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1. INTRODUCTION
Man has reached to the moon but …

… even ants were taught by evolution to address their 
transportation problems more efficiently, see
I.D. Couzin and N.R. Franks: “Self-organized lane formation and 
optimized traffic flow in army ants”, 
Proc. R. Soc. Lond. B (2003) 270, 139–146
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Minimization of Total Time Spent


Maximization of (Early) Exit Flows
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Simple Queuing Systems
• Demand > Capacity  Queuing

• Capacity ≠ f (Queuing)

 Delay depends on D−C only!

Water Systems
More Inflow  Higher Pressure  Higher Outflow
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Traffic Networks
• Congestion degrades the infrastructure (capacity)
Local link demand exceeds local capacity 
 Local congestion degrades local capacity

Accelerated increase of 
congestion

Further capacity 
degradation

... until generalized network congestion
although

Demand << Nominal network capacity 
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Ile-de-France Expressway Network
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12 January 2011, 8:14 am 
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Conclusion: Generalized traffic congestion is not 
only due to high demand.

Congested Traffic Networks: Expensive 
infrastructure capacity not fully available at 
the only time it is actually needed, i.e. the 
peak periods!

Goal: Operate traffic networks optimally

(as a controllable system)
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Basic elements of an automatic control system
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2. RAMP METERING
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Why Ramp Metering?
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Note: On-ramp queue should not interfere with 
surface street traffic.

2nd Answer
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Local Control Issues
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Sample from Glasgow Implementation of ALINEA
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HERO Feedback Coordination

 ALINEA Activation?         Master Ramp
 HERO hires gradually (upstream) Slave Ramps
 Cluster: Master + Slaves
 HERO MIMO Feedback: Balance relative ramp queues in 

Cluster (create 1 super-ramp)
 Cluster de-activation logic
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HERO Implementation at the Monash 
Freeway, Melbourne, Australia

 Test pilot: 6 consecutive ramps
 Significant improvements in all PI: Productivity, 

Speed Variation, Reliability
 11 days payback period!
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AM PEAK Typical day (Fixed Time)
 

Bottleneck 
created due to 
large number of 
lane changing 



17

AM PEAK Typical day (ALINEA/HERO)
 

Bottleneck 
cleared 
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PM PEAK Typical day (No RM)

Bottleneck created 
due to merge at 
Forster ramp

1
2
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PM PEAK Typical day (ALINEA/HERO)

Bottleneck 
cleared
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Currently: HERO extension to 65 ramps, i.e. 
whole freeway, 75 km, both directions
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3. VARIABLE SPEED LIMITS
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 Many application stretches in many counties

 Impact: “homogenisation” of traffic flow

– Traffic safety: −20-30% accidents

– Travel times: questionable impact of existing 

systems

 Simplistic control strategies
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Switching plan
Speed indications at subsequent VSL-stations
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Parameter estimation at one particular location

A = 0.42
E = 3.16
leading to capacity 
increase by 8%
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Other location

A = 0.7
E = 1.9
no capacity increase!
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Feedback MTFC
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4. ROUTE INFORMATION AND 
GUIDANCE

 Multi-origin, multi-destination, multi-route per O-D pair 
 Fixed direction signs: shortest path in absence of 

congestion
 Rush hours
 Changing demands, weather conditions, exceptional 

events, incidents
– underutilisation of infrastructure
– congestion, delays, reduced safety, increased fuel consumption, 

environmental pollution
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VMS (Variable Message Signs) or two-way 
communication with equipped vehicles

 Real-time information: 
– Drivers’ knowledge
– Message length
– Decision efficiency
– System controllability
– Travel time or queue length: drivers’ stress (e.g. BP 

in Paris) but also basis for route choice
– Instantaneous (estimation) or predicted information

 Route guidance
– Control strategy
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Issues

 Modelling: micro, meso, macro
 Integrated Optimal Control: AMOC
 User vs. System Optimum
 Instantaneous vs. Experienced travel times
 Algorithms: feedback vs. predictive feedback 

vs. iterative
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Automatic Control of VMS in Aalborg, 
Denmark

Aalborg network with VMS 
positions indicated. 
Bold black lines represent 
detector equipped segments.

VMS control modes: 
Delay information (a) and 

route guidance (b).
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Automatic Control of VMS in the 
Interurban Scottish Highway Network
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5. TRAFFIC SIGNAL CONTROL

 Original reason for traffic lights: safe crossing of 
antagonistic streams of vehicles and pedestrians

 Once they exist, they can be set in different ways. 
Which is best?  Optimisation problem

 Difficulties:
– Binary variables
– Large dimensions
– Many disturbances
– Difficult measurements
– Real-time constraints

 Many control strategies, both heuristic and systematic
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“2-D Fundamental Diagram” for urban networks
(PhD-Thesis by Geroliminis, 2007; Fahri, 2008)

total network flow or
flow of exiting vehicles 
(veh/h) 

1

2

3

4

veh in network
 

 undersaturated; minimise delays! 
 saturated: maximize capacity! 
 oversaturated: queue management, gating! 
 blocked: call the police or walk home! 

 
Caution: Different underlying phenomena than

on link – FD  
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Real-time Signal Control Strategies/Systems

 Isolated
– Traffic actuation, MOVA

 Network-wide
– Plan selection

– SCOOT, SCATS, UTOPIA, MOTION, OPAC, …

(partially strong communication requirements)

 Saturated traffic conditions
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 Store-and-forward based strategies
– TUC and variations

– Cycle-to-cycle changes

– Low communication requirements

 Perimeter gating control
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Replication R2
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6. PUBLIC TRANSPORT PRIORITY

 Refers to all types of public transport vehicles (buses, 
trams, trains, etc. and even emergency vehicles)

 Technological implications
– special detection technologies
– programmable controllers
– sec-by-sec communication with the controllers

 Implications for the road traffic
– Frequent disturbances of signal control may lead to significant 

negative implications to road traffic
– Recovery methods may not be sufficient to avoid negative 

implications



39

 Multiple approaches: Included in signal control 
strategies

 Easier: one PT vehicle at a time

 More challenging: multiple PT vehicles!

 Good improvements reported
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7. MERGING TRAFFIC CONTROL

Merging traffic infrastructures (Μ → μ lanes)
 Merging of two highways
 Motorway on-ramps
 Toll plazas
 Motorway work zones
 Tunnels.




Structure and 
Elements

Merging traffic infrastructures (Μ → μ lanes)
If arriving flow on M lanes > Capacity of μ lanes
Congestion       Capacity drop

Merging traffic control to restore capacity flow
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Work Zone Control

3M 

1; 2,300veh/hcapq  
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Different layout (now using PI-ALINEA)

WZ No Control video



44WZ Control video
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8. Conclusions

 Traffic flow can be substantially improved (in 
some cases -50% travel times) via traffic 
control

 Technological giants with a baby brain
 Methodological zombies
 Nothing is more practical than a good theory
 As simple as possible as complex as necessary
 General applicability, high efficiency
 Field applications needed


