specific framework for real time systems,
Orccad, and show how to model its logical and timed behaviour by marked graphs. We believe that the
mathematical models that we develop in this section and study later on are nevertheless generic.

Orccad is a software environment dedicated to the design, the verification and the implementation of
robotic control systems. It also allows us to specify and validate robotic missions [6].

Periodic and multi-rate communicating tasks are executed under the control of an off-the-shelf real-time
operating system : fixed priorities are assigned to the tasks, which can be preempted at any time by a
higher priority task which becomes runnable. A preempted task resumes at the point it has been preempted
when all tasks with higher priority become idle.

The structure of the periodic tasks, which are called module-tasks (MTs), is as follows : after initialisation,
an infinite loop is executed where all input ports are first read, calculations are performed on these inputs
and finally results are posted on all the output ports.

2.1 Synchronisation

The general idea is that a partial synchronisation of tasks allows for the specification of precedence constraints
and thus improves the control performance by decreasing the computing latency [7]. Several kinds of one-
to-one protocols can be used on input/output ports in order to synchronise more or less tightly the set of
MTs :

• ASYN-ASYN : a communication of this type does not lead to synchronisation between the reading
and writing tasks, thus it must be implemented using a fully asynchronous communication mechanism,
e.g. [8].

• SYN-SYN : each communication of this type is a rendez-vous; the first task to reach the rendez-vous
(either the writer or the reader) is blocked until the second one is ready for communication.

• ASYN-SYN : the writing task runs freely and posts messages on its output ports at each period; the
reading task either reads the data if a new one is available or is blocked until the next data production.

• SYN-ASYN : symmetrical to the previous case : the reader runs freely, the writer is blocked until the
next reading request except if a new one has been posted since the last reading.

2.2 Preemptions

In addition to synchronisations, MTs may interact through another mechanism, preemption.
A control system for robotics is generally made of several calculation paths : the direct control path

computing control set-points from tracking errors is often quite simple and have a small computing duration
[7]. Other tasks may be used to update some parameters of the non-linear robot model. These tasks are
data-handling intensive, e.g. using trigonometric functions or matrix inversion. Their duration is usually
longer than the period of the direct path. Thus they must be assigned with a low priority so that their
execution is preempted by every execution of the direct path calculations.

The whole system is run over a limited number of CPUs. All the MTs using the same CPU are ordered
according to their priorities. When a MT with high priority becomes runnable and starts its calculation
cycle, the lower priority running MT is preempted and its context is stored. The activity of the runnable

2

MT with the immediately lower priority resumes at the point where it was stopped as soon as the higher
priority MT has finished its cycle of calculations or is blocked waiting for a synchronisation event.

2.3 Modelling with Petri nets

We need modelling and analysis tools to automatically check for time inconsistencies in the network of
synchronised MTs. Such problems have been addressed in the real-time community under very general
assumptions, see for example [9]. Here, we will adopt a particular modelling tool, Petri nets which will
provide a simple and efficient way to carry out inconsistency tests.

As shown in Figure 1, the sequential behaviour of the simplest periodic MT (reading an input port,
performing a calculation, writing to an output port) may be modelled by a Petri net with three transitions.
(Of course, when an MT have multiple input and output ports, we must be careful to associate a distinct
transition with each input and each output port.) A fourth transition is required to activate the MT subject
to the periodic awakening associated with a real time clock (RTC), also modelled by a Petri net. Since we are
concerned with temporal analysis, we associate time intervals (also called “durations”) with some of the Petri
net’s transitions. Such Petri nets are called timed Petri nets. We have chosen to associate the duration [d]
of the MT with the computation transition, and thereby assume that reading and writing are instantaneous
events. A firing time [τ] is also assigned to the transition associated with the RTC (Transitions associated
with non zero duration are drawn with thick lines). Since each place have just one input transition and one

[τ]

[d]

T1

P2

P3

T3

P1T2

Write on

Ready to write

Compute

compute
Ready to

Ready to read

Waiting for
clock

Read input
port

output port

Real-time clock Module Task

[τ]

[d1]

MT1 MT2

[d2]

RTC

Synchronization
semaphore

[τ]

[d1]

MT1

[d2]

MT2 RTC

Rendez-vous

Figure 1: A Petri net model of : a periodic Module-Task, ASYN/SYN and SYN/SYN communications

output transition, the resulting Petri net is a so-called marked graph (or event graph). The synchronisation
and communication mechanisms described in section 2.1 also have marked graph models as depicted in
Figure 1.

Studying the temporal behaviour of the set of MTs is rather complex : classically this can be done
through a more or less exhaustive exploration of the reachability graph of the Petri net, which can be costly
in time and memory. Moreover, this Petri net does not model the priorities and the preemption due to the
scheduler. Thus, this model must be refined accordingly, which will be the object of the present paper.

2.4 A Generic Marked Graph Model for Preemption Based Real Time Systems

We shall retain the following generic model from the above framework :
The model consists of a set of tasks Ti, i = 1, ..., N . Each task Ti can be modelled by a connected marked

graph Gi = (Qi,Pi,Mi, σi),

• Qi is the set of numbered transitions. We denote its size Qi;
• Pi is the set of numbered places. We denote its size Pi;
• σi = (σi1 , · · · , σiQ) is the set of firing times, σiq being the firing duration of transition q. We will

assume that these numbers are all multiples of the smallest time unit that can be handled by the
system. Therefore, they can be seen as integer numbers.

• Mi(r, q) is the initial marking in the place between r and q, r, q ∈ Qi (if this place does not exist,
Mi(r, q) is not defined).

• We also denote by q• and •q the output places and input places respectively, of transition q.

3

Moreover, the strongly connected components of Gi are partitioned into two sets :

• The set of initial components, denoted Ii. An initial component will be called a clock. In most
practical cases, this clock is composed of a single recycled transition. However, nothing forbids to
consider more elaborate clocks, and we will make no restrictive assumption concerning these initial
components besides the fact that they cannot be preempted and that they have no computing activity.
In other words, they always deliver ticks according to their timing specification and do not load the
computing resources shared by the module-tasks.

• All the other components, denoted Oi. They are often simple cycles, for single task models but may
be more complicated.

OI

All the other components: OInitial components: I

Figure 2: A graph with decomposition in its components I and O

The preemption between tasks is given under the form of an order relation between the graphs Gi. If Gj � Gi,
whenever a transition in Oj fires, every firing transition in Oi is suspended and resumes its firing as soon as
all activities in Oj stop, e.g. after normal termination or waiting for some synchronisation event. Note that
the clocks of Gi or Gj are not involved in the preemption process.

2.5 Examples

2.5.1 Case 1 : A Simple Case with no Preemption

This first example shows a group of two communicating tasks using a ASYN/SYN communication. However,
there is no preemption in this case. This system is represented in Figure 3. Each task have its own clock
that sets the period of each task (20 and 15 units of time respectively).

MT1 MT2

20

Clock 1

Clock period:20

Calculation: 2

Clock period: 15

Calculation: 1
ASYN-SYN

2

1

15

Clock 2
MT 1 MT 2

Figure 3: Two communicating tasks and their Marked Graph model

2.5.2 Case 2 : A case with preemption

Here, we show a realistic model of several tasks (MT1 to MT7) used for computed-torque robot control in
the Orccad system. The priorities are set such that

{MT1,MT2} � {MT3,MT4,MT5,MT6} � {MT7}

4

Priorities has been set according to the relative urgency of the tasks. Here, MT1 and MT2 are observers
checking for safety conditions, MT3–MT6 is the direct control path and the long duration MT7 computes
an explicit model of the robot arm dynamics. Note that the analysis method we present is not limited to
a particular scheduling policy, e.g. rate-monotonic or deadline-monotonic [5]. Thus the scheduling policy
can be chosen to minimize a control performance index like a measure of the tracking error, e.g [10], while
preserving the analysis capability. Figure 4 is the Marked Graph model of the system under a somewhat

Clock 1
MT 2MT 1

10

Clock 2 MT 3 MT 4 MT 5

150 100 343

MT 6

100
Sub-system S2

Clock 3 MT 7

Sub-system S1 Sub-system S3

2500
10000

5000

2480
100

Figure 4: Marked graph model of a robot controller, involving preemption, with parallel execution

unrealistic assumption : as nothing prevents transitions of a timed Petri net to be active simultaneously,
MT1 and MT2 can run in parallel, as well as tasks MT3 to MT6. Thus it is assumed that there is always
a processing unit available for each runnable timed transition. If there is only one processing unit (which

Clock 1
MT 2MT 1

10

Clock 2 MT 3 MT 4 MT 5

150 0.1 343

MT 6

100

Clock 3 MT 7

2480

2500
10000

5000

100

Psync2

Psync1

S
′

3

S
′

1

S
′

2

Figure 5: Marked graph model of a robot controller, involving preemption, with one processor

is often the case) then all tasks in {MT1, . . . ,MT7} must run in mutual exclusion. The additional initially
marked places Psync1 and Psync2 serialize the activities inside the cluster of tasks with equal priorities.
Exclusion between the different clusters of tasks is handled by the preemption. The Marked Graph model of
this system, given in Figure 5, is currently generated by the Orccad verifier from a block-diagram oriented
GUI.

5

2.6 Problems to be addressed

The problem which this paper addresses is to check whether all tasks will meet their time constraints, that
is if each task will be executed within the time slot that it is given by its clock. This general problem will
be called Problem P1 in the following text. In cases where there is no preemption this problem is rather
classical and does not require the whole machinery developed below.

A less restrictive version of this problem is to check whether violation of the time constraints may only
happen a finite number of time. This is called Problem P2 in the following.

In the marked graph models, these problems can be formulated in the following way :

• for Problem P1 : for all marked graphs Gi, the marking in the places that connect initial components
Ii to any component Oi, is bounded by one.

• for Problem P2 : For all marked graphs Gi, the marking in the places that connect initial components
Ii to any component Oi, may get larger than one for a finite number of occurrences.

2.7 Real time scheduling analysis

Scheduling analysis over a set of recurrent real-time tasks have been studied thoroughly since [5]. Here ,
we give an overview of the techniques traditionally used to address real time scheduling analysis to put our
approach in perspective.

Worst case analysis Usually, real time systems are modelled by a set of recurrent tasks assigned to one
or several processors, as this is the case since the seminal work of Liu and Layland [5] and further work
[11]. Each task τi is characterized by a couple (Ci, Ti) where Ci is the execution time of each instance of
task τi and Ti is the period of τi. In our context, a task is modelled by a transition of the Petri net and
its execution time is the firing time of that transition. However, in our case, the pseudo-period of the task
is not necessarily given a priori but can depend on other features of the system, e.g synchronisation with
preceding tasks leading to periods inheritance. This is one important difference from the usual approach
since one important test that must be done on our system is to check whether the periods are adequate
(stability issues are addressed in Section 3.2). Another important difference lies in the data and temporal
dependencies between tasks, which is in our case specified through synchronisations and also modelled with
marked graphs (while conflicts on shared data access are avoided using an asynchronous multiple-buffers
mechanism). Although dependence relations between tasks can be taken into account using the traditional
approach (as in [12]), this has only been done for periodic tasks. To deal with sporadic tasks (which is
our case here), some authors such as [13, 9] have replaced the data (Ci, Ti) by a work arriving function.
However, precedences are difficult to take into account in this context. Yet another difficulty of addressing
Problems P1 and P2 with classical approaches is the fact that neither problem can be simply written under
the form of a deadline. They deal with the interleaving of events coming from several sources. This would
require the computation of upper bounds (as is usually done) as well as lower bounds (this seems to be
substantially more difficult).

Real time logic Real time logic has been introduced as an extension of temporal logic (see for example
the survey [14]) and later extended, as for example in [15, 16]. This formalism is useful to formulate real
time properties which are more complicated than deadlines and worst response times (such as Problems P1,
P2, or even more subtle real time properties). The underlying model over which a real time logic formula
can be written is a timed graph as defined in [17]. Here, that would be the state reachability graph of the
Petri net enriched with timing information. From that point on, a real time formula can be checked using a
formal derivation of the formula to its value (true or false). It can be shown (as in [15]) that most formulae
are decidable (this is the case for P2 and P1). Although real time logic is a very powerful tool in terms of
modelling power, it suffers from a high computational complexity. In our case, the state reachability graph
can be exponential (and even infinite) in the number of transitions. Also, checking the value of a formula
may be exponential in time and space.

In contrast, the (max,plus) approach that we present here stays at the net level (and not at the state level)
and the time complexity for checking P1 and P2 is quadratic in the period of the system and cubic in the
size of the net. Indeed, the (max,plus) formalism enables us to efficiently use the operators’ properties (such

6

as commutativity and associativity) to keep the complexity low, as in the case in Section 4.3. Moreover,
our model of tasks is simple enough (but still useful for practical many applications) to stay with a linear
model, thus allowing for efficient computing of numerical values, e.g. response time of tasks and length of
the transient phase. This is now implemented in the ERS environment [18], a graphical interface dealing
with Petri nets, (max,plus) systems and stochastic task graphs analysis.

It really seems that the Petri net model given here and the (max,plus) technique developed below are
both well adapted to this case.

3 Modelling Under Contracted Time

In this section, we introduce a representation of the system where we contract time in the non-preempted
transitions. This is a way to take into account the scheduler without modelling it by a Petri net, thus
allowing one to still use marked graphs.

3.1 Description of the Model

We simply consider the case where N = 2 which is generic, as we will see in the following.
Let G1 � G2. In the following, G1 will only be seen through its activity process, S1(t) that is the process

which is equal to 1 if a transition in O1 is active and 0 otherwise. It is assumed to be periodic, with period
T1. As for G2, we will remove the index 2, since every variable considered in the following, will be for the
marked graph G2.

We construct a copy of G(= G2), that we call H which will be considered without the preemption from
G1.

In the following, for each Strongly Connected Component (SCC) C, we will denote

• {Xq(n)} the sequence of firing times of transition q ∈ C, in the preempted system G. The set of all
these sequences will also be called the behaviour of the system;

• {Vq(n)} the sequence associated with the same transition in H.

By using the theory of timed marked graphs and Lemma A.1 in the appendix, we get for all SCC C in
isolation, a cycle time λC ∈ R+, a cyclicity sC ∈ N+ and a transient period kC ∈ N, such that for all
transitions q ∈ C and all k > kC ,

Vq(k + sC) = Vq(k) + sCλC . (1)

Note that the activity process of this SCC is therefore periodic of period sCλC . This period is an integer
under the assumptions that we made on the firing durations.

3.2 Time Contraction

We denote by S1(t), t ∈ R the activity process of G1, defined by S1(t) = 1 if at time t a transition in G1 is
active and S1(t) = 0 otherwise. This function is assumed to be periodic of period T1, where T1 is an integer.

We define Γ1
def
=
∫ T1

0 1−S1(τ)dτ (under our assumptions, Γ1 is also an integer number), and F1 : R → R

by

F1(t) =

∫ t

0
1 − S1(τ)dτ.

Figure 6 gives a representation of S1 and F1. During each period T1, G1 is not active for Γ1 units of time.
Also, F1 is pseudo-periodic of period T1 and increment Γ1 : i.e. F1(t + T1) = F1(t) + Γ1. We construct F−1

1

as the unique left continuous function such that F −1
1 (F1(t)) = t.

Let X ′
q(k)

def
= F1(Xq(k)) for all q ∈ Q. By definition of F−1

1 , we have, Xq(n) = F−1
1 (X ′

q(n)). As shown
by the following lemma, the sequences {X ′

q(k)}, which give the firing times of transition q, after this time
contraction, are also ultimately pseudo-periodic.

Lemma 3.1. For all SCC C in isolation, we have :
i- if C ⊂ I, then for all transition q ∈ C and for all n > kC, X ′

q(n + s′C) = X ′
q(n) + λCΓ1/T1 with s′C =

lcm(T1, sCλC)/λC . ii- If C ⊂ O, we have all transition q ∈ C and for all n > kC, X ′
q(n+ sC) = X ′

q(n)+ sCλC.

7

F1(t)

T1
S1(t)

Γ1

Figure 6: The contraction function F1 associated with an activity S1.

Proof. i- Since no transition in I is preempted, for all transitions q ∈ C ⊂ I, Xq(n) = Vq(n). Moreover, by
equation (1), Vq(n + sC) = Vq(n) + sCλC for n > kC . Using the fact that s′C = αsC = βT1/λC ,

X ′
q(n + s′C) = F1(Vq(n + s′C))

= F1(Vq(n + αsC))

= F1(Vq(n) + αsCλC)

= F1(Vq(n)) + βΓ

= X ′
q(n) + s′CλCΓ1/T1.

ii- Recall that all transitions of SCC’s belonging to O are simultaneously preempted by the activity of G1.
Therefore, in contracted time, the behaviour of the every SCC in O considered in isolation is the same as
in real time.

The only difference in contracted time compared with the net in real-time is that the arrivals stemming
from the SCCS of I have to be replaced by those obtained from the sequences {X ′

q(n)}, q ∈ I defined above.
These arrivals are accelerated by the time change, but remain nevertheless pseudo-periodic as we just saw.
However, Lemma 3.1 provides a period which is not necessarily the smallest period of the clock in contracted
time.

We then get from the results following Lemma A.1 in the appendix that the sequences {X̂ ′
q(n)}, q ⊂ C ∈ O

which give the firing time of the global system in contracted time become ultimately pseudo-periodic. More

precisely, let us define the quantities λ′
C as follows : if C ⊂ I, then λ′

C
def
= λCΓ1/T1. If C ⊂ O, then λ′

C
def
= λC .

These quantities are the inverse of the firing rate of the transitions in contracted time. There are two cases :

1. Either the system is stable (see Appendix A.3), which happens if and only if

min
C∈I

λ′
C > max

C∈O
λ′
C .

Let then C0 be a SCC such that minC∈I λ′
C = λ′

C0
. In this case, all sequences {X̂ ′

q(n)} couple in finite
time with a pseudo-periodic regime such that

X̂ ′
q(n + s′C0

) = X̂ ′
q(n) + λC0

s′C0
Γ1/T1,

where s′C0
is defined as in Lemma 3.1. In this case, the marking in all places is bounded, and both the

marking and the activity processes are ultimately periodic functions of time.
2. Or the system is unstable, which happens if and only if

min
C∈I

λ′
C < max

C∈O
λ′
C .

In this case, some places have a marking which tends to ∞. All sequences {X̂ ′
q(n)} couple in finite

time with a pseudo-periodic regime which we will not study here because this case corresponds to an
unproper behaviour of the system.

8

At this point, a few remarks are in order :

• The condition of stability of the whole system is stronger in the preempted case than in the non-
preempted case since the stability region in this last case reads

min
C∈I

λC 6 max
C∈O

λC .

• The fact that the system is ultimately periodic in contracted time implies that it is also periodic in real
time (as we see when applying back the function F −1

1 to the ultimately periodic sequences of interest).
• In the stable case, the activity process becomes ultimately periodic both in contracted and in real

time, which allows one to proceed by induction when the number of levels N is larger that 2.

3.3 Analysis of a simple example

Consider the model of Figure 7, which is made of two SCC. The clock triggers the activity of the second
SCC (O) and is not preempted. The second SCC is preempted by a system with an activity process with
period T1 = 5 and such that F1(T1) = 3. This preemption process is similar to the activity of G1 in Figure
7, for example. The firing time of the clock transition is σ = 4. The firing times of the two transition in O
are 2 and 1 respectively.

q

4
2 1

tick

q2q1

O

Clock (I)

Figure 7: A clock and its synchronous circuit.

The stability condition can be tested here : first, note that with the data given in Figure 7, we have
T1 = 5,Γ1 = 3. In contracted time, for the clock :

X̂ ′
1(n + 5) = X̂ ′

1(n) + 4 × 3

For the system O, we have : X̂ ′
2(n + 1) = (X̂ ′

2(n) ⊗ 3) ⊕ X̂ ′
1(n).

Therefore, although when there is no preemption the system is stable : λ1 = 4 > λ2 = 3, under
preemption, we have λ′

1 = 12/5 < λ′
2 = 3 and the system becomes unstable. The marking of the place

“tick” goes to infinity.
From the real-time computing point of view, this means that the task represented by O is restarted before

completion, i.e. misses its deadline leading to a system failure.

4 Detailed Analysis of the Periodic Regime

In this section, we will consider further properties of the periodic regime of the system.
In our robot control applications, a real-time property to be met by the controller is : each task must

be executed once between two ticks of its clock.
In the marked graph model, as mentioned in Section 2.6, this corresponds to verifying whether a token

produced by the clock finds an empty place (the constraint is met) or not (the previous task has not been
executed before the new clock tick, and the constraint is violated).

4.1 Formulation of the problems in the (max,plus) algebra

The following arguments will be done in contracted time. We focus on a system with one initial component
C0 in I and one component C2 in O. C0 is connected to C2 through a place (called “tick” in Figure 7). The
output transition of place “tick” (which belongs to C2) is numbered q1.

9

Let us denote u(n) the epoch of the nth arrival of a token in place tick, in contracted time. We have u(n) =
F1(tn), where tn is the date of the n-th arrival in tick in real time. We also define τ(n) = u(n + 1) − u(n).

Note that using Lemma 3.1, {u(n)} is pseudo-periodic with period T = lcm(T1, sC0
λC0

)/λC0
and u(n+T) =

u(n) + σΓ with σ = λC0
and Γ = Γ1T/T1.

As for the process of C2, under contracted time, it is a marked graph identical to the original marked
graph without preemption (in isolation). Again, this is a consequence of Lemma 3.1). Therefore, under
contracted time, the whole system is an open (max,plus) system which can be represented under the form

X(n) = A ⊗ X(n − 1) ⊕ B ⊗ u(n). (2)

We will denote by n0, c, γ the coupling, cyclicity and maximal eigenvalue of matrix A, respectively (see
Appendix A.1 and A.3 where (max,plus) notations and their relations with the dynamics of marked graphs
are described).

Algebraic formulations of the problems

Lemma 4.1. Problem P1 can be written as

X1(n) − u(n + 1) < 0, ∀n > 1, (3)

where X1(n) is the n-th firing time of transition q1 and Problem P2 can be written as

X1(n) − u(n + 1) < 0, ∀n > n0, (4)

where n0 is the time when the periodic regime is reached.

Proof. X1(n) is the instant when transition q1 removes the nth token in place “tick” while u(n + 1) is the
instant when the n + 1th token is put in place “tick” by the clock. If X1(n) > u(n + 1), then there are at
least two tokens in place “tick” during the interval [u(n + 1), X1(n)].

In the following, we will assume that

X1(1) = u(1). (5)

This assumption is natural in our context : it means that the system is ready to start as soon as the clock
emits its first signal.

F ((T − 1)σ) − F ((T − 2)σ)

F (2σ) − F (σ)

F (Tσ) − F ((T − 1)σ)

F (3σ) − F (2σ) F (σ) tick

Figure 8: Representation of the clock in contracted time

Remark In the case where the clock is a simple recycled transition (as in Figure 7) with firing duration
σ, we have u(n) = F1(nσ), n > 1. We can also give an exact representation of the whole clock under
contracted time, displayed in Figure 8. Under contracted time, the first token must arrive in place “tick”
at time F1(σ); the second token at time F1(2σ), and so forth, with a period T . This allows one to derive
response times in contracted times which can be converted in real time by applying F −1

1 .

10

4.2 Problem P2

- The first case is when the clock cycle time (σΓ/T) is smaller than the maximal eigenvalue γ of matrix
A. In this case, X1(n) is of the same order as nγ when n goes to infinity and u(n + 1) is of order nσΓ/T .
Therefore, there exists some n0 such that u(n+1) > X1(n) for all n > n0. In this case none of the properties
P2 and P1 are satisfied. - Now, consider σΓ/T > γ (Assumption H1)
(the case σΓ/T = γ can be treated by a similar method but requires some additional technicalities). We
define the vector Z(n) = X(n) − u(n + 1). Since σΓ/T > γ, X(n) is also ultimately pseudo-periodic with
period T and cycle time σΓ/T (see Lemma A.1). Therefore, the variable Z(n) is ultimately periodic with
period T : ∀k > k0, ∀0 6 s 6 T − 1,

Z(kT + s) = Z((k − 1)T + s). (6)

Using the formula for X(kT + s), we also have for all k > 1 and 0 6 s 6 T − 1,

Z(kT + s) = X(kT + s) − u(kT + s + 1)

=

(
A ⊗ X(kT + s − 1) ⊕ B ⊗ u(kT + s)

)
− u(kT + s + 1)

= A ⊗ D(−τ(kT + s)) ⊗ Z(kT + s − 1) ⊕ B ⊗ (−τ(kT + s))

= A⊗T ⊗ D(−σΓ) ⊗ Z((k − 1)T + s)
T−1⊕

i=0

(
A⊗i ⊗ D(−τ(kT + s) − · · · − τ(kT + s − i)) ⊗ B

)
,

where D(x) is the diagonal matrix with x on the diagonal. All of this is true using the fact that the diagonal
matrix D(.) commutes with everything.

Let M = AT ⊗ D(−σΓ) and

C(s) =
T−1⊕

i=0

Ai ⊗ D(−u(kT + s + 1) + u(kT + s − i)) ⊗ B.

Using Equation (6), we can rewrite the last relation

Z(kT + s) = M ⊗ Z(kT + s) ⊕ C(s), ∀k > k0. (7)

Since the matrix M have a maximal eigenvalue which is negative by Assumption H1, then the matrix M ∗

exists (see Appendix A.2 for the definition and the condition of existence of matrix M ∗) and the minimal
solution of (7) is equal to

Z(kT + s) = M ∗ ⊗ C(s), ∀k > k0. (8)

Theorem 4.2. Property P2 is satisfied if and only if coordinate 1 in M ∗ ⊗ C(s) is non-positive for all
0 6 s 6 T − 1.

Computation Complexity The computation of Z(kT + s) requires the calculation of A⊗2, · · · , A⊗T ,
which takes O(T |Q|3) units of time. The computation of M ∗ takes O(|Q|3) units of time and the computation
of C(s) for each s takes O(T) units of time. The total complexity is O(T |Q|3 + T 2) Note however, that it
is important to have a low complexity in T since T may be large.

4.3 Initial Phase Issues

It is often the case that the different tasks of the operating systems may have different initial phases each
time the system is started anew.

Theorem 4.2 gives a test for Problem P2 for a fixed given phase, however, we would like to derive a test
to ensure that the time constraint is satisfied for all possible phases between the preemptive system and the
preempted one. Such problems have been studied in [9] for example.

11

Since time is slotted, the total number of phases φ is finite, equal to T . A brute force formula to check
problem P2 under all possible phases is to check whether

T−1⊕

φ=0

T−1⊕

s=0

M∗ ⊗ Cφ(s),

have a non-positive first coordinate, with Cφ(s) defined as above with τ(kT + s) replaced by τφ(n)
def
=

uφ(n + 1) − uφ(n), where the variables uφ(n)
def
= F1(tn + φ) are the clock ticks under phase φ.

However, the complexity of this formula is in O(T 3), which could be prohibitive when T grows (this hap-
pens in particular when the preemption gets very complex, like in the case of the superposition of several
preemptive tasks).

We now derive a better formula, by characterising the worst possible phase between the two systems.
We consider the first coordinate of Z(kT +s), and the case where B is the vector (0,−∞, · · · ,−∞). Then

Z(kT + s)1 =

(
M∗ ⊗

(
T−1⊕

i=0

Ai ⊗ D(−uφ(kT + s + 1)

+uφ(kT + s − i)) ⊗ B))1

=
T−1⊕

i=0

(M∗Ai)1,1 ⊗ (−uφ(kT + s + 1))

⊗uφ(kT + s − i).

Now, we maximise over all s and all φ,

K
def
=

T−1⊕

φ=0

T−1⊕

s=0

Z(kT + s)1

=

T−1⊕

i=0

(M∗Ai)1,1

T−1⊕

φ=0

T−1⊕

s=0

(−uφ(kT + s + 1)) ⊗ uφ(kT + s − i)

=

T−1⊕

i=0

(M∗Ai)1,1

T−1⊕

φ=0

T−1⊕

s=0

(−uφ(s + i + 1)) ⊗ uφ(s)

We choose s∗ = s∗(i) such that ti+1+s∗ − ts∗ 6 ti+1+s − ts for all 0 6 s 6 T . We choose φ∗ such that
F1(ti+1+s∗ + φ∗) − F1(ts∗ + φ∗) 6 F1(ti+1+s∗ + φ) − F1(ts∗ + φ) for all 0 6 i 6 T and for all 0 6 φ 6 T .

Now, for all i, using the fact that F1 is non-decreasing, we have

−uφ∗(s∗ + i + 1) + uφ∗(s∗) = −F1(ti+1+s∗ + φ∗) + F1(ts∗ + φ∗)

> −F1(ti+1+s + φ) + F1(ts + φ)

= −uφ(s + i + 1) + uφ(s),

for all s and φ. Therefore, the worst case is reached with s = s∗ and φ = φ∗ = φ∗(i). Checking Problem P2

for all possible phases to done by checking whether

K =
T−1⊕

i=0

(M∗Ai)1,1 ⊗ (−uφ∗(s∗ + i + 1)) ⊗ uφ∗(kT + s∗)

is non-positive.

12

Complexity Note that the construction of the worst phases for the clock as well as for the preemption
process must be done for all possible values of i. For a fixed i, this computation can be done independently
of the rest. The computation of s∗ takes O(T) units of time, as well as the computation of φ∗.

Therefore, checking problem P2 for all possible phases can be done in O(T 2) units of time instead of
O(T 3) with the brute force computation.

4.4 Transient Issues : Problem P1

In this section, we show how to check property P1. For this we have to study the transient period.
We recall that A is ultimately pseudo-periodic with coupling time n0 and period c. The process τ(n) is

ultimately periodic with coupling time m0 and period T . The vector e is the vector of size |I| with each
component equal to 0.

We will derive an upper bound on the length of the transient period of the global system. Then, the
verification of property (P1) can be done simply by computing the behaviour of the system up to that bound
and checking (P1) at each step. To derive this upper bound, we use the variable W (n) = X(n)−u(n) which
satisfies an equation similar to Equation (7)

W (n + 1) = A ⊗ D(−τ(n)) ⊗ W (n) ⊕ B, ∀n > 1. (9)

Note that W (n) > 0 for all n. We set H(m,n) = A⊗(n−m) ⊗ D(−τ(n) − · · · − τ(m + 1)) if m < n and
H(n, n) = Id.

Lemma 4.3. For all m > 0, H(m,n) have coupling time t0 = max(n0,m0) and is pseudo-periodic in n with
period p = lcm(T, c), where c is the cyclicity of A.

Proof. Indeed, for all n > t0,

H(m,n + p) = A⊗(n+p−m) ⊗ D(−τ(n + p) − · · · − τ(n + 1))

⊗D(−τ(n) − · · · − τ(m + 1))

= (γp/c − σΓp/T) ⊗ A⊗(n−m) ⊗

D(−τ(n) − · · · − τ(m + 1))

= (γp/c − σΓp/T) ⊗ H(m,n).

Note that this is true for all values of m.

As for W (n), we get for all k > 1,

W (t0 + kp) = H(0, t0 + kp) ⊗ W (1) ⊕

t0+kp⊕

i=1

H(i, t0 + kp) ⊗ B

= k(γp/c − σΓp/T) ⊗ H(0, t0) ⊗ W (1)

⊕

t0+kp⊕

i=1

H(i, t0 + kp) ⊗ B.

Choosing

k > β1
def
=

e⊗ H(0, t0) ⊗ W (1)

−γp/c + σΓp/T
+ 1, (10)

which is positive, we have

(k − j)(γp/c − σΓp/T) ⊗ e⊗ H(0, t0) ⊗ W (1) 6 0, j = 0, 1. (11)

13

And choosing

k > β2
def
=

e⊗
⊕p+t0

i=1 H(i, t0 + p) ⊗ B

−γp/c + σΓp/T
+ 1, (12)

we also have

H(i, t0 + (k − j)p) ⊗ B 6 0, ∀1 6 i 6 p + t0, j = 0, 1. (13)

Therefore, for k larger than β1 ∨ β2, we get

W (t0 + kp) =

t0+kp⊕

i=1

H(i, t0 + kp) ⊗ B (14)

=

t0+kp⊕

i=p+t0+1

H(i, t0 + kp) ⊗ B (15)

=

t0+(k−1)p⊕

i=t0+1

H(i, t0 + (k − 1)p) ⊗ B (16)

= W (t0 + (k − 1)p), (17)

where Equation (14) comes from Inequality (11), Equation (15) comes from Inequality (13), both with
j = 0, and (16) from the fact that H(i, t0 + kp) = H(i − p, t0 + (k − 1)p), for all i > p + to. Equation (17),
comes from the fact that using (10) and (12), Inequalities (11) and (13) are also valid for j = 1.

Finally, W (t0 + kp) = W (t0 + (k − 1)p) means that W has reached its periodic regime before step
t0 +(k − 1)p). Once W has reached its period, then this means that all the system also reached its periodic
regime.

Theorem 4.4. The periodic regime is reached after a transient period of length at most :

t0 +
e⊗ H(0, t0) ⊗ (W (1)) ⊕

⊕p+t0
α=1 H(α, t0 + p) ⊗ B

−γ/c + σΓ/T
.

where W (1) must be computed, using the initial conditions of the system.

Note that t0 can be replaced by a larger bound (but easier to compute) :

t0 +
e ⊗ (I ⊕ A)2t0+p ⊗ (B ⊕ W (1))

−γ/c + σΓ/T
.

4.5 Application to the Examples of § 2.5

Case 1 (Figure 3) can be solved by a simple application of Lemma A.1, because it does not
contain preemption This is a simple marked graph. In that case neither P1 nor P2 are satisfied. Indeed,
task MT1 is executed every 20 units of time. The ASYN/SYN communication between MT1 and MT2
imposes that task MT2 will eventually be executed every 20 units of time. However, it have a clock period
requirement of 15 units of time, which will not be met from its second execution on. This is a case in which
Assumption H1 does not hold.

This very simple example has also been tested using symbolic verification over timed automata : this
process required the Atp language to model the tasks, the TCTL temporal logic to express the tempo-
ral properties to be verified and the Kronos model-checker running for several minutes to check for the
consistency of the tasks timings and synchronisations.

14

Case 2 with parallel processing (Figure 4) contains preemption

• The first thing to do is check whether the cycle times of all tasks are all well ordered so that the system
is stable (Assumption H1).
The sub-system (S1) made of clock 1, MT1 and MT2 is stable : (2500 > 100 and 2500 > 10).
Now, we consider the second connected component, made of Clock 2, MT3, MT4, MT5 and MT6
(S2). This sub-system is preempted by the first component, which have an activity of period 2500,
with T = 2500 and Γ2 = 2390.
Therefore, for the stability of the second component, we have to check that 5× 2390

2500 > 150, 5× 2390
2500 >

100, 5 × 2390
2500 > 343, which is true.

The last component (S3) is preempted by both sub-systems S1 and S2. The whole preemption process
have period T = 5000, and a total non busy time of Γ3 = 5000−((100+10)×2+150+100+343+100) =
4087.
The stability property becomes : 10000× 4087

5000 = 8174 > 2480. We can conclude that the whole system
is stable.

• The second test is to check whether property P2 is satisfied. We will apply Theorem 4.2 for all
sub-systems.
Sub-system (S1) satisfies P2 because its period is one and because it is stable.
Sub-system (S2) is preempted by sub-system 1. However, it also have period 1 (in terms of number of
firings). The input under contracted time is : u(n) = u(n − 1) + 2Γ2, with 2Γ2 = 4780. Its structure
can be reduced to a scalar version of Equation (2): x21

(n) = a2 ⊗ x21
(n − 1) ⊕ u(n), with a2 = 150.

In that case, we obtain
z2(k + 1) = x21

(k) − u(k + 1) = (a2 − 2Γ2) ⊗ z2(k) ⊕−2Γ2,
the maximal solution of which is
z2(k + 1) = (a2 − 2Γ2)

∗ ⊗−2Γ2,
once the periodic regime of z2 is reached (here, when k > 1).
The numerical solution is z2(k + 1) = −2Γ2 = −4780, which is negative.
As for sub-system (S3), we get similarly, a periodicity equal to 1, and a solution z3(k) = (a3 − 2Γ3)

∗⊗
−2Γ3 with 2Γ3 = 8174 and a3 = 2480. The solution is z3(k) = −8174. Therefore, Property P2 is
satisfied in the three sub-systems.

• Finally, one have to consider the transient regime of all marked graphs, to verify problem P1. Here,
all systems have period 1 (in number of firings) as well as a transient regime of length 1. The periodic
regime is reached immediately and property P1 is verified without using Theorem 4.4.

Case 2b (Figure 5) contains preemption and multi-tasking on a single processor. The analysis
is similar to the previous case

• cycle times : the sub-system (S’1) made of clock 1, MT1-MT2 is stable : (2500 > (1000 + 10)).
Now, we consider the second connected component (S’2), made of Clock 2, MT3-. . . -MT6. This sub-
system is preempted by the first component, which have an activity of period 2500, with T = 2500
and Γ2 = 2390. Stability of (S’2) holds since 5000 × 2390

2500 = 4780 > (150 + 100 + 343 + 100).
The last component (S’3) is preempted by both sub-systems S’1 and S’2. The whole preemption process
have period T = 5000, and a total non busy time of Γ3 = 5000−((100+10)×2+150+100+343+100) =
4087.
The stability property holds : 10000 × 4087

5000 = 8174 > 2480. The whole system is stable.
• Property P2 : sub-system (S’1) satisfies P2 as in the parallel case.

Sub-system (S’2) is preempted by sub-system 1. However, it also have period one (in terms of number of
firings). The input under contracted time is : u(n) = u(n−1)+2Γ2, with 2Γ2 = 4780. Its structure can
be reduced to a scalar version of Equation (2): z2(k+1) = x21

(k)−u(k+1) = (a2−2Γ2)⊗z2(k)⊕−2Γ2,
with a2 = 693. The solution is z2(k+1) = (a2−2Γ2)

∗⊗−2Γ2 = −2Γ2 = −4780 < 0, once the periodic
regime of z2 is reached.
As for sub-system (S’3), we get similarly, a periodicity equal to 1, and a solution z3(k) = (a3−2Γ3)

∗⊗
−2Γ3, with a3 = 2480. and 2Γ3 = −8174. The solution is z3(k) = −8174 < 0.

• Transient regime : all systems have period 1 (in terms of number of firings) as well as a transient regime
of length 1. The periodic regime is reached immediately and property P1 is also satisfied immediately.

15

5 A More General Model

Some of the qualitative results which where established in the previous sections (periodicity) can actually
be shown for more general models. However quantitative results do not extend easily to the most general
models.

5.1 A Refined Preemption Scheme

The model presented in Section 2 can be generalised. To each marked graph Gi, we associate Pi which is the
set of preemptive transitions and Ri which is the set of preemptable transitions. Now, if Gj � Gi, then no
transition in Ri may fire at the same time as a transition in Pj . Note that the previous model corresponds
to the case where Pj = Oj and Ri = Oi.

5.2 Behaviour of the System

If q ∈ Gi, we denote by Xiq (n) the epoch when transition q starts its n-th firing.
For every graph Gi, we define the isolated version of Gi, denoted Hi, in which no transitions are ever

preempted. More formally, Hi is a version of Gi with Ri = ∅. The behaviour of Hi is denoted Ui(n).
In the event graph Hi with constant firing times (σiq), the variables Ui(n) = (Ui1(n), · · · , UiQ(n)) satisfy

an evolution equation of the form (see [1]),

Uiq (n) = max
r∈•q

(
Uir(n − M(r,q)) + σir

)
. (18)

We also know from [1] that Equation (18) have the following property : there exists ni0 , kiq and λiq such
that for n > ni0 , Uiq (n) = Uiq (n − kiq) + λiqkiq .

Also note that if Gi � Gj , then the behaviour of Gi does not depend on the behaviour of Gj . As a
consequence, if Gi is not preempted by any other graph, its behaviour can be determined in isolation, that
is ∀q ∈ Qi, n ∈ N, Xiq(n) = Uiq(n). In this case, we have the following property : there exists ni0 , kiq and
λiq such that for n > ni0 , Xiq (n) = Xiq (n − kiq) + λiqkiq .

Definition 5.1. The sequence of expanded firing times δiq of a transition q in Gi are defined as follows :
If q ∈ Ri, then

δiq (x) = inf

{
u :

∫ x+u

x

1{Sj(t)=0,j�i}dt > σiq

}
. (19)

If q 6∈ Ri, then for all x, δiq (x) = σiq .

This definition implies that (Gi, σi) have the same dynamical behaviour as (Hi, δi) in the following sense :

Xiq (n) = max
r∈•q

Xir(n − Mi(r, q)) + δir (Xir(n − Mi(r, q))). (20)

This equation looks like a classical (max,plus) equation describing the dynamic of a marked graph, the
only difference here being that the firing times depend on the current state.

5.3 Qualitative Analysis for N = 2

In the following, we will keep the assumption that time is slotted. The slot duration will be the time unit
and all durations will be multiples of this unit.

We first study the case where N = 2, G1 � G2 and P1 and R2 are not empty.
Therefore, for n large enough and for all transitions q ∈ Q1, X1q (n) = X1q (n − k1q) + λ1qk1q .

Let T
def
= lcmq∈Q1

(λ1qk1q). The activity S1(t) is a function which becomes eventually periodic with period

T after a transient period of n1
def
= maxq X1q (t0) units of time.

16

Lemma 5.2. The behaviour of transition q in G2 is either finite (q fires a finite number of times) or
pseudo-periodic with period pqk2q . In the latter case, there exists integers a and pq and µ such that ∀q ∈ Gi,
∀n > a,

X2q (n + pqk2q) = X2q (n) + µT.

Proof. If transition q fires an infinite number of times, then the preempting activity is not always equal to
1 in its period. This implies that the mapping x → δ2q (x) is bounded.

Now, let k2
def
= lcmq∈Q2

k2q . We consider the marking M(nk2T) in all places at time nk2T , n >
max(n20

, n10
), as well as the residual firing time vector at time nk2T , denoted R(nk2T). Since δ2q (x)

is bounded and integer valued for integer x, and since all the involved quantities are integer numbers, then
there exist integers a > b > max(n02

, n01
) such that M(ak2T) = M(bk2T) and R(ak2T) = R(bk2T).

The whole process is such that the preemption as well as the initial condition are the same at times ak2T
and bk2T . Therefore, the system evolves periodically. This implies that for each transition q X2q (n+pqk2q) =
X2q (n) + µT , for all n > ak2T , where pqk2q is the number of firings of q between times ak2T and bk2T , and
µ = bk2 − ak2.

The following technical lemma (which proof is straightforward) will be useful in the proof of Theorem
5.4, which is the main result of this section.

Lemma 5.3. Let Φ be a component-wise non-decreasing function from R
Q
+ → R

Q
+, Then, if γ

def
= limn→∞ Φ(n)(x0)/n

exists and γ > 0, then, for all x > x0, limn→∞ Φ(n)(x)/n = γ.

Theorem 5.4. There exists a constant γq such that limn→∞ X2q (n)/n = γq. Moreover, this constant does
not depend on the initial conditions, X1(0) and X2(0).

Proof. The sequence X2q (n) is pseudo-periodic and non-decreasing. Therefore, the above limit γ exists and

γ = µT
pqk2q

. Furthermore, the function δ2r given by the evolution equation (20) does not depend on n since the

firing times of transitions in H2 are constant. We have the following evolution equation in this framework :

X2q (n) = max
r∈•q

X2r (n − M2(r, q)) + δ2r (X2r (n − M2(r, q))).

For all x, the function x → x+δ2r(x) is non-decreasing in x, since the integral is taken over a non-negative
function. Therefore, the function

Φ : N
Q → N

Q where (21)

Φ(X) =

(
max
r∈•q

Xr + δ2r (Xr)

)
, (22)

is component-wise non-decreasing. Also note that

X2q (n) = Φq(X21
(n − M2(1, q)), · · · , X2Q

(n − M2(Q, q))).

By using lemma 5.3, we know that the limit of X2q (n)/n does not depend on the initial value of (X1(0), X2(0)).

Within the graph G2, we can distinguish the behaviour of the different strongly connected components.

Corollary 5.5. If two transitions, q and r belong to the same strongly connected component in G2, then
they have the same cycle time : γq = γr and the same period : pq = pr.

Proof. Suppose that γq 6= γr. Then we have |X2q (n) − X2r(n)| → ∞. This means that the marking in a
path between transitions q and r is unbounded, which is impossible in a strongly connected component.
Moreover, if r and q are in the same component, then k2q = k2r . Therefore, the cycle period is equal for
both of them, in which case we get : pq = pr.

These results can be generalized to arbitrary N and priority assignment, as shown in [19]. Corollary 5.5
shows that it is useless to assign different priorities to transitions which belong to a same SCC, e.g. tasks
with synchronisation relations running on the same processor. However an arbitrary priority assignment
can be used to model more complex systems, e.g. for a set a tasks distributed on processors connected by
a field-bus with prioritised messages.

17

6 Conclusion

In this paper we have explained the development of a new technique to analyse the quantitative temporal
behaviour of a set of periodic tasks. We assume that the tasks are scheduled using preemption and fixed
priorities, and that their deadline equals their period. The model also takes into account synchronisations
between tasks enforcing precedence constraints. Under these assumptions, the set of tasks can be modelled
by Timed Marked Graphs which have a linear model in the (max,plus) algebra.

Using this model we derived tests to check some temporal properties of the system such as periodicity,
cycle time, response time and respect of deadlines, both for the transient regime and for the steady state
regime. The method is quite general and is not limited to a particular scheduling policy like rate monotonic
thus leaving freedom to choose the priority assignment according to, e.g., automatic control performance
constraints.

The technique presented here is applied to the particular case of the Orccad environment which im-
plements this particular model of tasks and synchronisation. In fact it is rather general and can be used
in a more general framework of systems with preemption and fixed priority. However quantitative results
about the system’s activity can be computed only with a restrictive assumption on priority assignment,
where tasks sharing a given synchronisation link must have the same priority. The analysis of more general
real-time systems needs further investigation.

A Appendix : (max,plus) algebra and marked graphs

In this section we will list several properties of the so-called (max,plus) algebra. All these results can be
found in [1], where they are presented in full details.

A.1 The (max,plus) semi-ring

Rmax is the semi-ring (R ∪ {−∞},⊕,⊗), where ⊕ stands for the max operation and ⊗ stands for the +
operator.

These operations are extended to vectorial operation in the canonical way, If A and B are matrices with
appropriate dimensions on Rmax, then C = A ⊕ B is a matrix with Cij = Aij ⊕ Bij and D = A ⊗ B is a
matrix with Dij =

⊕
k Aik ⊗Bkj. For simplicity, A⊗A will be denoted A⊗2 or A2. When a is a scalar and

A a matrix, in Rmax, then a ⊗ A is a matrix with each component equal to a ⊗ Aij .

A.2 Elements of spectral theory

Let A be an irreducible matrix over Rmax, then there exists a coupling time n0 ∈ N, a cyclicity c ∈ N, a
unique eigenvalue λ ∈ R and at least an eigenvector v such that

A ⊗ v = λ ⊗ v ∀n > n0, A
⊗(n+c) = λ⊗c ⊗ A⊗n

If A is an irreducible matrix with a non-positive eigenvalue, then, the equation X = A⊗X + b, where X is
the unknown vector and b is a fixed vector, admits a unique finite solution X = A∗ ⊗ B, where A∗ is the
finite matrix :

A∗ def
=

∞⊕

i=0

A⊗i (23)

A.3 Marked Graphs

To any marked graph G with an initial marking bounded by one, one can associate matrices, A(k), k ∈ {0, 1},
of size Q×Q, where the entry (i, j) in matrix A(k) is σj , the delay or lag time of transition j, if there exists
a place between transitions qj and qi with k initial tokens, and −∞ otherwise.

Let A(0)∗ =
⊕∞

i=0 A(0)⊗i, and A = A(0)∗ ⊗ A(1). Let Xq(k) be the epoch when the k-th firing starts in
transition q. Then if there are no input transitions, the Q-dimensional vectors satisfy the recurrence relation

X(n) = A ⊗ X(n − 1), n > 1

18

If there is an input transition with arrival process u, where u(n) gives the epoch of the nth release of a
token by the input, then

X(n) = A ⊗ X(n − 1) ⊕ B ⊗ u(n),

where Bi = 0 if there is a place between the input and transition q and −∞ otherwise.
By using the spectral theory with timed marked graphs, we get the following result.

Lemma A.1. For all SCC C in isolation, there exists a cycle time λC ∈ R+, a cyclicity sC ∈ N+ and a
transient period kC ∈ N, such that for all transitions q ∈ C and all k > kC,

Vq(k + sC) = Vq(k) + sCλC . (24)

As for the whole system G (all SCC considered together), in the case with no input, we have the following
result : we denote C → C ′ if the SCC C precedes the SCC C ′ for the topological ordering. If

max{λC |C → C′} > λC′ , (25)

then the SCC C ′ have the same cycle time as the preceding SCC achieving the maximum in Equation (25).
If

max{λC |C → C′} < λC′ , (26)

then the SCC C ′ (and hence the whole system) is said unstable (the marking in some places will grow to
infinity).

A similar result holds for a marked graph with a pseudo periodic input u. In particular, if the inverse of
the input rate is larger than or equal to the maximal cycle time of all SCCs in isolation, then the system is
stable. Otherwise, it is unstable.

Acknowledgement

The authors would like to thank the associate editor and anonymous referees for their very thoughtful
comments.

References

[1] F. Baccelli, G. Gohen, G. J. Olsder, and J-P. Quadrat, Synchronization and Linearity, Wiley, 1992.

[2] J. Mairesse, Stabilité des systèmes à événements discrets stochastiques, approche algébrique, Ph.D.
thesis, École polytechnique, Palaiseau, France, 1995.

[3] B. Gaujal, Parrallélisme et simulation des systèmes à événements discrets, Ph.D. thesis, University of
Nice, France, 1994, http://www.inria.fr/RRRT/TU-0288.html.

[4] K.W. Tindell, A. Burns, and A.J. Wellings, “An extensible approach for analyzing fixed priority hard
real-time tasks,” Real Time Systems, vol. 6, no. 2, pp. 133–152, 1994.

[5] Liu C.L. and Layland J.W., “Scheduling algorithms for multiprogramming in hard real-time environ-
ment,” Journal of the ACM, vol. 20, no. 1, pp. 40–61, Feb. 73.

[6] J.J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos, R. Pissard, D. Simon, and N. Turro,
“The orccad architecture,” Int. Journal of Robotics Research, vol. 18, no. 4, pp. 338–359, 1998,
http://www.inrialpes.fr/iramr/pub/Orccad/orccad-eng.html.

[7] D. Simon, E. Castillo, and P. Freedman, “Design and analysis of synchronization for real-time closed-
loop control in robotics,” IEEE Trans. on Control Systems Technology, vol. 6, no. 4, pp. 445–461, july
1998.

[8] H.R. Simpson, “Multireader and multiwriter asynchronous communication mechanisms,” IEE
Proceedings-Computer and Digital Techniques, vol. 144, no. 4, pp. 241–244, 1997.

19

[9] J.M. Migge, Real-Time Scheduling: a trajectory based model, Ph.D. thesis, University of Nice, France,
1999, http://www-sop.inria.fr/mistral/personnel/Jorn.Migge/.

[10] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An introduction to control and scheduling co-design,”
in 39th IEEE Conference on Decision and Control, Sydney, Australia, december 2000.

[11] N.C. Audsley, A. Burns, R.I Davis, K.W Tindell, and A.J. Wellings, “Fixed priority preemptive
scheduling: An historical perspective,” Real-Time Systems, vol. 8, pp. 173–198, 1995.

[12] J. Blazewicz, “Scheduling dependent tasks with different arrival time to meet deadlines,” in Modelling
Performance Evaluation Computer Systems, E. Gelenbe, Ed., pp. 57–65. 1976.

[13] C.S. Chang, Deterministic and stochastic guarantees in communication networks, Springer, 1998.

[14] R. Alur and T. Henzinger, “Real-time: The theory in practice,” in REX Workshop. 1991, LNCS 600.

[15] A. Bouajjani, R. Echahed, and J. Sifakis, “On model checking for real time properties with durations,”
in 8th Symposium on Logic in Computer Science (LICS 93), 1993.

[16] J.S. Ostroff, “A visual toolset for the design of real-time discrete-event systems,” IEEE Trans. on
Control Systems Technology, vol. 5, no. 3, pp. 320–337, 1997.

[17] X. Nicollin, J. Sifakis, and S. Yovine, “From atp to timed graphs in hybrid systems,” in REX Workshop.
1991, LNCS 600.

[18] “Ers: Étude de réseaux stochastiques,” ERS is a free software, available at
http://www.inria.fr/Information/logiciels-eng.html.

[19] F. Baccelli, B. Gaujal, and D. Simon, “Analysis of preemptive periodic real time systems using the
(max,plus) algebra,” Tech. Rep. 3778, INRIA, 1999, http://www.inria.fr/rrrt/rr-3778.html.

20

