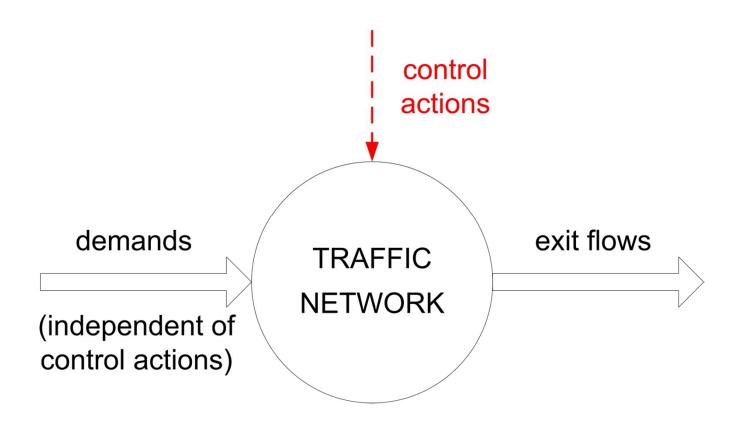
Traffic Control in Action


Prof. Markos Papageorgiou Dynamic Systems and Simulation Laboratory, Technical University of Crete, Chania, Greece

1. INTRODUCTION

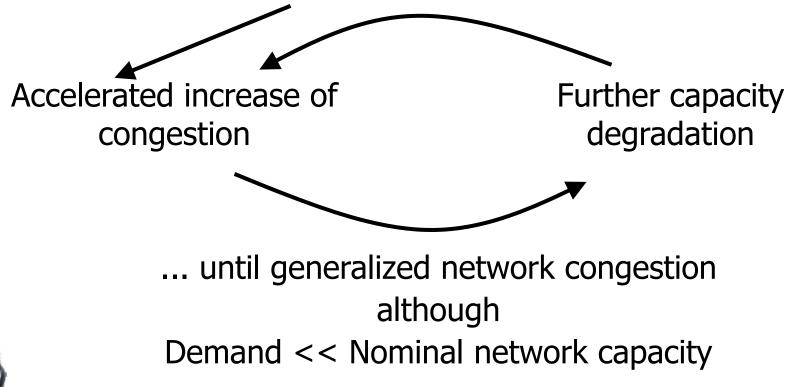
Man has reached to the moon but ...

Minimization of Total Time Spent

⇔ Maximization of (Early) Exit Flows

Simple Queuing Systems

- Demand > Capacity ⇒ Queuing
- Capacity ≠ f (Queuing)
- \Rightarrow Delay depends on D–C only!


Water Systems

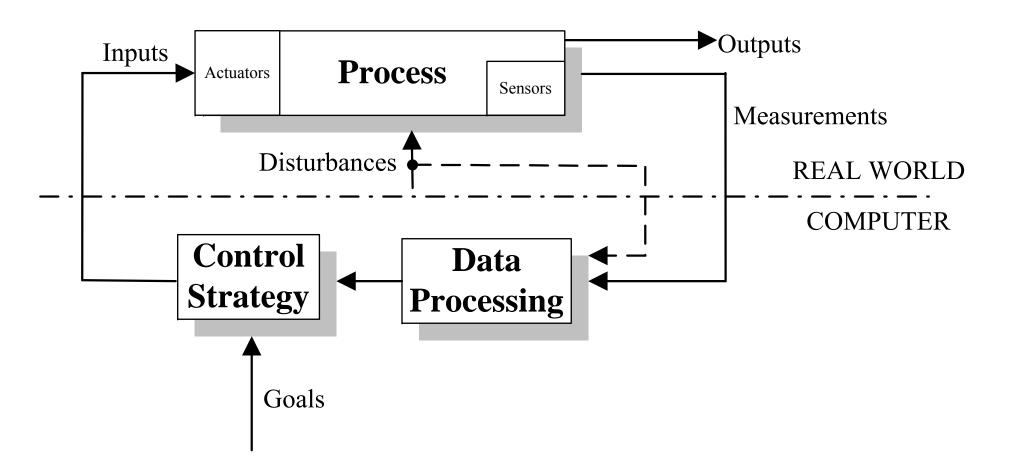
More Inflow ⇒ Higher Pressure ⇒ Higher Outflow

Traffic Networks

- Congestion degrades the infrastructure (capacity) Local link demand exceeds local capacity
- \Rightarrow Local congestion degrades local capacity

Ile-de-France Expressway Network

12 January 2011, 8:14 am

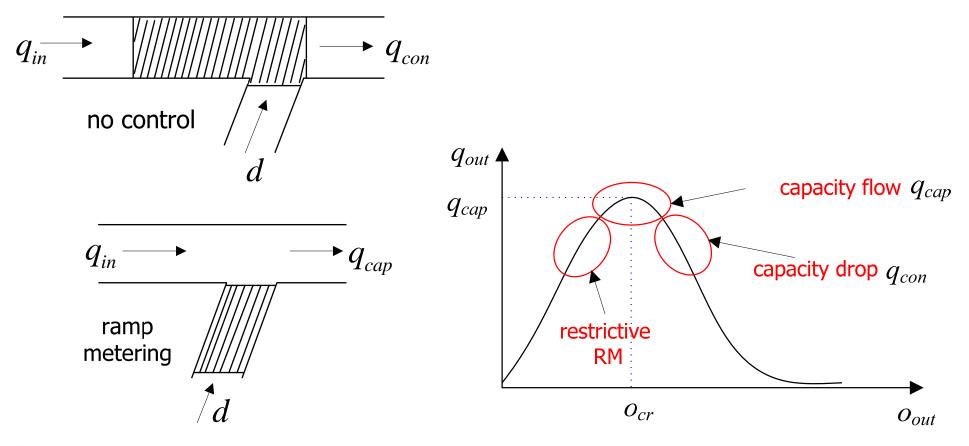

Conclusion: Generalized traffic congestion is not only due to high demand.

Congested Traffic Networks: Expensive infrastructure capacity not fully available at the **only** time it is actually needed, i.e. the peak periods!

Goal: Operate traffic networks optimally

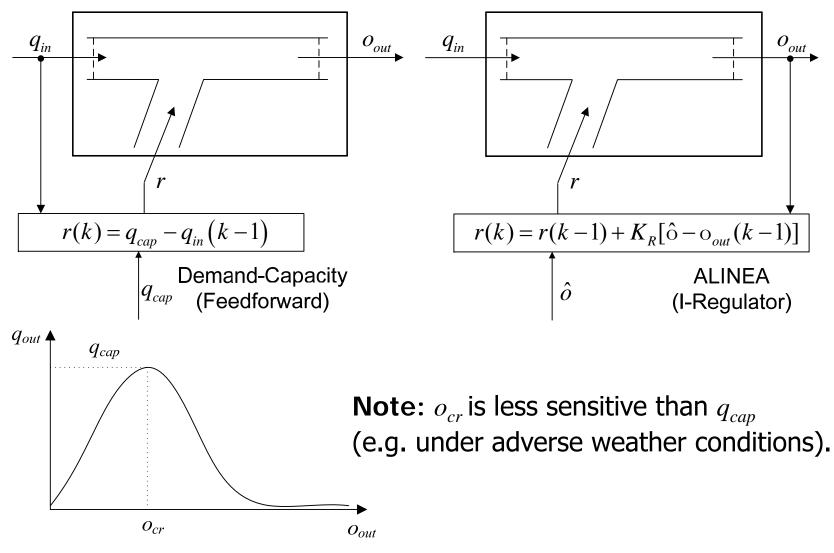
(as a **controllable** system)

Basic elements of an automatic control system


2. RAMP METERING

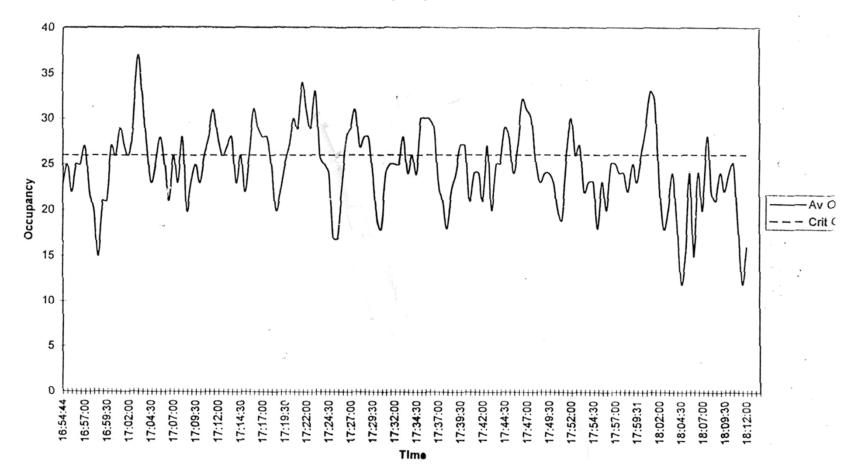
Why Ramp Metering?

1st Answer

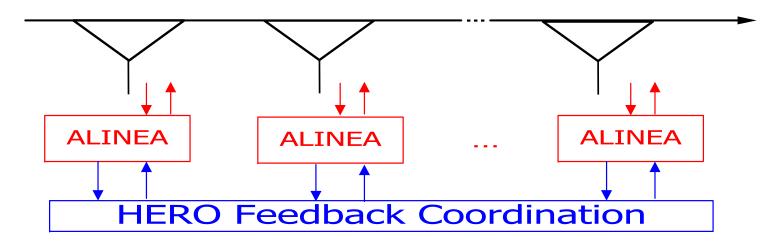


2nd Answer q_{cap} q_{cap} q_{in} $\left(q_{cap}-d\right)$ a $\frac{1}{1-\gamma}$ q_{in} q_{cap} γq_{in} d

Note: On-ramp queue should not interfere with surface street traffic.



Local Control Issues


Occupancy versus Time

Sample from Glasgow Implementation of ALINEA

HERO Feedback Coordination

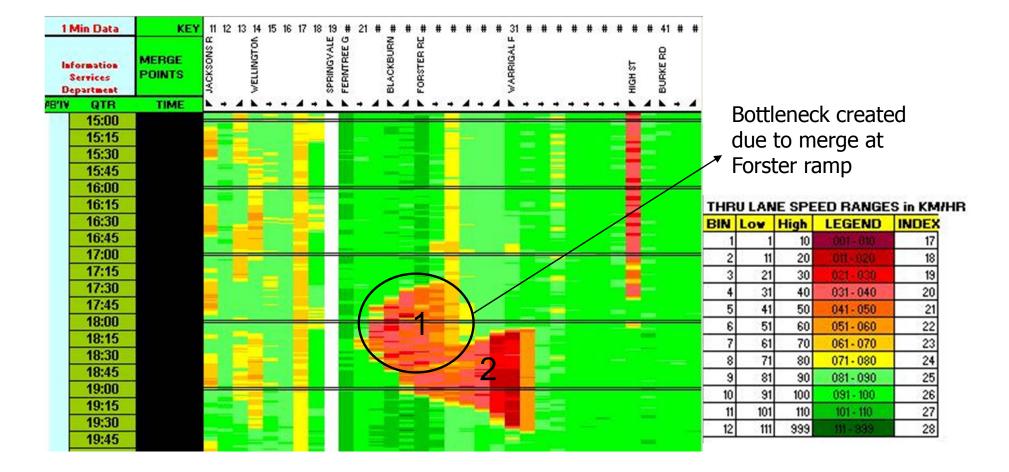
- ALINEA Activation? Master Ramp
- HERO hires gradually (upstream) Slave Ramps
- Cluster: Master + Slaves
- HERO MIMO Feedback: Balance relative ramp queues in Cluster (create 1 super-ramp)
- Cluster de-activation logic

HERO Implementation at the Monash Freeway, Melbourne, Australia

- Test pilot: 6 consecutive ramps
- Significant improvements in all PI: Productivity, Speed Variation, Reliability
- 11 days payback period!

AM PEAK Typical day (Fixed Time)

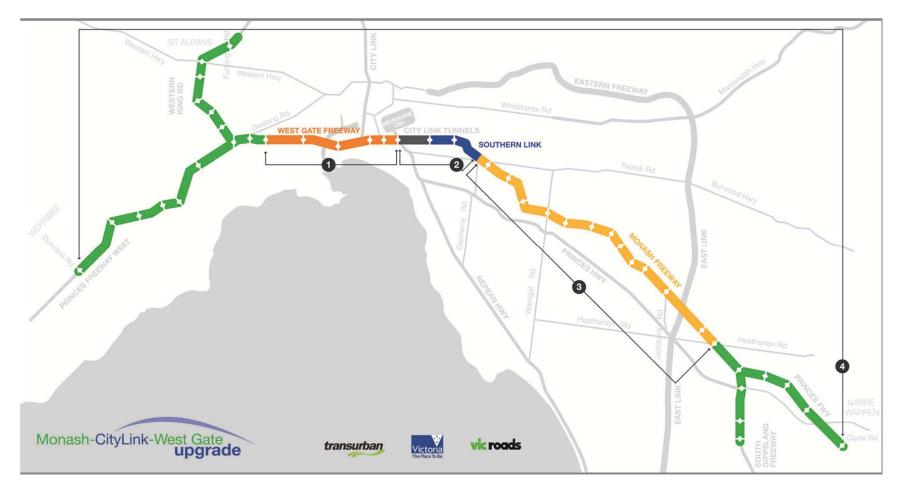
laf S	ormation ervices	KEY MERGE POINTS	11 12 1: H 2002X000	; 14 15 Voltonullaw	16 17	8PRINGVALE 61 FERNTREE G	21 # 30	FORSTER RC #	# #	# #	ά # «ARRIGAL F	+ +	# 4	# #	# #	HIGH ST #	# 41 # 02 3)3808	* #						
AB.IA	QTR	TIME		Ň.	- 4	→ ⊾ ⊾				4.4	4	. .				Ť.	4 ⊾ →	4						
	5:00 5:15 5:30 5:45 6:00																		, (cre	ate	neck d due		
	6:15 6:30	-			_		-		==		/	_					/		l	arg	ge i	numbe	r ot	
	6:45			=			_					<u> </u>	_			Y			Ŀ	on.	- 	hangir	na	
	7:00			<u> </u>	_		_		_					_	_		_		I	an		lanyn	iy	
	7:15			-	_			-				_							_	_		ED RANGE		R
	7:30				_									-				BI	N Lo) ¥	High	LEGEND	INDEX	
	7:45 8:00									_									1	1	10	001 - 010	17	
	8:15							_						<					2	11	20	011 - 020	18	
	8:30			=-				_	Ξ.					-				_	3	21	30	021-030	19	
	8:45				-								_				=	_	4	31	40	031-040	20	
	9:00				-														5	41	50	041-050	21	
	9:15 9:30				- 1				α.	_									6	51	60	051-060	22	
	9:45				- 1				-	-		-							7	61	70	061-070	23	
	10:00	-		_	-		<u> </u>	_	-	_			_	-		-		_	8	71	80	071-080	24	
	10:15																	-	9	81	90	081-090	25	
	10:30 10:45				- 1			_																
-	10:45																		10	91	100	091 - 100	26	
	11:15						_			_									11	101	110	101 - 110	27	
	11:30						_							_					12	111	999	111 - 999	28	



AM PEAK Typical day (ALINEA/HERO)

1 Min Data	KEY	11 12 13		16 17 18		21 # 4	# # #	# #	# # #	31 #	# #	# # :	# #	# # 4	1 # #					
Information Services Department		JACKSONS R	WELLINGTON		SPRINGVALE FERNTREE G	RI ACKRI IRN	FORSTER RC			WARRIGAL F				RURKE RD						
AB'IN QTR	TIME	K + 4	k + -	• 🔺 •	K K	+ 4 1	. 4 k	+ + 4	4 + 4	N + -	+ + -	• • •	• • •		- + - 4					
5:00						-		-												
5:15 5:30																	Ro	Hlo	neck	
5:45																				
6:00									_					-	-	_	cle	are	d	
6:15												-			-/					
6:30														-						
6:45									-/		=			\boldsymbol{X}		тив	LLAN			S in KM/HR
7:00		_		_		_	_		-/	==	_		_			BIN		High	LEGEND	
7:15				_	: 2									_/_			1	10	001 - 010	17
7:30				_	: =							-				- '				
7:45		_		_	-										-	2	11	20	011 - 020	18
8:00		_				_					_					3	21	- 30	021-030	19
8:15															-3	4	31	40	031-040	20
8:30 8:45															_	5	41	50	041-050	21
9:00															_					
9:15											-				_	6	51	60	051 - 060	22
9:30						_										7	61	70	061-070	23
9:45						_			=							8	71	80	071-080	24
10:00						_	_	_		_		_	_	_	_	9	81	90	081-090	25
10:15										_						10	91	100	091 - 100	26
10:30												_	_							
10:45								-						-		11	101	110	101 - 110	27
11:00								_								12	111	999	111 - 999	28
11:15																				

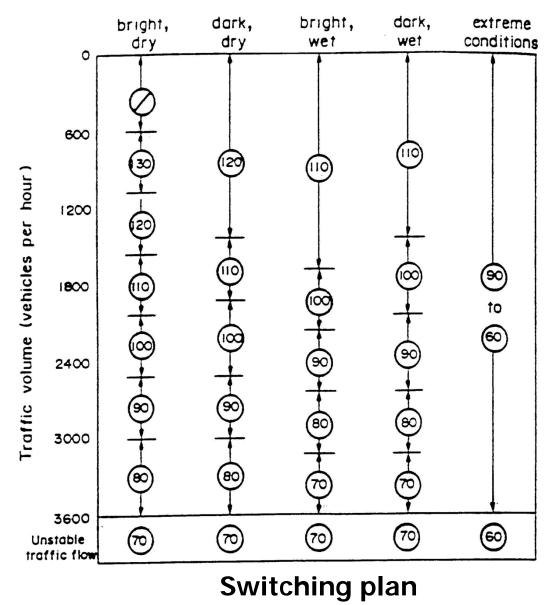
PM PEAK Typical day (No RM)



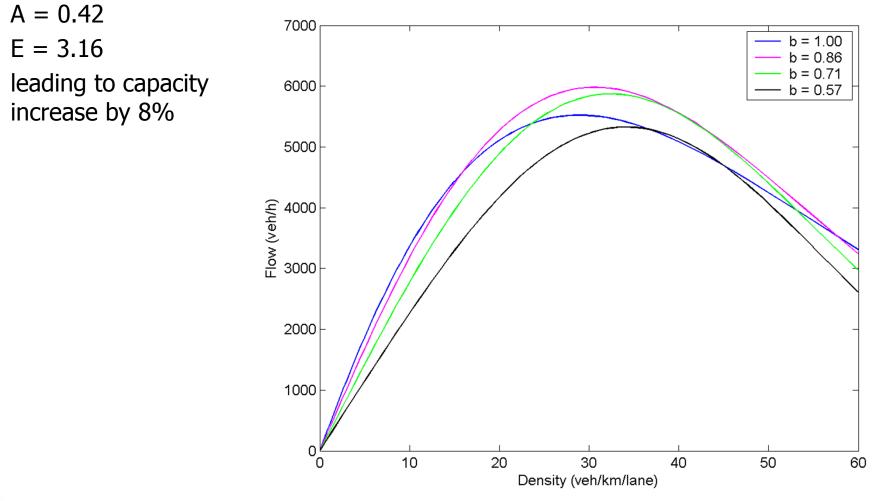
PM PEAK Typical day (ALINEA/HERO)

1	Min Data	KEY		12			5 16	17	18 1		21	# #	+ #	#	#	# #	#	#	31	#	# :		# #	#	#	#	# 4	1 #	#						
	formation Services epartment	MERGE POINTS	JACKSONS R		WELLINGTON	WELLING! U			SPDINGVALE	FERNTREE G		BLACKBURN		FORSTER RC					WARRIGALI							HIGH ST	BURKERD								
PB'I Y		TIME	•	•	4	•	+	4	- h		+	4 N	4		• •	• 4	+	4	•	• •	• •	-	• •	+	+		4 k	+	-						
	15:00			-		-		=						=												-			-		_				
	15:15																				- 6										Bot	tle	neo	CK	
	15:30	2																				10								X	clea	are	Ы		
	15:45 16:00				_														-										_		cicc		a		
	16:15							=							-				۲																
	16:30							Ξ	-																-	Z				THE	ULA	NE	SPE	ED RANGE	S in KM/HR
	16:45			-				Ξ																	/					BIN	Low	H		LEGEND	INDEX
	17:00			_							_					=	_						/	_						1		1	10	001-810	17
	17:15																				/					-				2	_	11	20	011-020	18
	17:30											/		E						/										3		21	30	021-030	19
	17:45										1							/								-				4		1	40	031-040	20
	18:00		_		_	_	_		_	-	4						\checkmark		_	_	-			_		_	_		_	5		1	50	041-050	21
	18:15																								-					6		51	60	051-060	22
	18:30			_													-													7		1	70	061-070	23
	18:45				-							$\overline{}$																		8		1	80	071-080	24
	19:00		-	_		-		=	-							_	_	_	-	_	_	_		_	_	_		_		9		1	90	081-090	25
	19:15																													10	-	1	100	091 - 100	26
	19:30																													11		_	110	101 - 110	27
	19:45											1															-			12	11	11	999	111-399	28

Currently: HERO extension to 65 ramps, i.e. whole freeway, 75 km, both directions

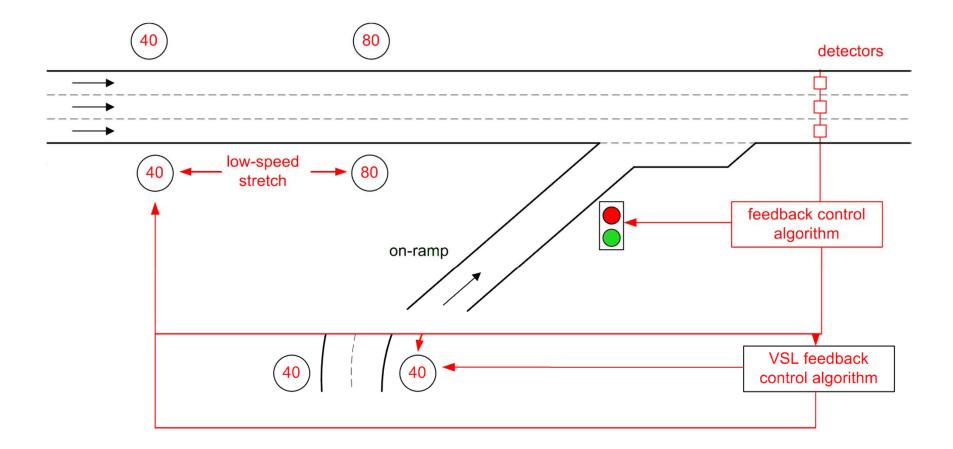

3. VARIABLE SPEED LIMITS

- Many application stretches in many counties
- Impact: "homogenisation" of traffic flow
 - Traffic safety: –20-30% accidents
 - Travel times: questionable impact of existing systems
- Simplistic control strategies



Speed indications at subsequent VSL-stations

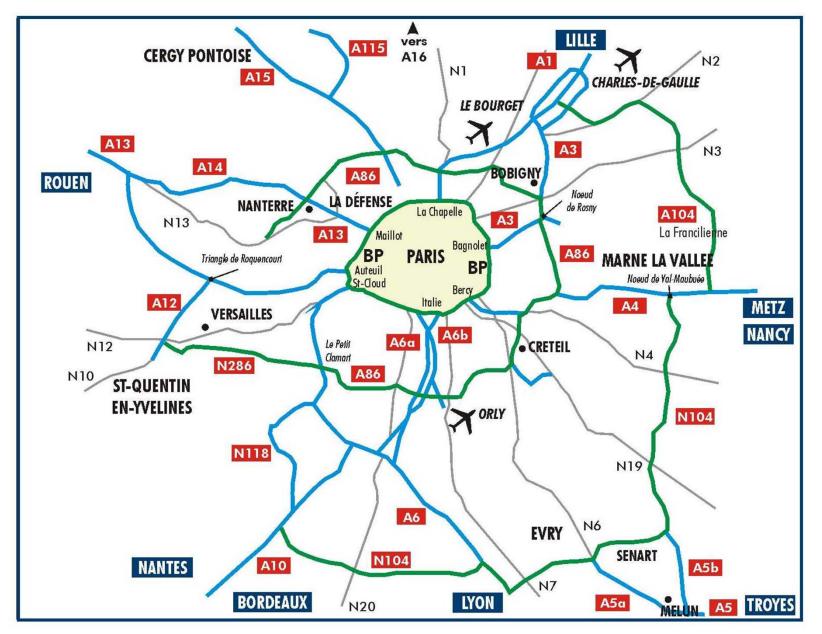
Parameter estimation at one particular location


Other location

A = 0.7 7000 E = 1.9 b = 1.0 b = 0.9 b = 0.8 no capacity increase! 6000 b = 0.7 b = 0.6 b = 0.5 5000 b = 0.4 b = 0.3 -b = 0.2How (veh/h) 3000 Flow 2000 1000 0 k 0 30 Density (veh/km/lane) Density (veh/km/lane) 10 20 40 50

60

Feedback MTFC

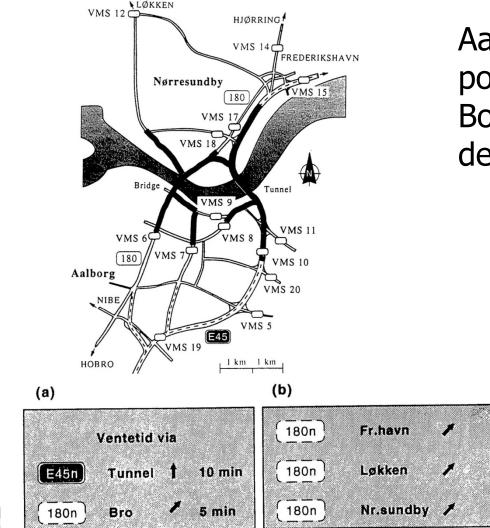


4. ROUTE INFORMATION AND GUIDANCE

- Multi-origin, multi-destination, multi-route per O-D pair
- Fixed direction signs: shortest path in absence of congestion
- Rush hours
- Changing demands, weather conditions, exceptional events, incidents
 - underutilisation of infrastructure
 - congestion, delays, reduced safety, increased fuel consumption, environmental pollution

VMS (Variable Message Signs) or two-way communication with equipped vehicles

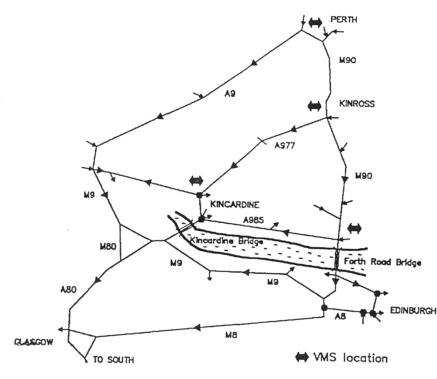
- Real-time information:
 - Drivers' knowledge
 - Message length
 - Decision efficiency
 - System controllability
 - Travel time or queue length: drivers' stress (e.g. BP in Paris) but also basis for route choice
 - Instantaneous (estimation) or predicted information
- Route guidance
 - Control strategy



Issues

- Modelling: micro, meso, macro
- Integrated Optimal Control: AMOC
- User vs. System Optimum
- Instantaneous vs. Experienced travel times
- Algorithms: feedback vs. predictive feedback vs. iterative

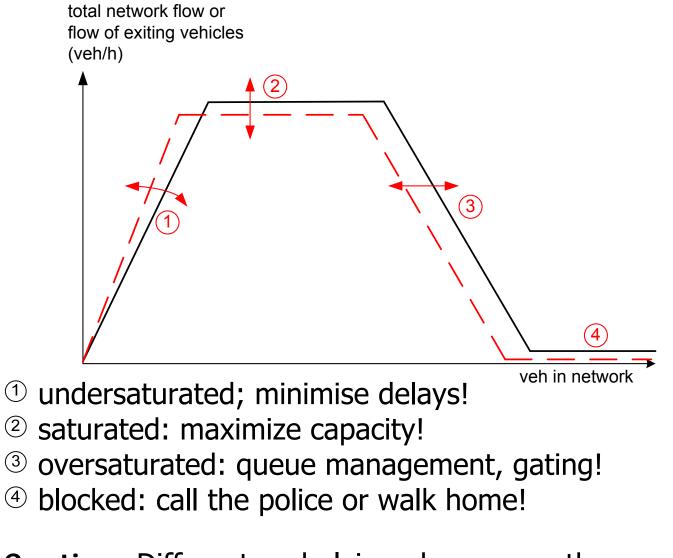
Automatic Control of VMS in Aalborg, Denmark



Aalborg network with VMS positions indicated. Bold black lines represent detector equipped segments.

> VMS control modes: Delay information (a) and route guidance (b).

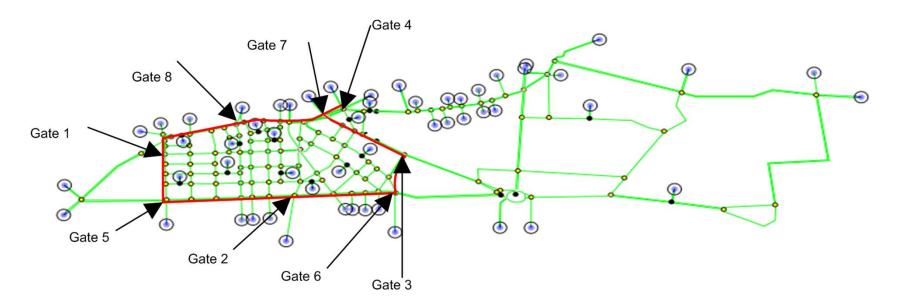
Automatic Control of VMS in the Interurban Scottish Highway Network



5. TRAFFIC SIGNAL CONTROL

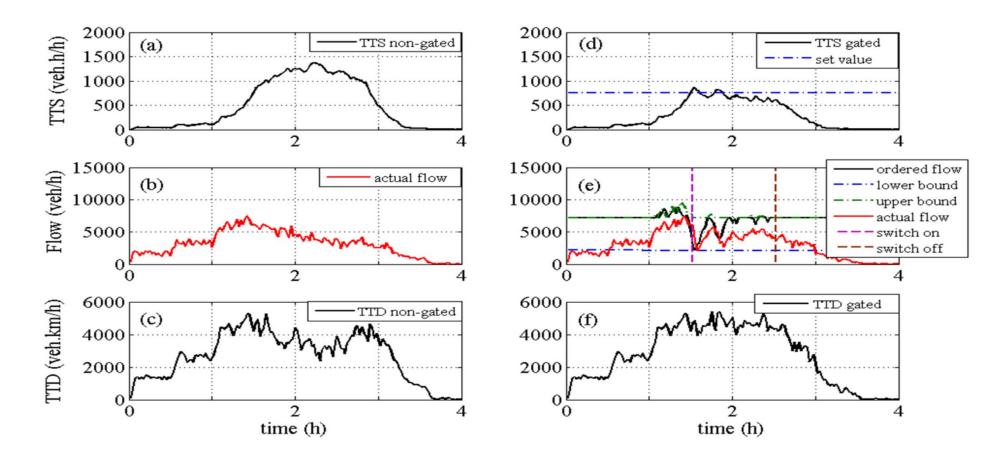
- Original reason for traffic lights: safe crossing of antagonistic streams of vehicles and pedestrians
- Once they exist, they can be set in different ways. Which is best? \rightarrow Optimisation problem
- Difficulties:
 - Binary variables
 - Large dimensions
 - Many disturbances
 - Difficult measurements
 - Real-time constraints
- Many control strategies, both heuristic and systematic

"2-D Fundamental Diagram" for urban networks (PhD-Thesis by Geroliminis, 2007; Fahri, 2008)


Caution: Different underlying phenomena than on link – FD

Real-time Signal Control Strategies/Systems

- Isolated
 - Traffic actuation, MOVA
- Network-wide
 - Plan selection
 - SCOOT, SCATS, UTOPIA, MOTION, OPAC, ...
 - (partially strong communication requirements)
- Saturated traffic conditions



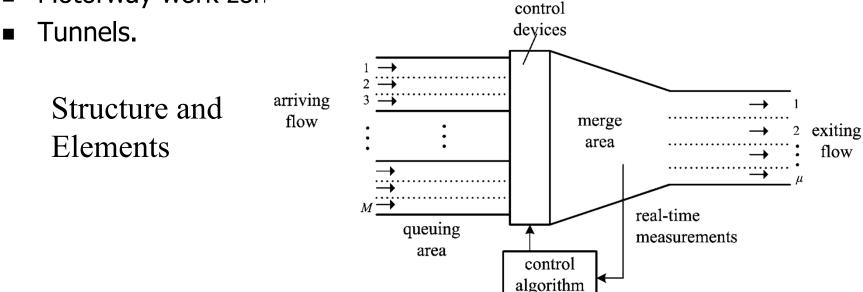
- Store-and-forward based strategies
 - TUC and variations
 - Cycle-to-cycle changes
 - Low communication requirements
- Perimeter gating control

Replication R2

6. PUBLIC TRANSPORT PRIORITY

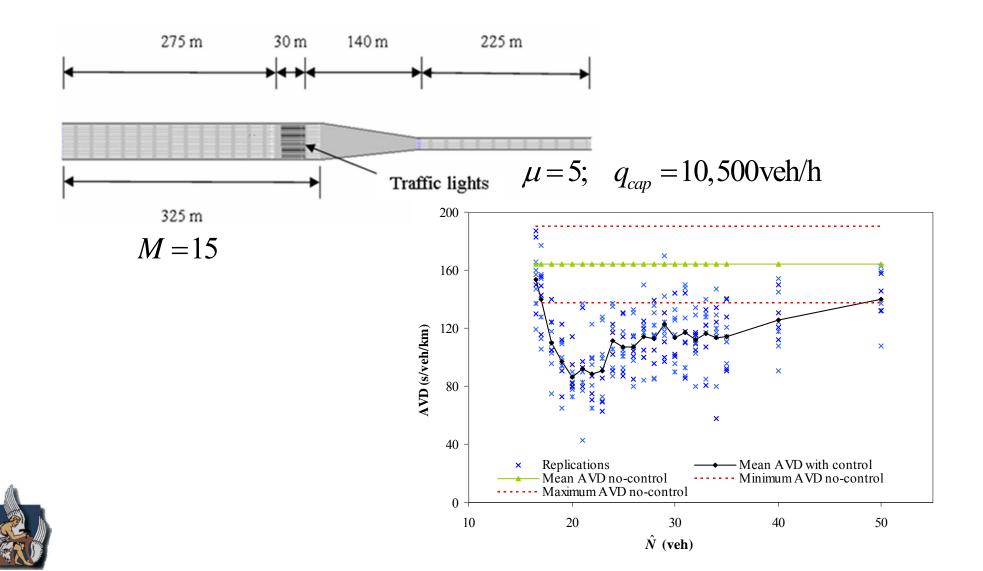
- Refers to all types of public transport vehicles (buses, trams, trains, etc. and even emergency vehicles)
- Technological implications
 - special detection technologies
 - programmable controllers
 - sec-by-sec communication with the controllers
- Implications for the road traffic
 - Frequent disturbances of signal control may lead to significant negative implications to road traffic
 - Recovery methods may not be sufficient to avoid negative implications

- Multiple approaches: Included in signal control strategies
- Easier: one PT vehicle at a time
- More challenging: multiple PT vehicles!
- Good improvements reported

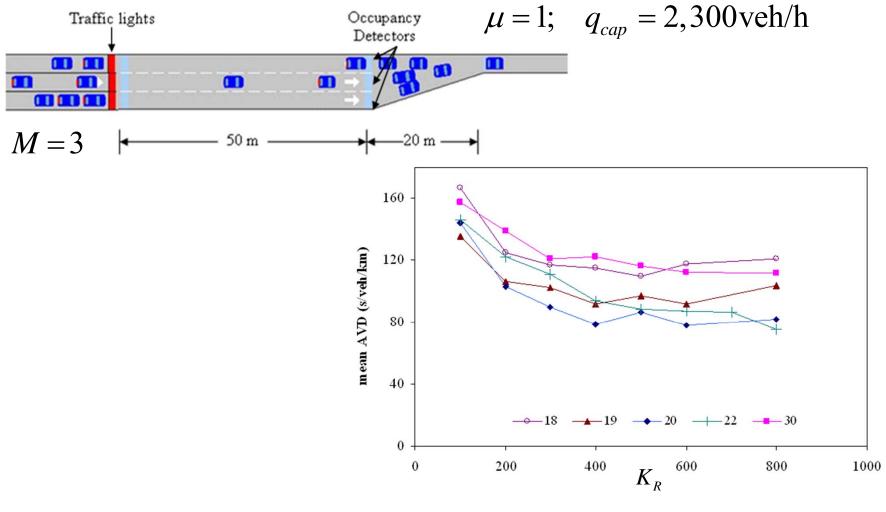

7. MERGING TRAFFIC CONTROL

Merging traffic infrastructures ($M \rightarrow \mu$ lanes)

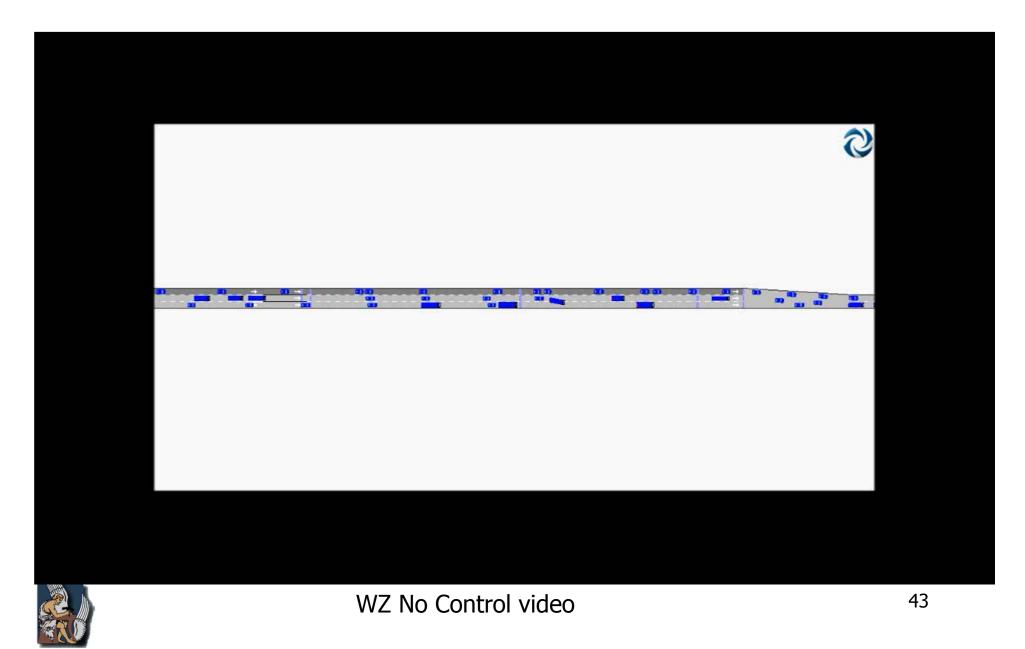
If a Meivigig of low two Mightmessys Capacity of μ lanes \Rightarrow

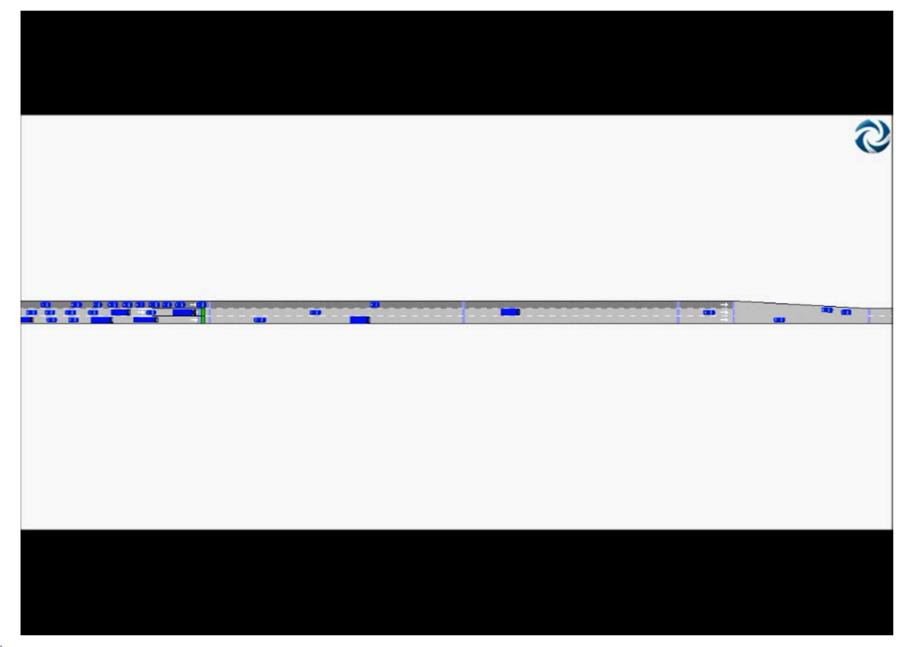

Contractionary on Gapapity drop

Toll plazas
Merging traffic control to restore capacity flow
Motorway work zones



Simulation Example: Toll plaza San Francisco-Oakland Bay Bridge




Work Zone Control

Different layout (now using PI-ALINEA)

8. Conclusions

- Traffic flow can be substantially improved (in some cases -50% travel times) via traffic control
- Technological giants with a baby brain
- Methodological zombies
- Nothing is more practical than a good theory
- As simple as possible as complex as necessary
- General applicability, high efficiency
- Field applications needed

