%I INRIA 2=NeCS

Networked Controlled System Team

HYCON2 MEETING REPORT

INRIA GRENOBLE

9th-12th January 2012 -Grenoble, France

Necs Team

January 17, 2011

The second Hycon&orkshof meeting was organized by INRI&renoble. The aim fc
this work week was to continue the development ioigdin/Matlab interface started
the first Hycon2 workshoin may 2011.

The groupwas composed bAlberto Nai Oleari,PHD studenat University of
Pava, Jose Ramon Dominguez PHD studat University of Seville,Noortje Groot
PHD student at Delft University of Technology, Momaadreza Hajiahme PHD
student at Delft University of Technology, Wenjie IPHD studenat University of
Grenoble, DominikPisarski PHD studerat University of GrenobleLuis Leon PHD

student & University of Grenobl and lker Bellicot Software &eloper Enginee
INRIA.

As said above, the aim wthe culmination of théunctional interface betwee
the micro-simulator anMatlab. The scheme of the interconnectiohshese programs
with the interface needed is shown in figur

INTERFACE 2. On progress
/\ IP ADDRESS SENDER

IP ADDRESS RECEIVER

UDP CHANNEL
RECEIVER ‘ SENDER
API MATLAB
VvsL

VSL
RAMP METERING RAMP METERING

AIMSUN I
I AP UDP CHANNEL
MATLAB

RECEIVER
SENSORS <ﬂ>

INFORMATION SENSORS
INFORMATION

IP ADDRESS SENDER

IP ADDRESS RECEIVER
INTERFACE 1. Completed 100 % \ /

Figure 1. Scheme of the Interface between AIMSUM BIATLAB/SIMULINK

1/4
Necs Team, January 17, 2012

% INRIA ==NeCS

Networked Controlled System Team

In order to finish the Interface 1 (Aimsun to M), the work was divided into steps:

a) For this part, ougoalwas to generalize the API's C++ cobeorder to read a
the sensorsinformation from Aimsum, as well as the data conoey sensor.
ID, the simulationtime and the total period of simulatioDoing so, n array
characterizing the situation on the highway eveime step during a fixe:
period of time was ready be sent to Matlab. We uséar this; the functions
defined h Aimsun and presented in its tutol

b) In this step, the UDP communicon needed to bestablishec In the previous
workshop, we were able to send datsany sensor tlmugh the network in
general IP address and sniff these packets usmgdfiware Wireshark. Oi
goal this time wato send the array defined al@to Matlab. To achieve so,
script .m on Matlab was created. This script, befgas the receiver, allowe
the UDP communication to begi

To establish this sender/receixcommunication the functiorudp’ on Matlab
was applied This function creates a UDP object associatedh Watal host
remote port value, size of buffer, etc. Two proldewere encountered duril
this process. The first was the default buffer siz#atlat’s UDP packet (512
bytes),causing a huge problem limitation regarding the information to be s
to the receiver.

For each sensor the information requested intod®at: ID sensor (the sens
code on Aimsun), velocity and flow. These valuesdgfined as doubl, size of
8 bytes. Therefore the ay’s size to be received is (24 x #sensors) b
quantity clearly bigger than the 51ytes discussed before. This problem
overcome by defining the size of the buffer indidatlat’s UDP function ‘udp’
big enough to receivthe whole datagram.

A seond issue came up whtrying to send the packet:

8 bytes B bytes 8 bytes
SENSOR ID VELOCITY FLOW

There was a disparity between the sender (C++)racéiver (Matlab) in th
way to decode¢he data, causing a misreading of the packet. pilublem was

2/4
Necs Team, January 17, 2012

% INRIA ==NeCS

Networked Controlled System Team

solved by introducing the right form and size o facket inside the functic
fread (Read data from binary file) in Matl

Until this point the implementation of the interéat works in the following way

Every Time step (time windowa datagram is ppared in the C++ AF this window
can be chosen as small or as big as ne. This packet is sent to Matlab eveTime
step. The receiver storeglocity and flov valuesfor its specific sensor. This proce
lasts as long as thmmplet: time of the processThe values of the sensors can be (
after the whole simulation on Aimsun is finished.séheme depicting what was s
before is showed in the Figure

VELOCITY |IDsensorl] ID sensor N
Ts: Simulation time step (seconds)
Ts - - -
N: Number of sensors on Aimsun
2Ts - - -
Tf:End time of simulation :
Ever'y Ts : - - -
Senzor ID
SENSOR 1 |Mean velocity XY - - -
Flow '
.
° FLOW |IDsensorl] ID sensor N
. Ts - - -
Sensor ID T | = - -
SENSOR N | Mean velocity ' - -
-
Flow :
foT5| - - -
|
C++ AP MATLAB

Figure 2 Scheme ocommunication AIMSUM and MATLAB

Continuing with this implementation, what needsh® added is the interface frc
Matlab to Simulink, in order to identify the diffamt densies, flowsand characteristi
curves along the highwagnce all the sensors values are completely si

There is an important point that needs to be censdl If the control is going to |
applied, then we need to be able to use every sigge the information of velocity ar
flow of all the sensors. Hence, the Matlab codedadge be slightly modified wh a
cycle in order to capture evenime step the datagram and keep waiting for the ne
arrive until a stop conditio

We might be inclinedto conclude that the Interface 1 is complete, rbesss
depending on the scenario in which will used; theMatlab code can bchanged or
improved.

3/4
Necs Team, January 17, 2012

% INRIA ==NeCS

Networked Controlled System Team

Concerning the dual Interface (Mat-Aimsun), we still have som&ork ahead of us t
be done. Ughis point we are able to change manually the \Wi&peed Limit an
Ramp metering inside the APIl. However, the corapplied is to change these vall
through UDP protocol.

Therefore the interface 2 it’s still in progresslareeds to be studied more in de

4 /4
Necs Team, January 17, 2012

