
Necs Team, January 17, 2012

HYCON2 MEETING REPORT

9th

The second Hycon2 workshop
this work week was to continue the development of Aimsun/Matlab interface started in
the first Hycon2 workshop

The group was composed by
Pavia, Jose Ramon Dominguez PHD student
PHD student at Delft University of Technology, Mohammadreza Hajiahmadi
student at Delft University of Technology, Wenjie Lu PHD student
Grenoble, Dominik Pisarski PHD student
student at University of Grenoble
INRIA.

As said above, the aim was
the micro-simulator and Matl
with the interface needed is shown in figure 1.

Figure 1. Scheme of the Interface between AIMSUM and MATLAB/SIMULINK

HYCON2 MEETING REPORT
INRIA GRENOBLE

9th -12th January 2012 -Grenoble, France

Necs Team

January 17, 2011

workshop meeting was organized by INRIA-Grenoble. The aim for
this work week was to continue the development of Aimsun/Matlab interface started in
the first Hycon2 workshop in may 2011.

was composed by Alberto Nai Oleari, PHD student
ia, Jose Ramon Dominguez PHD student at University of Seville,

PHD student at Delft University of Technology, Mohammadreza Hajiahmadi
student at Delft University of Technology, Wenjie Lu PHD student

Pisarski PHD student at University of Grenoble,
t University of Grenoble and Iker Bellicot Software Developer Engineer

As said above, the aim was the culmination of the functional interface between
Matlab. The scheme of the interconnections of

the interface needed is shown in figure 1.

Figure 1. Scheme of the Interface between AIMSUM and MATLAB/SIMULINK

1 /4

Grenoble. The aim for
this work week was to continue the development of Aimsun/Matlab interface started in

PHD student at University of
t University of Seville, Noortje Groot

PHD student at Delft University of Technology, Mohammadreza Hajiahmadi PHD
student at Delft University of Technology, Wenjie Lu PHD student at University of

t University of Grenoble, Luis Leon PHD
eveloper Engineer

functional interface between
of these programs

Figure 1. Scheme of the Interface between AIMSUM and MATLAB/SIMULINK

Necs Team, January 17, 2012

In order to finish the Interface 1 (Aimsun to Matlab

a) For this part, our goal
the sensors’ information from Aimsum, as well as the data concerning sensors
ID, the simulation
characterizing the situation on the highway every T
period of time was ready to
defined in Aimsun and presented in its tutorial.

b) In this step, the UDP communicati
workshop, we were able to send data of
general IP address and sniff these packets using the software Wireshark. Our
goal this time was
script .m on Matlab was created. This script, behaving as the receiver, allowed
the UDP communication to begin.

To establish this sender/receiver
was applied. This function creates a UDP object associated with local host,
remote port value, size of buffer, etc. Two problems were encountered during
this process. The first was the default buffer size of Matlab
bytes), causing a huge problem of
to the receiver.

For each sensor the information requested into Matlab is
code on Aimsun), velocity and flow. These values are defined as doubles
8 bytes. Therefore the arr
quantity clearly bigger than the 512 b
overcome by defining the size of the buffer inside Matlab
big enough to receive

A second issue came up when

There was a disparity between the sender (C++) and receiver (Matlab) in the
way to decode the data, causing a misreading of the packet. This problem was

In order to finish the Interface 1 (Aimsun to Matlab), the work was divided into 2

goal was to generalize the API’s C++ code in order to read all
information from Aimsum, as well as the data concerning sensors

 time and the total period of simulation. Doing so, a
characterizing the situation on the highway every Time step during a fixed
period of time was ready to be sent to Matlab. We used for this

n Aimsun and presented in its tutorial.

In this step, the UDP communication needed to be established.
workshop, we were able to send data of any sensor through the network in a
general IP address and sniff these packets using the software Wireshark. Our
goal this time was to send the array defined above to Matlab. To achieve so, a
script .m on Matlab was created. This script, behaving as the receiver, allowed
the UDP communication to begin.

To establish this sender/receiver communication the function ‘
. This function creates a UDP object associated with local host,

remote port value, size of buffer, etc. Two problems were encountered during
this process. The first was the default buffer size of Matlab’s UDP packets

causing a huge problem of limitation regarding the information to be sent

For each sensor the information requested into Matlab is: ID sensor (the sensor
code on Aimsun), velocity and flow. These values are defined as doubles
8 bytes. Therefore the array’s size to be received is (24 x #sensors) bytes,
quantity clearly bigger than the 512 bytes discussed before. This problem was
overcome by defining the size of the buffer inside Matlab’s UDP function ‘udp’
big enough to receive the whole datagram.

ond issue came up when trying to send the packet:

There was a disparity between the sender (C++) and receiver (Matlab) in the
the data, causing a misreading of the packet. This problem was

2 /4

), the work was divided into 2 steps:

in order to read all
information from Aimsum, as well as the data concerning sensors

Doing so, an array
step during a fixed

for this; the functions

stablished. In the previous
ough the network in a

general IP address and sniff these packets using the software Wireshark. Our
ve to Matlab. To achieve so, a

script .m on Matlab was created. This script, behaving as the receiver, allowed

‘udp’ on Matlab
. This function creates a UDP object associated with local host,

remote port value, size of buffer, etc. Two problems were encountered during
UDP packets (512

limitation regarding the information to be sent

ID sensor (the sensor
code on Aimsun), velocity and flow. These values are defined as doubles, size of

ay’s size to be received is (24 x #sensors) bytes,
tes discussed before. This problem was

UDP function ‘udp’

There was a disparity between the sender (C++) and receiver (Matlab) in the
the data, causing a misreading of the packet. This problem was

Necs Team, January 17, 2012

solved by introducing the right form and size of the packet inside the function
fread (Read data from binary file) in Matlab.

Until this point the implementation of the interface 1 works in the following way:

Every Time step (time window)
can be chosen as small or as big as needed
step. The receiver stores velocity and flow
lasts as long as the complete
after the whole simulation on Aimsun is finished. A scheme depicting what was said
before is showed in the Figure 2.

Figure 2. Scheme of

Continuing with this implementation, what needs to be added is the interface from
Matlab to Simulink, in order to identify the different densit
curves along the highway once all the sensors values are completely stored.

There is an important point that needs to be considered. If the control is going to be
applied, then we need to be able to use every time step the information of velocity and
flow of all the sensors. Hence, the Matlab code needs to be slightly modified wit
cycle in order to capture every T
arrive until a stop condition.

We might be inclined to conclude that the Interface 1 is complete, nevertheless
depending on the scenario in which will be
improved.

solved by introducing the right form and size of the packet inside the function
fread (Read data from binary file) in Matlab.

Until this point the implementation of the interface 1 works in the following way:

Every Time step (time window) a datagram is prepared in the C++ API,
can be chosen as small or as big as needed. This packet is sent to Matlab every

velocity and flow values for its specific sensor. This process
complete time of the process. The values of the sensors can be used

after the whole simulation on Aimsun is finished. A scheme depicting what was said
before is showed in the Figure 2.

. Scheme of communication AIMSUM and MATLAB

Continuing with this implementation, what needs to be added is the interface from
Matlab to Simulink, in order to identify the different densities, flows and characteristic

once all the sensors values are completely stored.

There is an important point that needs to be considered. If the control is going to be
applied, then we need to be able to use every time step the information of velocity and
flow of all the sensors. Hence, the Matlab code needs to be slightly modified wit
cycle in order to capture every Time step the datagram and keep waiting for the next to
arrive until a stop condition.

to conclude that the Interface 1 is complete, nevertheless
depending on the scenario in which will be used; the Matlab code can be

3 /4

solved by introducing the right form and size of the packet inside the function

Until this point the implementation of the interface 1 works in the following way:

epared in the C++ API, this window
. This packet is sent to Matlab every Time

for its specific sensor. This process
. The values of the sensors can be used

after the whole simulation on Aimsun is finished. A scheme depicting what was said

Continuing with this implementation, what needs to be added is the interface from
and characteristic

once all the sensors values are completely stored.

There is an important point that needs to be considered. If the control is going to be
applied, then we need to be able to use every time step the information of velocity and
flow of all the sensors. Hence, the Matlab code needs to be slightly modified with a

step the datagram and keep waiting for the next to

to conclude that the Interface 1 is complete, nevertheless
Matlab code can be changed or

Necs Team, January 17, 2012

Concerning the dual Interface (Matlab
be done. Up this point we are able to change manually the Variable Speed Limit and
Ramp metering inside the API. However, the control
through UDP protocol.

Therefore the interface 2 it’s still in progress and needs to be studied more in detail.

Concerning the dual Interface (Matlab-Aimsun), we still have some work ahead of us to
this point we are able to change manually the Variable Speed Limit and

Ramp metering inside the API. However, the control applied is to change these values

Therefore the interface 2 it’s still in progress and needs to be studied more in detail.

4 /4

work ahead of us to
this point we are able to change manually the Variable Speed Limit and

applied is to change these values

Therefore the interface 2 it’s still in progress and needs to be studied more in detail.

