
Hardware in the loop networked control
and diagnosis of a quadrotor drone 1

Cédric Berbra ∗ Daniel Simon ∗∗ Sylviane Gentil ∗
Suzanne Lesecq ∗

∗ Gipsa-lab, Control Systems Department, INPG-UJF-CNRS, BP 46,
St Martin d’Hères, 38402, France(firstname.name@gipsa-lab.inpg.fr).

∗∗ INRIA Rhône-Alpes, Inovallée, 655 avenue de
l’Europe,Montbonnot,38 334 Saint Ismier Cedex

France(Daniel.Simon@inrialpes.fr)

Abstract: This paper deals with the design, real-time implementation and testing of the control
and diagnostic functions of a quadrotor drone, implemented using a Network Control System
(NCS). For diagnostic purpose, an indicator is used to make the difference between packet losses
due to the network and sensor faults. The control and diagnostic algorithms are implemented
as a multitask and multirate real-time software using a design environment called Orccad. A
hardware-in-the-loop simulator has been set up, connecting with a CAN bus the controller,
running on the embedded target, and a real-time simulated model of the drone. The results of
the real time implementation are compared with the simulation results using Matlab/Simulink
and Truetime toolbox. This allows the validation of the proposed architecture.

Keywords: Quadrotor, Real time, Networked Control Systems, Co-design, Hardware in the
loop, Network.

1. INTRODUCTION

Embedded systems are taking growing importance in high
technology industry such as automotive industry or aero-
nautics, and span many research problems for control
scientists. The fact that most of these systems are net-
work controlled is probably the newest one and plants
interesting theoretical control and diagnosis problems. An-
alyzing, prototyping, simulating and guarantying safety of
these systems are also very challenging. We need models
for the mechatronic continuous system, for the discrete
controllers and diagnosers and for the network behavior.
Implementation constraints such as tasks response time,
multi-rate sampling, synchronization and various sources
of delay make the run-time behavior difficult to predict.
The network Quality of Service (delays, data loss, jitters)
influences the controlled system properties (Quality of
Control).

In this paper, a quadrotor is taken as an example of an em-
bedded system whose safety is critical. This quadrotor is
controlled and diagnosed through a network. The interac-
tions between the controller, the diagnoser and the system
are first studied with on one hand Matlab/Simulink, which
are standard tools for simulating the physical system, the
controller, the diagnoser, and on the other hand Truetime
for the network. Then, an approach named hardware-in-
the-loop is proposed. In this case, the physical system is
still numerically simulated, but the control and diagnostic
algorithms are running on the embedded target as real-
time tasks, and they communicate with the numerical

1 This work is partially supported by the Agence Nationale de la
Recherche (France) grant ANR-05-SSIA-0015-03

Fig. 1. The quadrotor benchtest.

simulator through a real network. This is possible with
a tool named Orccad and allows the validation of the
proposed real time architecture.

Section 2 presents the quadrotor and its Inertial Mea-
surement Unit (IMU) models. Section 3 summarizes the
control and the diagnosis implemented to isolate IMU
sensor faults. Section 4 deals with the real time archi-
tecture implementation with Orccad. Section 5 compares
experimental results obtained with Matlab/Truetime with
those obtained with hardware in-the-loop. Section 6 gives
a short conclusion and future research directions.

2. THE QUADROTOR AND IMU MODELS

2.1 Description of the quadrotor structure

Figure 1 depicts the experimental quadrotor designed for
this project. A quadrotor (drone with 4 rotors, each one

driving a blade) is regarded as a composition of two PV-
TOL (Planar Vertical Take-Off and Landing) whose axes
are orthogonal, allowing a movement of six degrees of free-
dom. Two frames are considered (see Figure 2): the inertial
frame R(ex, ey, ez) and the body frame B(e1, e2, e3) at-
tached to the structure with its origin at the center of mass
of the quadrotor. In the following paragraphs, the model
is focused on the quadrotor orientation (or attitude). The
orientation can be represented by three angles yaw-pitch-
roll (φ, θ, ψ) or by a unitary quaternion that is used in
this paper: q = [q0 −→q T]T , ‖q‖2 = 1 (Chou [1992]). The
rotation matrix C(q) can be expressed with q ∈ <4

Fig. 2. Definition of the coordinate frames.

C(q) = (q20 −−→q T−→q)I + 2(−→q −→q T − q0[q×]) (1)

The advantage of using q for the attitude representation
is to avoid singularities that appear with classical angular
representations (Euler angles or Cardan angles). Moreover,
q is an elegant and efficient attitude representation from a
computational point of view, which is of great importance
for embedded systems. Note that a coordinate change
from −→r in the reference frame to −→c in the body frame
is expressed with

c = q−1 ⊗ r ⊗ q = q ⊗ r ⊗ q (2)

where r = [0 −→r T]T , c = [0 −→c T]T . q = [q0 − −→q T] is the
conjugate of q and ⊗ is the quaternion multiplication.

With ω ∈ <3 the angular velocity of the quadrotor
measured by the rate gyros in the B frame, the rotational
quaternion dynamic equation is

q̇ =
1
2

Ω(ω)q =
1
2

Ξ(q)ω (3)

with Ω(ω) given by

Ω(ω) =
(

0 −ωT

ω −[ω×]

)
(4)

[ω×] is the self cross product

[ω×] =

(0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

)
(5)

The rotational motion of the quadrotor is given by
If ω̇ = −[ω×]Ifω −Ga + τa (6)

where If ∈ <3×3 is the symmetric positive definite con-
stant inertia matrix of the quadrotor with respect to frame
B. The gyroscopic torques Ga are modeled as

Ga =
4∑

i=1

Ir(ω × ez)(−1)i+1ωMi, (7)

The components of τa ∈ <3 (i.e. the torque generated by
the four rotors) are given by

τroll = d · b · (ω2
M2 − ω2

M4),
τpitch = d · b · (ω2

M1 − ω2
M3),

τyaw = k · (ω2
M1 + ω2

M3 − ω2
M2 − ω2

M4)
(8)

where d is the distance from the rotors to the center
of mass of the quadrotor; b and k are two parameters
depending on the air density, the radius, the shape, the
pitch angle of the blade and other factors; ωMj , (j = 1..4)
are the four motors speed.

2.2 Inertial Measurement Unit (IMU)

The estimation of the attitude (or orientation) and of the
rotational speed of the quadrotor is a pre-requisite for its
attitude control. An Inertial Measurement Unit is embed-
ded in the quadrotor in order to provide measurements
that will be fused to estimate the attitude. The IMU con-
sists of three rate gyros (g1, g2, g3), a tri-axis accelerometer
(a1, a2, a3), and three magnetometers (m1,m2,m3).

Rate Gyro modeling. The angular velocity ω is measured
in body frame B with three rate gyros mounted at right
angles. The measurements delivered by these sensors are
usually affected by noise. Theoretically, the integral of
ω could give the relative orientation but the presence of
noise generates errors that are accumulated over time. The
sensor measurements are modeled as

ωg = ω + η1 (9)

where ωg are the sensor values and η1 is assumed to be
Gaussian zero-mean white noise.

Accelerometers. The 3-axis accelerometer senses the in-
ertial forces and gravity in body frame B. The transfor-
mation of accelerometer measurements from inertial frame
R to body frame B is computed as follows

bacc = C(q)(v̇ − g) + ηacc (10)

where bacc corresponds to the measurements in B, and ηacc

is Gaussian zero-mean white noise. The motion is supposed
quasi-static so that linear accelerations v̇ are neglected (i.e.
v̇ ≈ 0). Note that this assumption is fully valid because
the quadrotor is controlled so as to obtain hover conditions
(ϕ ≈ θ ≈ ψ ≈ 0). Moreover, the Coriolis effect is not taken
into account. In this way, accelerometers are only sensitive
to the gravitational field g.

Magnetometers. The information provided by the three
magnetometers mounted orthogonally is added to the
inertial measurements. The magnetic field is sensed in
body frame B. It is defined by

bmag = C(q)hm + ηmag (11)

where hm = [hmx 0 hmz]T and bmag are the three
components of the magnetic field in R and B, respectively.

Remark. Note that the accelerometer and magnetometer
measurements are modeled by static non linear equa-
tions that depend on constant known vectors g and hm

and on matrix C(q) which is a non-linear function of q.

3. CONTROL AND DIAGNOSIS

3.1 Attitude control

The rotational speed and quaternion estimation (ω and
q̂) are used in a feedback loop. The attitude reference
is given by a quaternion reference qref . The controller
implemented for the attitude stabilization is detailed in
(Guerrero-Castellanos et al. [2007]) and supplies for each
motor the speed reference that is managed by a local PI
control loop.

3.2 Attitude observer

The measurements provided by the IMU feed a non linear
observer whose output q̂ is used by the controller. The
observer proposed in (Guerrero-Castellanos et al. [2007])
is depicted in Figure 3.

Fig. 3. Non-linear observer scheme.

The non-linear observer principle is as follows. A “pseudo-
measurement” quaternion qps is computed from bmag and
bacc, based on the nonlinear static measurement equations

qps = arg min [
1
2
‖ [bTacc b

T
mag]T − h(q) ‖22] (12)

where h(q) is derived from (10) and (11). A Sequential
Quadratic Programming (SQP) algorithm is used at this
step (e.g. “fmincon” in the Matlab environment). q̂ is
then obtained by propagating the kinematic equation (3)
using ωg in (9), and the discrepancy between q̂ and qps is
computed as follows

qe = q̂ ⊗ q−1
ps = [qe0

−→qeT]T (13)

3.3 Generalized observers scheme

A well-known diagnostic method consists in designing
state observers that do not use all the system outputs but
only a subset of them. Therefore, the estimated state and
outputs are independent of the discarded measurements
and of the corresponding sensors possible fault (Isermann
[2006]). A bank of generalized observers has thus been

designed for the quadrotor diagnosis, based on the ob-
server in section 3.2. Each generalized observer uses eight
out of the nine IMU sensors. Its estimated quaternion is
compared to the quaternion computed with the theoret-
ical model fed by the four motor speed references. The
resulting difference is thus insensitive to the faults in the
sensor that is not used for the attitude estimation. The
signature table obtained in this way is strongly isolable
(Berbra et al. [2008]). To choose more easily the thresholds
to decide if the quaternion difference is not zero, this one
is further transformed into the corresponding differences
in the three attitude angles. These angle discrepancies
constitute the residual for the diagnosis, each residual
ri being a 3-dimensional vector. Practically, each angle
threshold is fixed to 2◦, value deduced from the noise level.

Two different techniques for this generalized observers
design have been implemented, depending on the subset
of sensors considered. The first technique computes q̂
using two rate gyros and all the magneto and accelero
measurements. The second technique is only based on the
static non linear measurement equations (10) and (11).
The principle of the observer bank is depicted in Figure 4
and each technique is shortly presented hereafter.

7:9
ˆi

i
q
=

modelq

6 Non linear
optimizations

Model

3 Non linear
observers

5 over 6
measurements
bacc,bmag

Rotor speed ωmi

bacc,bmag

2 over 3 ωgi

I
.
M
.
U

1:6
ˆi

i
q
= 1:6

e
i

i
q
=

7:9

e
i

i
q
=

1 over 3 ωi

qe→angles

qe→angles

ri

ri

Fig. 4. Multi-observer scheme.

Attitude estimation with acceleros, magnetos and without
rate gyros measurements. To estimate the residuals q̂i
(i = 1, · · · , 6) in the top of Figure 4, only five over
six accelero and magneto measurements are considered,
satisfying (10) and (11). The quaternion estimation based
only on these equations is obtained by solving again a non-
linear optimization problem similar to the one in (12),
but now with 5 equations instead of 6. Six estimators
are designed in this way, and the differences qe

i (i =
1, · · · , 6) are sensitive to faults in all the accelerometers
and magnetometers except the discarded one.

Attitude estimation using acceleros, magnetos and two rate
gyros measurements. As can be seen in the bottom of
Figure 4, the measurements provided by the IMU feed
three nonlinear observers based on the scheme presented
in section 3.2. The discarded rate gyro measurement
is replaced with the value that is computed with the
mechanical model (6). Therefore, the attitude estimated
with each observer in this bank is sensitive to faults in all
the acceleros, magnetos and in two rate gyros over three.
From these observers, three residual vectors, denoted ri
(i = 7, · · · , 9) are obtained.

4. HARDWARE-IN-THE-LOOP ARCHITECTURE

In the first step, the simulation of the quadrotor with
its control and its diagnosis has been implemented with
Matlab/Simulink.

Then, the simulation of the network has been introduced,
using the Truetime toolbox (Anderson et al. [2006]), a
toolbox for simulation of distributed real-time control
systems. The Truetime library provides specific blocks for
the network interface modeling. This library is developed
in C++ language. All the developed files are compiled
in Matlab by using an external C++ compiler. Truetime
provides a few types of networks which can be used for
simulation of the NCS (Ethernet, CAN, Round Robin,
TDMA, FDMA, Switched Ethernet and WLAN or ZigBee
Wireless networks).

Fig. 5. Closed loop of the Networked Control Quadrotor.

The network is operated in closed loop (see Fig.5)

(1) between the sensors and the controller; the sensors are
associated to the numerical information provided by
an AD converter that generates the sensor flow (this
is called sensor task); the controller task generates the
controller flow;

(2) between the controller and the actuators (the four
motors) driven through a DA conversion.

The network influence (jitter, delays, packet loss) has been
studied in (Berbra et al. [2008]).

However, using Matlab/Simulink with Truetime is only a
simulation. It is why, in the third step, a hardware-in-the-
loop experimentation has been made (see Fig.6). Now, the
mechanical behavior of the quadrotor is still simulated.
The quadrotor model is handled by a numerical integrator
running on an external PC under Linux. This computer
must be fast enough so that the simulated model is faster
than real-time and the induced disturbances are negligible
w.r.t. computing and networking delays. The control,
observation and diagnostic algorithms are implemented
in the real embedded hardware, a Phycore MPC5200B-
tiny 2 embedded board running Linux on a Freescale
MPC603e CPU. The two computers communicate via a
CAN network.

In the drone particular case, hardware-in-the-loop exper-
iments provide a safe environment for both algorithms
and software validation, prior to experiments with the
real (expensive and fragile) quadrotor. In the last step,

2 http://www.phytec.com/

the Power-PC will be used in the real structure of the
quadrotor (Fig.1).

In the next subsection, a description of the real time
language used is presented.

Fig. 6. The real implementation.

4.1 The Orccad approach

Orccad is a software environment dedicated to the de-
sign, the verification and the implementation of real-time
control systems. Besides control law design, it also allows
for the specification and validation of complex missions
involving the logical and temporal cooperation of various
controllers along the life of a control application(Borrelly
et al. [1998], Törngren et al. [2006]).

The Orccad methodology is bottom-up, starting from the
design of control laws by control engineers, to the design
of more complex missions.

The first step in designing a control application is to
identify all the necessary elementary tasks involved. Then,
for each of the tasks, various issues are considered, either
with an automatic control viewpoint (such as defining the
regulation problem, control law design, design of reactions
to relevant events) or with an implementation aspect (such
as the decomposition of the control law into real-time
tasks, and selection of timing parameters). Finally, all
the real-time tasks are mapped on a target architecture.
During this design, the control engineer has a lot of degrees
of freedom to meet the end-user requirements and Orccad
aims at allowing the designer to exploit these degrees of
freedom.

Orccad promotes a controller architecture which is natu-
rally open since it allows access to every level by different
users: the application layer is accessed by the end-user,
the control layer is programmed by the control expert,
and the system layer is accessed by the system engineer.
Orccad provides formalized control structures, which are
coordinated using the synchronous paradigm, specifically
using the Esterel language: while the control laws are
periodic (or more generally cyclic) and are programmed
using tasks and an RTOS, the discrete-event controller
manages these control laws and handles exceptions and
mode switching.

The main entities used in the Orccad framework are:
module tasks (MT), the real-time tasks which implement
functions; robot tasks (RT), the control tasks representing
basic control actions encapsulated in a discrete-event con-
troller; robot procedures (RP), a hierarchical composition

of RTs and other existing RPs, forming more complex
structures.

The RT characterizes continuous-time closed-loop control
laws, along with their temporal features and the man-
agement of associated events. From the application per-
spective, the RT’s set of signals and associated behaviors
represent the external view of the RT, hiding all speci-
fication and implementation details of the control laws.
More complex actions, the RPs, can then be composed
from RTs and other RPs in a hierarchical fashion leading
to structures of increasing complexity. At the top level,
RPs are used to describe and implement a full mission
specification. At mid levels they can be used to fulfil a
single basic goal through several potential solutions, e.g.
a nominal controller supplemented by the recovery substi-
tutions associated with diagnosis and fault detection.

Once a control application has been entirely designed, and
for some parts formally verified, a runtime code can be
automatically generated for various real-time operating
systems, such as Linux in this particular case.

4.2 Quadrotor simulation setup

Figure 7 describes the control and diagnostic setup used
for testing purpose. In this block-diagram the blue boxes
represent the user-provided modules (i.e. functions) in-
terconnected by their input/output ports (respectively
blue/red).

Fig. 7. Control and diagnosis block-diagram.

The main parts of the functions network are now de-
scribed.

• The attitude control path starts from the quadrotor
sensors (accelerometers, gyrometers and magnetome-
ters), module XA-GPS-PhR. The raw measurements
are used by the Quaternion module (QuaternionT1)
to estimate the drone attitude, which is forwarded
to the GPS CtrlB module to perform the attitude
control. The computed desired motor velocities are
then sent to the quadrotor via the V port.
• Provision is given for future enhancements of the

sensor set, as a GPS-like position sensor and ultra-
sonic sensors are expected to be integrated in the
future. Therefore a trajectory generator GEN Traj
and position estimator AbsPosGPS are integrated in
the control architecture to evaluate position control.
• The Diag CapteursB module runs the diagnostic al-

gorithms that isolates sensor failures. A failure is
signaled by the Sensor Fail weak exception to the

X4 T1 Atr module and it is forwarded to the Quater-
nion module, so that the quaternion estimation al-
gorithm can be adapted according to the reported
failure;

• Similarly the Diag MoteursB module forwards motor
failures to be handled by the X4 T1 Atr module;

• The Scheduler module implements a feedback sched-
uler: it monitors the controller’s real-time activity and
may react by setting on-the-fly the tasks scheduling
parameters, e.g. their firing intervals. For example it
has been used to implement a (m,k)-firm dropping
policy (Jia et al. [20O7]), and to dynamically adapt
the priorities of messages on the CAN bus (Juanole
et al. [2008]).

• A Disturbance task allows to generate an extra load
either on the CPU or on the CAN bus.

From the real-time point of view, each module is im-
plemented by a real-time task possessing its own pro-
grammable timer. Therefore all the modules can be run
asynchronously at their own (possibly varying) sampling
frequency. The task priorities are set according to their
relative importance. Data integrity between asynchronous
modules is provided by asynchronous lock free buffers
(Simpson [1997]).

The box labeled X4 GPS PhR represents the quadrotor:
sending or reading data on its ports actually calls the
drivers, i.e. the functions used to interface the real-time
controller with the hardware or with the simulator. The
two computers communicate via a CAN bus: the driver
ports located on the X4 GPS PhR interface send and
receive data using the Socket-CAN protocol 3 .

5. EXPERIMENTS AND RESULTS

In this section, hardware-in-the-loop results are presented
and compared with those obtained with Matlab/Simulink
and Truetime. In order to illustrate the behavior of the
quadrotor in a more intuitive representation, the attitude q
is transformed into Euler angles, roll (φ), pitch (θ) and yaw
(ψ). As explained previously,, the observer and the control
law are implemented using the quaternion representation
of the attitude. The CAN network (Controller Area Net-
work) is configured with the following characteristics:

• A bit rate of 1 Mb/s in the physical layer.
• A sampling period equal to h = 10ms for the sensor

task and the controller task (the system application).
• The sensor and actuator flows are L=64 bits long.

Three scenarios are now presented.

5.1 Basic attitude control

In this scenario, the fault-free case is considered and the
quadrotor stabilization is shown. In this case, the quadro-
tor starts with an initial attitude equal to [120◦;−10◦; 50◦]
and the reference attitude is equal to [0◦; 0◦; 0◦].

The hardware-in-the-loop result is shown in Fig.8, left. The
red curve represents the roll angle, the green one the pitch
angle and the blue one the yaw angle. The time response
3 http://developer.berlios.de/projects/socketcan/

roll

yaw

pitch

roll

yaw

pitch

Fig. 8. Attitude of the quadrotor: Orccad (left); Matlab
(right)

of the system is almost 2 seconds and is the same as the
one obtained with Matlab/Simulink and Truetime (Fig.8,
right).

5.2 Packet loss

In this scenario, the same initial and reference positions
are used. The objective is now to study the influence of
packet losses on the system behavior. A loss of 10% of
data from accx is considered. In (Berbra et al. [2008]), a
fault indicator has been proposed to make the difference
between a sensor fault and a packet loss. This indicator is
called rnetwork and it is equal to 1 when the data is not
received on time by the control and diagnostic modules
(Fig.9, right). Moreover, when the data is lost at t = (kTe),
the quaternion q̂(KTe) is not computed and the control
algorithm holds the value ωref

Mi computed at time t = (k−
1)Te.

Fig. 9. Attitude of the quadrotor with 10 % of packet loss
on accx, left; Indicator of packet loss, right.

The result is shown in Fig.9, left. Small differences can
be noted with respect to Fig.8 but it can be seen that
the control law is robust to 10 % of packet losses of this
sensor. Several other simulations have been made with
other packet loss scenarios, and results are quite similar.

5.3 Sensor failure

In this scenario (Fig.10), a bias failure in the rate gyro ωgx

is considered. The fault is simulated at time t = 5 seconds.
Before the fault appearance, all the quaternion errors are
close to zero. After t = 5 seconds, quaternion estimation
q̂8, q̂9 are sensitive to the fault and quaternion estimation
q̂7, computed with the observer that discards this sensor
value is still correct.

6. CONCLUSION AND PERSPECTIVES

In this paper, a hardware-in-the-loop experiment of a
Networked Control System has been made. With Orccad,

7
eq

8
eq

9
eq

Fig. 10. Quaternion errors qe
i , i = 7..9 with failure in the

rate gyro on axis x at t = 5 seconds.

the control and diagnostic algorithms are implemented
as a multitask and multirate real-time software. The
communication between the control/diagnostic tasks and
the quadrotor simulator is via a CAN bus. The results
of the real time implementation were compared with a
pure simulation based on Matlab/Simulink and Truetime.
They confirm the robustness of the control with respect to
data loss and the potentiality of the proposed diagnostic
method. In perspective, the real application will be tested.

REFERENCES

M. Anderson, D. Henriksson, and A. Cervin. Truetime 1.5
- reference manual. Department of Automatic Control,
Lund Institute of Technology, Swenden, 2006.

C. Berbra, S. Gentil, S. Lesecq, and JM. Thiriet. Co-design
of a safe network control quadrotor. In 17th IFAC World
Congress, 2008.

J.J. Borrelly, E. Coste-Manière, B. Espiau, K. Kapellos,
R. Pissard-Gibollet, D. Simon, and N. Turro. The
orccad architecture. Int. Journal of Robotics Research,
17(4):338–359, april 1998.

J.C.K. Chou. Quaternion kinematics and dynamic differ-
ential equations. IEEE Transactions on Robotics and
Automation, 8:53–64, 1992.

J. F. Guerrero-Castellanos, A. Hably, N. Marchand, and
S. Lesecq. Bounded attitude stabilization: Application
on four-rotor helicopter. In Proceedings of the 2007
IEEE International Conference on Robotics and Au-
tomation, Roma, Italy, April 2007.

R. Isermann. Fault-Diagnosis Systems: An Introduction
from Fault Detection to Fault Tolerance. 2006.

N. Jia, Y. Song, and F. Simonot-Lion. Graceful degrada-
tion of the quality of control through data drop policy. In
European Control Conference, ECC, Kos, Greece, 20O7.

G. Juanole, G. Mouney, and C. Calmettes. On differ-
ent priority schemes for the message scheduling in net-
worked control systems. In Proceeding of 16th Mediter-
ranean Conference on Control and Automation, 2008.

H.R. Simpson. Multireader and multiwriter asyn-
chronous communication mechanisms. IEE Proceedings-
Computer and Digital Techniques, 144(4):241–244, 1997.

Martin Törngren, Dan Henriksson, Karl-Erik Årzén, An-
ton Cervin, and Zdenek Hanzalek. Tools supporting
the co-design of control systems and their real-time
implementation; current status and future directions.
In 2006 IEEE International Symposium on Computer-
Aided Control Systems Design, Munich, Germany, Oc-
tober 2006.

