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Abstract

In this study one considers the tracking control problem of aclass of nonsmooth Lagrangian systems with flexible joints and subject to
frictionless unilateral constraints. The task under consideration consists of a succession of free-motion and constrained-motion phases.
A particular attention is paid to impacting and detachment phases. A passivity-based switching controller that allowsto extend the
stability analysis described in our previous works to the case of systems with lumped flexibilities, is proposed. Numerical tests show the
effectiveness of the controller.
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1 Introduction

The control of systems undergoing impacts has received at-
tention in the literature Albu-Schafferet al (2004); Leeet
al (2003); Pagilla (2001, 2004); van Vlietet al (2000); Xu
et al (2000). In parallel with such works focusing solely on
the collision phase, more general studies concerning the sta-
bility and tracking control of nonsmooth unilaterally con-
strained mechanical systems have been published Bents-
man and Miller (2007b); Bourgeot and Brogliato (2005);
Brogliatoet al(1997); Galeaniet al(2008); Leine and van de
Wouw (2008a,b); Menini and Tornambè (2001a,b); Miller
and Bentsman (2006); Tornambé (1999); Yu and Pagilla
(2006). Until now these works have been limited to per-
fectly rigid systems. The consideration of flexibilities isim-
portant. On one hand impacts may damage systems with
too small flexibility, whereas flexibility can reduce the dam-
age by impact absorption Wolf and Hirzinger (2008). On
the other hand, impact phenomena may excite vibrational
modes, which is not desirable in practice and may destabi-
lize the system (see Section 7) when the flexibilities are too
large. Introducing flexibility however is challenging for the
control design. In this work it is shown that the tracking con-
trol framework developed in Bourgeot and Brogliato (2005);
Brogliatoet al (1997); Morărescu and Brogliato (2008) can
be adapted to the flexible-joint case, using the passivity-
based motion control solutions proposed in Brogliatoet

Email addresses:
Constantin.Morarescu@inrialpes.fr
(Constantin-Irinel Morărescu),
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al (1995). More precisely, this paper focuses on the prob-
lem of tracking control of complementarity Lagrangian sys-
tems Moreau (1988), encompassing flexible-joint manipu-
lator subject to frictionless unilateral constraints, whose dy-
namics is supposed to be expressed as:



























M(q)q̈ + C(q, q̇)q̇ +G(q) +K(q − θ) = D⊤λ

Jθ̈ +K(θ − q) −KZ(q, θ) = U

q1 ≥ 0, (q1)Tλ = 0, λ ≥ 0

Collision rule

(1)

whereq ∈ R
n is the vector of rigid links angles,θ ∈ R

n is
the vector of motor shaft angles,M(q) = MT (q) ∈ R

n×n

is a positive definite inertia matrix,C(q, q̇) is the matrix
containing Coriolis and centripetal forces,G(q) contains
conservative forces,λ ∈ R

m is the vector of contact forces
(or Lagrangian multipliers) associated to the constraints,J ∈
R
n×n is the diagonal and constant matrix of actuator inertia,

K = K⊤ > 0, K ∈ R
n×n represents the stiffness matrix,

U ∈ R
n is the vector of generalized torque inputs, and

q1 = Dq ∈ R
m with D = [Im 0m×(n−m)]. A constrainti

is said to beactive if q1i = 0, and inactive if q1i > 0. The
dynamics in (1) is a simplified dynamics obtained from more
general Lagrangian systems using a generalized coordinate
transformation as in McClamroch and Wang (1988), that is
supposed to hold globally in the configuration space. Notice
that a nonlinear stiffnessKZ(q, θ) may appear due to the
transformation. Details on the transformation may be found
in Morărescuet al (2008).
General notations and definitions.|| · || is the Euclidean
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norm, bp ∈ R
p and bn−p ∈ R

n−p are the vectors formed
with the firstp and the lastn − p components ofb ∈ R

n,
respectively.λmin(·) andλmax(·) represent the smallest and
the largest eigenvalues, respectively. The time-derivative of
a functionf(·) is denoted byḟ(·). For any functionf(·)
the limit to the right at the instantt will be denoted by
f(t+) and the limit to the left will be denoted byf(t−)
when they exist. A simple jump of the functionf(·) at the
momentt = tℓ is denotedσf (tℓ) = f(t+ℓ ) − f(t−ℓ ). For
a real valued functionf : R

+ 7→ R one denotes byS(f)
the set of all real valued functiong : R

+ 7→ R such that
there exists a positive real constant0 < c < ∞ satisfying
g(t) ≤ cf(t), ∀t ≥ 0. One writesg ∈ S(1) ≡ L∞ if
f(t) = 1, ∀t ≥ 0. 0n is then-vector with entries 0, and
0n×m is then ×m-zero matrix.Im is them×m identity
matrix A vector is considered positive if all its component
are positive. A Linear Complementarity Problem (LCP) with
unknownλ is a system:λ ≥ 0,Aλ+b ≥ 0,λ⊤(Aλ+b) = 0,
which is compactly rewritten as0 ≤ λ ⊥ Aλ + b ≥ 0.
Such an LCP has a unique solution for allb if and only ifA
is a P-matrix Facchinei and Pang (2003). Positive definite
matrices (not necessarily symmetric) are P-matrices.

The admissible domain associated to the system (1)
is the closed setΦ , {(q, θ) ∈ R

2n | q1 ≥ 0} =
(

⋂

1≤i≤m Φi

)

× R
n where Φi = {q ∈ R

n | q1i ≥ 0}.

In the sequel
(

⋂

1≤i≤m Φi

)

will be denoted byΦ ⊂ R
n.

Notice thatm > 1 allows both simple impacts (when one
constraint is involved) and multiple impacts (when several
constraints are involved). Let us introduce the following
notion ofpǫ-impact.

Definition 1 Let ǫ ≥ 0 be a fixed real number. We say that
a pǫ-impact occurs at the instantt if

||
(

q1i
)

i∈I
(t)|| ≤ ǫ,

∏

i∈I

q1i (t) = 0

whereI ⊂ {1, . . . ,m}, card(I) = p.

If ǫ = 0 all p surfacesΣi = ∂Φi = {q ∈ R
n | q1i = 0}, i ∈

I are struck simultaneously. Whenǫ > 0 the system collides
∂Φ in a neighborhood of the intersection

⋂

i∈I Σi.

A collision (or restitution) rule is a relation between the
post-impact and the pre-impact velocities. Among the vari-
ous models of collision rules, Moreau’s rule is an extension
of Newton’s law which is energetically consistent Mabrouk
(1998) and is numerically tractable Acary and Brogliato
(2008). In the special coordinates of (1) this reads as
q̇1i (t

+) = −eq̇1i (t−) when q1,i(t) = 0 and q̇1i (t
−) ≤ 0,

wherei ∈ {1, ...,m} ande ∈ [0, 1]. Under mild conditions
on the data, the solutions are such that positionsq(·) and
θ(·) are absolutely continuous functions of time, whereas
the generalized velocity is right continuous of local bounded
variation. Well-posedness results may be found in Dzonou

and Marques (2007); Mabrouk (1998) and references
therein. The continuity oḟθ(·) holds Brogliato (1999) and
will be used in the stability analysis developed in section 6.

The structure of the paper is as follows: in Section 2 one
presents some basic concepts and necessary prerequisites.
Section 3 is devoted to the controller design. In this sec-
tion one also defines the desired (or ”exogenous”) trajecto-
ries entering the dynamics. The desired contact-force that
must occur on the phases where the motion is persistently
constrained, is explicitly defined in Section 4. Section 5 fo-
cuses on the strategy for take-off at the end of the constraint
phases. The main results related to the closed-loop stability
analysis are presented in Section 6. A numerical example ob-
tained with the SICONOS platform and concluding remarks
end the paper.

2 Basic concepts

2.1 Typical task

Since the system’s dynamics does not change when the num-
ber of active constraints decreases one gets the following
typical task representation:

R
+ =

⋃

k≥0

(

ΩBk

2k ∪ IBk

k ∪
(

mk
⋃

i=1

Ω
Bk,i

2k+1

))

Bk ⊂ Bk,1; Bk+1 ⊂ Bk,mk
⊂ Bk,mk−1 ⊂ . . . Bk,1

(2)

where the superscriptBk represents the set of active con-
straints (Bk = {i ∈ {1, . . . ,m} | Fi(X) = 0}) during the
corresponding motion phase, andIBk

k denotes the transient
between twoΩk phases when the number of active con-
straints increases. We note thatBk = ∅ corresponds to free-
motion. When the number of active constraints decreases no
transition phases are needed, thus, for the sake of simplicity
and without any loss of generality we replace

⋃mk

i=1 Ω
Bk,i

2k+1

by Ω
B′

k

2k+1 and the typical task representation simplifies as:

R
+ =

⋃

k≥0

(

ΩBk

2k ∪ IBk

k ∪ Ω
B′

k

2k+1

)

Bk ⊂ B′
k, Bk+1 ⊂ B′

k

(3)

Since the tracking control problem involves no difficulty dur-
ing theΩk-phases,the central issue is the study of the pas-
sages between them (the design of transition phasesIk and
detachment conditions), and the stability of the trajectories
evolving along (3)(i.e. an infinity of cycles). Throughout

the paper, the sequenceΩBk

2k ∪ IBk

k ∪Ω
B′

k

2k+1 will be referred
to as the cyclek of the system’s evolution.

2.2 System properties

For kinematic chains with prismatic or revolute joints the
following properties hold.
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Property 1 The matrix
[

d
dtM(q)

]

− 2C(q, q̇) is skew-
symmetric andṀ(q) , d

dtM(q) = C(q, q̇) + C⊤(q, q̇).
Furthermore the matrixC(q, q̇) is a smooth function ofq
and q̇ with the well-known properties||C(q, q̇)|| ∈ S(||q̇||)
andC(q, y)z = C(q, z)y, ∀ q, y, z ∈ R

n.

Property 2 The conservative forces vectorG(q) is such that
∣

∣

∣

∣

∣

∣

∂G(q)
∂q

∣

∣

∣

∣

∣

∣ ∈ S(1) which implies by the mean value theorem

||G(q1) −G(q2)|| ∈ S(||q1 − q2||), ∀q1, q2 ∈ R
n.

Property 3 The matrixC(q, q̇) is such that
∣

∣

∣

∣

∣

∣

∂C(q,q̇)
∂q

∣

∣

∣

∣

∣

∣ ∈
S(||q̇||) and

∣

∣

∣

∣

∣

∣

∂C(q,q̇)
∂q̇

∣

∣

∣

∣

∣

∣ ∈ S(1).

2.3 Stability analysis criteria

The system (1) is a complex nonsmooth and nonlinear dy-
namical system. A stability framework for this type of sys-
tems has been proposed in Brogliatoet al (1997) and ex-
tended in Bourgeot and Brogliato (2005); Morărescu and
Brogliato (2008). This is an extension of the Lyapunov sec-
ond method adapted to closed-loop mechanical systems with
unilateral constraints. Since we use this criterion in the fol-
lowing tracking control strategy it is worth to clarify the
framework and to introduce some definitions. Let us define
Ω as the complement inR+ of I =

⋃

k≥0

IBk

k and assume that

the Lebesgue measure ofΩ, denotedλ[Ω], equals infinity.
Let x(·) be the state of the closed-loop system in (1) with
some feedback controllerU(q, q̇, θ, θ̇, t).

Definition 2 (Weakly Stable System)The closed loop
system is called weakly stable (Bourgeot and Brogliato
(2005)) if for eachǫ > 0 there existsδ(ǫ) > 0 such that
||x(0)|| ≤ δ(ǫ) ⇒ ||x(t)|| ≤ ǫ for all t ≥ 0, t ∈ Ω. The
system is asymptotically weakly stable if it is weakly stable
and lim

t∈Ω, t→∞
x(t) = 0. Finally, practical weak stability

holds if there exists0 < R < +∞ and t∗ < +∞ such that
||x(t)|| < R for all t > t∗, t ∈ Ω.

ConsiderIBk

k , [τk0 , t
k
f ] and V (·) such that there exists

strictly increasing functionsα(·) andβ(·) satisfying the con-
ditions: α(0) = 0, β(0) = 0 and α(||x||) ≤ V (x, t) ≤
β(||x||). In the sequel, we consider that for each cycle the
sequence of impact instants{tkℓ}ℓ≥0 has an accumulation
point tk∞.

Proposition 1 (Weak Stability) Assume that the task ad-
mits the representation (3) and that

a) λ[IBk

k ] < +∞, ∀k ∈ N,
b) outside the impact accumulation phases[tk0 , t

k
∞] one has

V̇ (x(t), t) ≤ −γV (x(t), t) for some constantγ > 0,
c) the system is initialized onΩ0 such thatV (τ0

0 ) ≤ 1,

d) V (tk∞) ≤ ρ∗V (τk0 ) + ξ whereρ∗, ξ ∈ R+.

ThenV (τk0 ) ≤ δ(γ, ξ), ∀k ≥ 1 whereδ(γ, ξ) is a function
that can be made arbitrarily small by increasing either the
value ofγ or the length of the time interval[t∞, tf ]. Thus, the
system is practically weakly stable withR = α−1(δ(γ, ξ)).

PROOF. From assumption(b) one has

V (tkf ) ≤ V (tk∞)e−γ(tkf−t
k
∞

)

and using condition(d) and(c) we arrive at

V (tkf ) ≤ e−γ(tkf−t
k
∞

)(ρ∗ + ξ) , δ(γ, ξ)

Assumption(b) also guarantees thatV (τk+1
0 ) ≤ V (tkf ) and

thusV (τk+1
0 ) ≤ δ(γ, ξ), ∀k ≥ 1. The termδ(γ, ξ) can be

made as small as desired increasing eitherγ or the length of
the interval[tk∞, t

k
f ]. The proof is completed by the relation

α(||x||) ≤ V (x, t), ∀x, t.

It is worth to point out the local character of the stability
criterion in Proposition 1. This is firstly due to condition
(c) and secondly by the synchronization constraints of the
control law and the motion phase of the system (see (3)
and (4)-(5) below). The weak stability relies onalmost non-
increasing functions, as introduced in Brogliatoet al (1997)
(see also Casagrandeet al (2008)). Condition(d) means that
the impacts may be considered as a kind of disturbance that
can be suitably upper bounded. This is certainly the most
crucial point in Proposition 1.

3 Tracking control framework

Throughout the paper, the following trajectories will playa
role in the closed-loop dynamics:

• qnc(·) denotes the desired trajectory that the system
should track if there were no constraints. We suppose that
q1,nc(t)) < 0 for somet, otherwise the problem reduces
to the tracking control of a system with no constraints.

• q∗d(·) denotes the signal entering the control input and
playing the role of the desired trajectory during some parts
of the motion.

• qd(·) represents the signal entering the Lyapunov function
V (·). This signal is set on the boundary∂Φ after the first
impact of each cycle.

These signals may coincide on some time intervals as we

shall see later. Let us remind thatψ̃ =

(

q̃

θ̃

)

= ψ−ψd and

introduce the notations:s1 = ˙̃q + γ2q̃, s2 =
˙̃
θ + γ2θ̃, s =

3



(

s1

s2

)

, q̇r = q̇d−γ2q̃, q = q−q∗d ands1 = q̇+γ2q, where

γ2 > 0 is a scalar gain andψd =

(

qd

θd

)

.

3.1 Controller design

The tracking problem is solved using a generalization of the
controller proposed in (Brogliatoet al, 1995, Equ. (28)) and
the closed-loop stability analysis of the system is based on
Proposition 1. the controller is defined by

{

U = Jθ̈r +K(θd − qd) − γ1s2 −KZ(ψ)

θd = qd +K−1Ur
(4)

whereUr is given by:

Ur =















































U∅
c , Unc = M(q)q̈r + C(q, q̇)q̇r +G(q) − γ1s1

for t ∈ Ω∅
2k

UBk
c = Unc − Pd +Kf(Pq − Pd) for t ∈ ΩBk

k

UBk
c for t ∈ IBk

k before the first impact

UBk

t = M(q)q̈r + C(q, q̇)q̇r +G(q) − γ1s1

for t ∈ IBk

k after the first impact
(5)

whereγ1 > 0 is a scalar gain,Kf > 0, Pq = DTλ andPd =
DTλd is the desired contact force during the persistently
constrained motion. It is clear that duringΩBk

k not all the
constraints are active and, therefore, some components ofλ
andλd are zero. Notice that on impacting phases no force
feedback is applied. AlsoU is a function ofq, θ, q̇, θ̇ only
(no acceleration feedback).

The closed-loop error dynamics onΩ∅
2k is given by:

{

M(q)ṡ1 + C(q, q̇)s1 + γ1s1 +K(q̃ − θ̃) = 0

Jṡ2 + γ1s2 +K(θ̃ − q̃) = 0

The rationale behind the change of structure ofUr after
the first impact, is that it facilitates the calculation of some
upper-bounds which are necessary to recast the closed-loop
stability analysis into Proposition 1 (see section 6 and the
Appendix).

In order to prove the stability of the closed-loop system (1)
(4) (5) we will use the following positive definite function:

V (t, s, ψ̃) =
1

2
sT1M(q)s1 +

1

2
sT2 Js2 + γ1γ2q̃

T q̃

+ γ1γ2θ̃
T θ̃ +

1

2
(q̃ − θ̃)TK(q̃ − θ̃)

(6)

One of the difficulties of the flexible-joint case, compared
with the rigid case, is that the jumps in the functionV (·)
in (6) are less easy to characterize. Indeed the termsθd(·)
and θ̇d(·) are designed from a backstepping procedure and
cannot be given arbitrary values, contrarily to other desired
trajectories. The calculations of various upper bounds (see
the Appendix) are consequently intricate.

3.2 Design of the exogenous trajectory

We consider that the unconstrained desired trajectoryqnc(·)
can be split into two parts, one of them belonging to the
admissible domain (inner part) and the other one outside the
admissible domain (outer part). Throughout the paper we
considerIBk

k = [τk0 , t
k
f ] whereτk0 is chosen by the designer

as the start of the transition phaseIBk

k andtkf is the end of
this phase. During the transition phases the system must be
stabilized on the intersection of some surfacesΣi. This will
be done by mimicking the behavior of a ball falling on the
ground under gravity. Therefore all the components except
the ones that are normal to the constraints belonging toBk
will be frozen. Moreover for robustness reasons one avoids
a tangential approach and imposes some impacts defining
a exogenous signalq∗d that violates the constraints. In the
sequel we deal with the tracking control strategy when the
trajectoryqd(·) is constructed such that:

(i) when no activated constraint the orbit ofqd(·) coincides
with the orbit ofqnc(·) and q̇d(τk0 ) = 0,

(ii) whenp ≤ m constraints are active, its orbit coincides with
the projection of the outer part ofqnc(·) on the surface
of codimensionp defined by the activated constraints.

In order to simplify the presentation we introduce the fol-
lowing notations (where all superscripts(·)k will refer to the
cyclek of the system motion):

• tk0 is the first impact during the cyclek,
• tk∞ is the accumulation point of the sequence{tkℓ}ℓ≥0 of

the impact instants during the cyclek (tkf ≥ tk∞),
• τk1 will be explicitly defined later and represents the in-

stant when the exogenous signalq∗d reaches a given value
chosen by the designer in order to impose a closed-loop
dynamics with impacts during the transition phases,

• tkd is the desired detachment instant.

It is noteworthy thattk0 , t
k
∞, t

k
d are state-dependent whereas

τk1 andτk0 are exogenous and imposed by the designer.

3.3 Design ofq∗d(·) andqd(·) during the phasesIBk

k

During the impacting transition phases the system must be
stabilized on∂Φ. Obviously, this does not mean that all
the constraints have to be activated (i.e.q1i (t) = 0, ∀i =
1, . . . ,m). Let us consider that only the firstp constraints
(eventually reordering the coordinates) define the border of
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Φ where the system must be stabilized. The signalq∗d(·) will
be then defined as follows:

• choosingν > 0 and denotingt′ =
t−τk

0

τk
1
−τk

0

, the components
(

qid
)∗
, i = 1, . . . , p of (q∗d)p are defined as:

(

qid
)∗

(t) =

{

a3(t
′)3 + a2(t

′)2 + a0, t ∈ [τk0 ,min{τk1 ; tk0}]
−νV 1/3(τk0 ), t ∈ (min{τk1 ; tk0}, tkf ]

(7)
whereV (·) is defined in (6) andτk1 is chosen by the
designer such that the limit conditions

(

qid
)∗

(τk1 ) =

−νV 1/3(τk0 ),
(

q̇id
)∗

(τk1 ) = 0 hold, which allows the
computation of the previous coefficients as:

a3 = 2[
(

qi
)nc

(τk0 ) + νV 1/2(τk0 )]

a2 = −3[
(

qi
)nc

(τk0 ) + νV 1/2(τk0 )]

a0 =
(

qi
)nc

(τk0 )

(8)

• all the other components ofq∗d(·) are frozen:

(q∗d)n−p (t) = qnc
n−p(τ

k
0 ), t ∈ (τk0 , t

k
f ] (9)

As we said before, behind the choice ofq∗d(·) is the strat-
egy to assure a robust stabilization on∂Φ by mimicking
the bouncing-ball dynamics. On the other hand this enables
one to compute suitable upper-bounds that will help using
Proposition 1.

In order to limit the deformation of the desired trajectory
q∗d(·) w.r.t. qnc(·) during theIk phases, we impose in the
sequel

||qnc
p (τk0 )|| ≤ ν1 (10)

whereν1 > 0 is chosen by the designer. It is obvious that
a smallerν1 leads to smaller deformation of the desired
trajectory and to smaller deformation of the real trajectory as
we shall see in Section 7. Nevertheless, due to the tracking
error,ν1 cannot be chosen zero. We also note that (10) is a
practical way to chooseτk0 .

During the transition phasesIk we define(qd)n−p (t) =

(q∗d)n−p (t). Assuming a finite accumulation period, the im-
pact process can be considered in some way equivalent to
a plastic impact. Therefore,(qd)p (·) and (q̇d)p (·) are set
to zero on the right oftk0 . It is worth to recall that the first
impact timetk0 of each cyclek, is unknown.

4 Design of the desired contact force during constraint
phases

The desired contact forcePd = D⊤λd must be designed
such that it is large enough to assure the constraint motion
on theΩBk

2k+1-phases. Some contact force components have

also to be decreased at the end of theΩBk

2k+1-phases in order

to allow the detachment. Therefore we need a lower bound
of the desired force which assures both the contact (without
any undesired detachment which can generate other impacts)
during theΩBk

2k+1 phases and a smooth detachment at the

end ofΩBk

2k+1. Dropping the time argument, the dynamics

of the system onΩBk

2k+1 can be written as















M(q)q̈ + F = (1 +Kf)D
⊤
p (λ− λd)

Jṡ2 + γ1s2 +K(θ̃ − q̃) = 0

0 ≤ qp ⊥ λp ≥ 0

(11)

whereF = F (q, q̇, q̃, ˙̃q, θ̃) = −M(q)q̈r+C(q, q̇)s1+γ1s1+

K(q̃− θ̃) andDp = [Ip
...Op×(n−p)] ∈ R

p×n. OnΩBk

2k+1 the
system has to be permanently constrained which is equiv-
alent toqp(·) = 0 and q̇p(·) = 0. In order to assure these
conditions it is sufficient to haveλp > 0.

We denoteM−1(q) =





[M−1(q)]p,p [M−1(q)]p,n−p

[M−1(q)]n−p,p [M−1(q)]n−p,n−p





and C(q, q̇) =





C(q, q̇)p,p C(q, q̇)p,n−p

C(q, q̇)n−p,p C(q, q̇)n−p,n−p



 where

the meaning of each component is obvious. Let us also
denote byKp the matrix made of the firstp rows andp
columns ofK.

Proposition 2 OnΩBk

k the constraint motion of the closed-
loop system (11),(4),(5) is assured if the desired contact
force is defined by

(λd)p , νp +
Kpθ̃p

1 +Kf
− M̄p,p(q)

1 +Kf

(

[M−1(q)]p,pCp,n−p(q, q̇)

+ [M−1(q)]p,n−p(Cn−p,n−p(q, q̇) + γ1In−p)
)

(s1)n−p

(12)

whereM̄p,p(q) =
(

[M−1(q)]p,p
)−1

=
(

DpM
−1(q)DT

p

)−1

is the inverse of the so-called Delassus’ matrix Moreau
(1988) andνp ∈ R

p, νp > 0.

PROOF. It is noteworthy that the third relation in (11) im-
plies onΩBk

2k+1 (see Glocker (2001))

0 ≤ q̈p ⊥ λp ≥ 0 ⇔ 0 ≤ Dpq̈ ⊥ λp ≥ 0. (13)

From (11) one easily gets:

q̈ = M−1(q)
[

− F + (1 +Kf )D
⊤
p (λ− λd)p

]

Combining the last two equations we obtain the following
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LCP with unknownλ:

0 ≤ DpM
−1(q)

[

− F − (1 +Kf )D
⊤
p (λd)p

]

+(1 +Kf )DpM
−1(q)D⊤

p λp ⊥ λp ≥ 0
(14)

Since(1+Kf)DpM
−1(q)D⊤

p > 0 and hence is a P-matrix,
the LCP (14) has a unique solution and one deduces that
λp > 0 if and only if

M̄p,p(q)

1 +Kf
DpM

−1(q)
[

− F − (1 +Kf)D
T
p (λd)p

]

< 0 ⇔

(λd)p > −M̄p,p(q)

1 +Kf
DpM

−1(q)F ⇔ (15)

(λd)p = νp −
M̄p,p(q)

1 +Kf
DpM

−1(q)F

with νp ∈ R
p, νp > 0. SinceF = −M(q)q̈r +C(q, q̇)s1 +

γ1s1 + K(q̃ − θ̃), (q̈r)p = 0 and (s1)p = 0, (15) rewrites
as (12) and the proof is finished. It is noteworthy that the
solution of the LCP (14) is

λp =
M̄p,p(q)

1 +Kf
DpM

−1(q)
[

F + (1 +Kf)D
⊤
p (λd)p

]

= (λd)p +
M̄p,p(q)

1 +Kf
DpM

−1(q)F = νp

(16)

where (12) has been used.

5 Strategy for take-off at the end of constraint phases
ΩBk

2k+1

In this Section we are interested in finding the conditions on
the control signalUBk

c that assures the take-off at the end of
constraint phasesΩBk

2k+1. As we have already seen before, the

phaseΩBk

2k+1 corresponds to the time interval[tkf , t
k
d). The

dynamics on[tkf , t
k
d) is given by (11) and the system is per-

manently constrained, which impliesqp(·) = 0 and q̇p(·) =
0. Let us also consider that the firsth constraints (h < p)
have to be deactivated. Thus, the detachment takes place at
tkd if q̈h(t

k+
d ) > 0 which requiresλh(t

k−
d ) = 0. The lastp−h

constraints remain active which meansλp−h(t
k−
d ) > 0.

To simplify the notation we drop the time argument in many
equations of this section. We decompose the LCP matrix
(which is the Delassus’ matrix multiplied by1 +Kf ) as:

(1 +Kf )DpM
−1(q)DT

p =

(

A1(q) A2(q)

A2(q)
T A3(q)

)

(17)

with A1 ∈ R
h×h, A2 ∈ R

h×(p−h) andA3 ∈ R
(p−h)×(p−h)

Proposition 3 The closed-loop system (11) (4) (5) is per-
manently constrained on[tkf , t

k
d) and a smooth detachment

is guaranteed on[tkd, t
k
d + ǫ) (ǫ is a small positive real num-

ber chosen by the designer) if

(i)

(

(λd)h (tkd)

(λd)p−h (tkd)

)

=

(

(

A1 −A2A
−1
3 AT2

)−1 (
bh −A2A

−1
3 bp−h

)

− C1(t− tkd)

C2 +A−1
3

(

bp−h −AT2 (λd)h
)

)

(18)
where

bp , b(q, q̇, U∅
c ) , −DpM

−1(q)F ≥ 0

andC1 ∈ R
h, C2 ∈ R

p−h such thatC1 ≥ 0, C2 > 0.
(ii) On [tkd, t

k
d + ǫ)

q∗d(t) = qd(t) =

(

q∗h(t)

qnc
n−h(t)

)

,

whereq∗h(·) is a twice-differentiable function such that

q∗h(t
k
d) = 0, q∗h(t

k
d + ǫ) = qnc

h (tkd + ǫ),

q̇∗h(t
k
d) = 0, q̇∗h(t

k
d + ǫ) = q̇nc

h (tkd + ǫ)
(19)

and q̈∗h(t
k+
d ) = a > max

(

0, −A1(q)(λd)h(t
k−
d )
)

.

PROOF. See Appendix .1.

6 Closed-loop stability analysis

To simplify the notationV (t, s(t), ψ̃(t)) is denoted asV (t).
In order to introduce the main result of this paper we make
the next assumption, which is verified in practice for dissi-
pative systems withe ∈ [0, 1).

Assumption 1 The controllerU in (4) (5) assures that all
the transition phases are finite.

Lemma 1 Consider the closed-loop system (1) (4) (5) with
(q∗d)p(·) defined on the interval[τk0 , t

k
0 ] as in (7)-(9). Let us

also suppose that conditionb) of Proposition 1 is satisfied.
The following inequalities hold:

||q̃(tk−0 )|| ≤
√

V (τk0 )

γ1γ2
, ||s1(tk−0 )|| ≤

√

2V (τk0 )

λmin(M(q))
,

||θ̃(tk−0 )|| ≤
√

V (τk0 )

γ1γ2
, ||s2(tk−0 )|| ≤

√

2V (τk0 )

λmin(J)
,

(20)
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and

|| ˙̃q(tk−0 )|| ≤
(√

2

λmin(M(q))
+

√

γ2

γ1

)

V 1/2(τk0 )

|| ˙̃θ(tk−0 )|| ≤
(√

2

λmin(J)
+

√

γ2

γ1

)

V 1/2(τk0 )

(21)

Furthermore, iftk0 ≤ τk1 one has

||(qd)p(tk−0 )|| ≤ ǫ+

√

V (τk0 )

γ1γ2
,

||(q̇d)p(tk−0 )|| ≤ k̄ + k∗V 1/6(τk0 ) (22)

||(q̈d)p(tk−0 )|| ≤ 6
√

2
(

||qnc
p (τk0 )|| + √

pνV 1/2(τk0 )
)

||(q(3)d )p(t
k−
0 )|| ≤ 6

√
2
(

||qnc
p (τk0 )|| + √

pνV 1/2(τk0 )
)

whereǫ is the real constant fixed in Definition 1 andk̄, k∗ >
0 are some constant real numbers that will be defined in the
proof.

PROOF. See Appendix .2.

It is noteworthy thatq(·) is a continuous signal. Nevertheless
q̇(·) presents discontinuities of the first kind at the impact
times. From (5) one deduces that the controllerUr jumps
also at the impact times generating a jump in the desired
signalθd(·). Therefore, in order to study the evolution of the
Lyapunov function candidate (6) one has to analyzeσθ̃(·)
andσ ˙̃

θ
(·).

Lemma 2 The controller U in (4) (5) guarantees that
||σθ̃(·)||, ||σ ˙̃

θ
(·)|| ∈ S(1) ≡ L∞.

PROOF. See Appendix .3.

We now state the main result of this paper.

Theorem 1 Let Assumption 1 hold,e = 0 and q∗d(·) de-
fined as in (7)-(9). The closed-loop system (1) (4) (5) ini-
tialized onΩ0 such thatV (τ0

0 ) ≤ 1, satisfies the require-
ments of Proposition 1 and is therefore practically weakly
stable with the closed-loop statex(·) = [ψ̃(·), s(·)] and

R =

√

e−γ(tk
f
−tk

∞
)(ρ∗ + ξ)/ρ̄ whereρ∗, ρ̄ and ξ are de-

fined in the proof.

PROOF. See Appendix .4.

7 Illustrative example

Some experimental results are obtained by simulating
the behavior of a planar two-link flexible-joint manip-
ulator in presence of two constraints. As in Morărescu
and Brogliato (2008) we impose an admissible domain
Φ = {(x, y) | y ≥ 0, 0.7 − x ≥ 0}. Let us also consider an
unconstrained desired trajectoryqnc(·) whose orbit is given
by the circle{(x, y) | (x−0.7)2+y2 = 0.5}. It violates both
constraints. In other words, the two-link planar manipulator
must track a quarter-circle; stabilize on and then follow the
line Σ1 = {(x, y) | y = 0}; stabilize on the intersection
of Σ1 andΣ2 = {(x, y) | x = 0.7}; detach fromΣ1 and
follow Σ2 until the unconstrained circle re-entersΦ and fi-
nally take-off fromΣ2 in order to repeat the previous steps.
The task representation here is given by (see (2))
B2k = ∅,m2k = 1, B2k,1 = {1}, B2k+1 = {1}, m2k+1 =
2, B2k+1,1 = {1, 2}, B2k+1,2 = {2}. The numerical values
used for the dynamical model arel1 = l2 = 0.5m, m1 =
m2 = 1kg, I1 = I2 = 0.5kg.m2, J1 = J2 = 0.1kg.m2

and the impacts are imposed byν = 10 in (7) (8). The stiff-
ness matrix is defined byK = diag(2000N/m, 2000N/m).
Let us say that the quarter-circle is completely tracked in
one round. We set the period of each round to 10 seconds
and we simulate the dynamics during 6 rounds using the
Moreau’s time-stepping algorithm of the SICONOS soft-
ware platform (Acary and Brogliato (2008)). We set the
controller gainsγ1 = 10, γ2 = 1 and we chooseν1 = 0.1
(like this we implicitly setτk0 see (10)) in order to better
point out the deformation ofqd(·) on the transition phases
(Figure 1 (left)). In Figure 2 we have shifted backward the
desired trajectory onIB2

2 to highlight that the Lyapunov
function at the instantτk0 is smaller whenk increases.
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Fig. 1. Left:The trajectory of the system during 6 rounds; Right:
The variation of the almost non-increasing Lyapunov function
during the first round.

The behavior of the system during one round is emphasized
in Figure 1 (right) and the shape of the control law is depicted
in Figure 3.

7.1 Compensation of flexibilities

As noticed in Brogliatoet al (2007) the control laws de-
signed for rigid systems (the Slotine & Li control and its
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Fig. 3. The control law applied toθ1 during the first round.

adaptation for systems with one or multiple constraints Bour-
geot and Brogliato (2005); Morărescu and Brogliato (2008))
behave well for manipulators with large joint stiffness (see
also Figure 4 for the multi-constraint case).
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Fig. 4. The variation of the end-effector coordinates using
the rigid controller when the stiffness matrix is defined by
K = diag(5000N/m, 5000N/m).

In order to highlight the importance of flexibilities’ com-
pensation we keep the numerical values used in the previous
Subsection with one exception, the stiffness matrix is defined
by K = diag(200N/m, 200N/m). Using the control with
no flexibility compensation (named the ”rigid controller”)
one obtains a completely deteriorated behavior (see Figure
5). Furthermore, the control signal oscillates very much af-
ter the first impact (Figure 6).
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Fig. 5. The variation of the end-effector coordinates usingthe rigid
controller
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Fig. 6. The rigid control applied toθ1 during the first round.

On the other hand using the controller designed in this paper
the desired trajectory is well tracked (see Figure 7) and the
control signal is quickly stabilized during theIk phases (see
Figure 8).
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Fig. 7. The variation of the end-effector coordinates usingwith
the controller (4) (5).
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Fig. 8. The control law applied toθ1 during the first round.

More numerical results can be found in Morărescuet al
(2008)
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8 Conclusions

In this paper we have proposed a solution for the control
of nonsmooth Lagrangian systems with flexible-joint. All
the ingredients entering the dynamics (desired trajectories,
desired contact forces, exogenous instants playing a role
in the definition of the control law) are explicitly defined.
Numerical simulations are done with the SICONOSsoftware
platform in order to illustrate the results.

.1 Proof of Proposition 3

The necessary condition for take-off after the instanttkd is
given byλh(t

k−
d ) = 0 andλp−h(t

k−
d ) > 0. Precisely, we

impose a positive contact force on[tkf , t
k
d) with the firsth

components approaching 0 whent approachestkd. From (17)
and (11) it is straightforward that the LCP (13) rewrites as:

0 ≤
(

λh

λp−h

)

⊥
(

bh +A1(λ− λd)h +A2(λ− λd)p−h

bp−h +AT2 (λ− λd)h +A3(λ− λd)p−h

)

≥ 0

(.1)

Since(1 + Kf)DpM
−1(q)DT

p > 0, the LCP (13) (or the
equivalent one (.1)) has a unique solution. Imposingλh = 0
one gets

0 ≤ λp−h ⊥ bp−h −AT2 (λd)r +A3(λ− λd)p−h ≥ 0

with the solution

λp−h = −A−1
3

(

bp−h −AT2 (λd)h −A3(λd)p−h
)

(.2)

Thusλp−h > 0 is equivalent to

(λd)p−h > A−1
3

(

bp−h −AT2 (λd)h
)

which leads to the second part of definition (18). Further-
more, replacing(λd)p−h in (.2) we getλp−h = C2 and
bh+A1(λ−λd)h+A2(λ−λd)p−h ≥ 0 yields the first part
of definition (18). Consequently the solution of the LCP (.1)

is λp =

(

0

C2

)

∈ R
p when(λd)p is defined by (18).

The jumps in the Lyapunov function are avoided during the
detachment phase using a twice differentiable desired tra-
jectory qd(·) defined as in item(ii) of the Proposition. In
order to assure a smooth detachment (without impacts) on
[tkd, t

k
d + ǫ) we need a large enough positive desired accel-

eration(q̈d)h. At tk−d one has

q̈h(t
k−
d ) = −DhM

−1(q)
[

F + (1 +Kf)D
⊤
h (λd)h

]

while at tk+d one hasq̈p−h(t
k+
d ) = DhM

−1(q)F . Since
(q̈d)h(t

k−
d ) = 0 we arrive at

σq̈h(tk
d
) = (q̈d)h(t

k+
d ) +A1(q)(λd)h(t

k−
d )

Therefore q̈1d(t
k+
d ) has to be positive and large enough

in order to compensate for−A1(q)(λd)h(t
k−
d ) at the

instant tkd. Consequently one defines̈q∗1(tk+d ) = a >

max
(

0, −A1(q)(λd)h(t
k−
d )
)

and the detachment is as-
sured.

.2 Proof of Lemma 1

From (6) we can deduce thatV (tk−0 ) ≥ γ1γ2||q̃(tk−0 )||2,
V (tk−0 ) ≥ 1

2s
⊤
1 (tk−0 )M(q(tk−0 ))s1(t

k−
0 ) and

V (tk−0 ) ≥ γ1γ2||θ̃(tk−0 )||2, V (tk−0 ) ≥ 1

2
s⊤2 (tk−0 )Js2(t

k−
0 )

Since conditionb) of Proposition 1 is satisfied one has
V (τk0 ) ≥ V (tk−0 ) and (20) becomes trivial. Let us recall

that s1(t) = ˙̃q(t) + γ2q̃(t) and s2(t) =
˙̃
θ(t) + γ2θ̃(t)

which implies || ˙̃q(tk−0 )|| ≤ ||s1(tk−0 )|| + γ2||q̃(tk−0 )|| and

|| ˙̃θ(tk−0 )|| ≤ ||s2(tk−0 )|| + γ2||θ̃(tk−0 )|| respectively. Com-
bining this with (20) we derive (21).

The proof of (22) follows the ideas presented in Morărescu
and Brogliato (2008). Roughly the first inequality in (22)
is based on the definition ofpǫ-impacts (see Definition 1).
The remaining inequalities in (22) are based on the partic-
ular definition of (q∗d)p(·) (see (7) (8)). The upper bound
of ||(q̇d)p(tk−0 )|| was derived in Morărescu and Brogliato

(2008) withk̄ =
6
√
pν1ǫ

τk1 − τk0
and

k∗ =
6
√
p

τk1 − τk0

√

(

1√
γ1γ2

+ ν

)

(ν + ν1) + ǫν

Finally, differentiating (7) two and three times respectively
one obtains

q̈id(t
k−
0 ) = lim

t→tk
0
,t<tk

0

6((qi)nc(τk0 ) + νV 1/2(τk0 ))(2t′ − 1)

≤ lim
t→tk

0
,t<tk

0

6((qi)nc(τk0 ) + νV 1/2(τk0 ))

(qid)
(3)(tk−0 ) = lim

t→tk
0
,t<tk

0

6((qi)nc(τk0 ) + νV 1/2(τk0 ))

which leads to the upper bounds of||(q̈d)p(tk−0 )|| and

||(q(3)d )p(t
k−
0 )|| respectively.
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.3 Proof of Lemma 2

Since θ(·), θ̇(·) are continuous onR+ and θd(·), θ̇d(·)
are continuous onR+ \ {tk0 | k ∈ Z} one deduces
that σθ̃(t) = 0 = σ ˙̃

θ
(t), ∀t 6= tk0 . Therefore Lemma 2

holds if there exist some real constants that upper bound
||σθ̃(tk0)||, ||σ ˙̃

θ
(tk0)||, ∀k ∈ Z. The definition ofθd(·) (see

(4)) allows us to write

σθ̃(t
k
0) = −σθd

(tk0) = −σqd
(tk0) −K−1σUr

(tk0)

=

(

(qd)p(t
k−
0 )

0

)

−K−1σUr
(tk0)

σ ˙̃
θ
(tk0) = −σθ̇d

(tk0) = −σq̇d
(tk0) −K−1σU̇r

(tk0)

=

(

(q̇d)p(t
k−
0 )

0

)

−K−1σU̇r
(tk0)

(.3)

Therefore

||σθ̃(tk0)|| ≤ ||(qd)p(tk−0 )|| + λmax(K
−1)||σUr

(tk0)||
||σ ˙̃

θ
(tk0)|| ≤ ||(q̇d)p(tk−0 )|| + λmax(K

−1)||σU̇r
(tk0)||

Using (5) one obtains

σUr
(tk0) = M(q)σq̈r

(tk0) + σC(q,q̇)q̇r
(tk0) − γ1σs1(t

k
0)

From (9) one has(q̇d)n−p(t) = 0, (q̈d)n−p(t) = 0 ∀t ∈
[τk0 , t

k
f ]. Moreover, as we have mentioned at the end of

Section 3,(qd)p(·), (q̇d)p(·) and implicitly (q̈d)p(·) are set
to zero on(tk0 , t

k
f ]. Thus taking into account the relation

||q̇(tk+0 )|| ≤ w||q̇(tk−0 )|| (where w =
√

λmax(M)
λmin(M) ) and

Property 1 one arrives at

||σq̈r
(tk0)|| ≤ ||(q̈d)p(tk−0 )|| + γ2||(q̇d)p(tk−0 )||

+ γ2(1 + w)||q̇(tk−0 )||
||σC(q,q̇)q̇r

(tk0)|| ≤ ||σC(q,q̇)q̇r(t
k−
0 )|| + ||C(q, q̇(tk+0 ))σq̇r

(tk0)||
∈ S

(

2(1 + γ2)||q̇(tk−0 )||||(q̇d)p(tk−0 )|| + γ2||(qd)p(tk−0 )||
)

||σs1(tk0)|| ≤ (1 + w)||q̇(tk−0 )|| + ||(q̇d)p(tk−0 )||
+ γ2||(qd)p(tk−0 )||

(.4)

When V (τk0 ) ≤ 1, Lemma 1 states that||(q̇d)p(tk−0 )||,
||(qd)p(tk−0 )|| and ||q̇(tk−0 )|| are bounded by some con-
stants. Thus all the quantities in (.4) are bounded by some
constants independent of the cycle indexk. This means that
||σUr

(tk0)|| is bounded by a constant independent of the
cycle index, which implies the same for||σθ̃(tk0)||. In other
words||σθ̃(t)|| ∈ S(1).

Differentiating (5) one obtains

U̇r(t) = M(q)q(3)r (t) + Ṁ(q)q̈r(t) + C(q, q̇)q̈r(t)

+ Ċ(q, q̇)q̇r(t) +
∂G

∂q
q̇(t) − γ1ṡ1(t)

(.5)

whereṀ, Ċ stand fordMdt and dC
dt respectively.

It is clear that

Ċ(q, q̇)(t) =
∂C

∂q
(q, q̇)q̇(t) +

∂C

∂q̇
(q, q̇)q̈(t)

and using Properties 1 and 3 one derives

||Ċ(q, q̇)(t)|| ∈ S(||q̇(t)||2 + ||q̈(t)||)

Furthermore, Lemma 1 and the first equation in (1) as-
sure that ||q̇(t)||2, ||q̈(t)|| ∈ S(1). Thus ||Ċ(q, q̇)(·)||,
||σĊ(q,q̇)(·)|| ∈ S(1) and one derives that

||σĊ(q,q̇)(t
k
0)q̇r(t

k
0)|| ≤ ||σĊ(q,q̇)(t

k
0)||.||q̇r(tk+0 )||

+ ||Ċ(q, q̇)(tk−0 )||.||σq̇r
(tk0)|| ∈ S(1)

(.6)

Property 1 allows us to replacėM(q) byC(q, q̇)+C⊤(q, q̇)
which leads to

Ṁ(q)q̈r(t) + C(q, q̇)q̈r(t) = (2C(q, q̇) + C⊤(q, q̇))q̈r(t) ⇒
||Ṁ(q)q̈r(t) + C(q, q̇)q̈r(t)|| ≤ 3||C(q, q̇)||.||q̈r(t)|| ⇒
||Ṁ(q)q̈r(t) + C(q, q̇)q̈r(t)|| ∈ S(||q̇||.||q̈r(t))||)

Since||q̈r(t))|| ≤ ||q̈d(t)||+ γ2|| ˙̃q(t)||, using Lemma 1 one
gets

||Ṁ(q)q̈r(t) + C(q, q̇)q̈r(t)|| ∈ S(1) (.7)

The definitions (7)-(9) and the first equation in (1) assure
that ||q(3)r (t)|| ∈ S(1). Therefore

||M(q)q(3)r (t)|| ≤ λmax(M)||q(3)r (t)|| ∈ S(1) (.8)

Property 2 states that||∂G∂q || ∈ S(1), which implies

∣

∣

∣

∣

∣

∣

∂G
∂q q̇(t)

∣

∣

∣

∣

∣

∣ ∈ S(||q̇(t)||)
||q̇(t)|| ∈ S(1)







⇒
∣

∣

∣

∣

∣

∣

∣

∣

∂G

∂q
q̇(t)

∣

∣

∣

∣

∣

∣

∣

∣

∈ S(1) (.9)

Introducing (.6)–(.9) in (.5) and taking into account the last
inequality in (.4) we arrive at||σU̇r

(t)|| ∈ S(1) and thus
||σ ˙̃θ

(t)|| ∈ S(1).

.4 Proof of Theorem 1

First we observe that conditionsa) andc) of Proposition 1
hold when the hypothesis of the Theorem are verified. Thus
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Theorem 1 holds if the conditionsb), d) of Proposition 1
are verified.
b) Using thatṀ(q)− 2C(q, q̇) is a skew-symmetric matrix
(see Property 1), straightforward computations show that
on R+ \ ⋃k≥0[t

k
0 , t

k
f ] the time derivative of the Lyapunov

function is given by

V̇ (t) = − γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2 − γ1|| ˙̃θ||2 − γ1γ

2
2 ||θ̃||2

− γ2(q̃ − θ̃)⊤K(q̃ − θ̃) + (1 +Kf)s
⊤
1 D

⊤
p (λ − λd)p

= − γ1|| ˙̃q||2 − γ1γ
2
2 ||q̃||2 − γ1|| ˙̃θ||2 − γ1γ

2
2 ||θ̃||2

− γ2(q̃ − θ̃)⊤K(q̃ − θ̃) ≤ 0

where we have used the fact that(qd)p ≡ 0, (q̇d)p ≡ 0,
qp ≡ 0, q̇p ≡ 0, thus(s1)p ≡ 0 on constraint phases and
λp ≡ 0, (λd)p ≡ 0 on free-motion phases. On the other
hand

V (t)≤ λmax(M(q))

2
||s1||2 +

λmax(J)

2
||s2||2 + γ1γ2||q̃||2

+ γ1γ2||θ̃||2 +
1

2
(q̃ − θ̃)⊤K(q̃ − θ̃)

≤ γ−1[γ1|| ˙̃q||2 + γ1γ
2
2 ||q̃||2 + γ1|| ˙̃θ||2 + γ1γ

2
2 ||θ̃||2

+ γ2(q̃ − θ̃)⊤K(q̃ − θ̃)]

where

γ−1 = max

{

λmax(M(q))
1 + 2γ2

2γ1
;

λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2
;

1

2γ2

}

> 0

with M(q) =

(

M(q) 0n×n

0n×n J

)

. Therefore V̇ (t) ≤

−γ−1V (t) on R+ \⋃k≥0[t
k
0 , t

k
f ].

d) There is only one impact during each transition phase
sincee = 0 and with the choice ofUBt in (5). Therefore
V (tk∞) = V (tk−0 )+σV (tk0) ≤ V (τk0 )+σV (tk0). We compute
now the jump of the Lyapunov function at the impact time

tk0 . Let K =

(

K −K
−K K

)

andψ = (q⊤, θ⊤)⊤.

V (tk+0 ) − V (tk−0 ) = γ1γ2σψ̃⊤ψ̃(tk0) +

1

2

(

s⊤(tk+0 )M(q)s(tk+0 ) − s⊤(tk−0 )M(q)s(tk−0 )
)

+

1

2

(

ψ̃ ⊤(tk+0 )Kψ̃(tk+0 ) − ψ̃ ⊤(tk−0 )Kψ̃(tk−0 )
)

(.10)

Replacingψ̃(tk+0 ) by ψ̃(tk−0 ) + σψ̃(tk0), the second term of
the right hand side of (.10) becomes

1

2

(

2ψ̃ ⊤(tk−0 )Kσψ̃(tk0) + σ ⊤
ψ̃

(tk0)Kσψ̃(tk0)
)

which is upper bounded by

λmax(K)(||ψ̃(tk−0 )|| · ||σψ̃(tk0)|| + 1

2
||σψ̃(tk0)||2)

Therefore Lemma 1 and 2 imply that there exists a real
positive constantc1 such that

1

2

(

ψ̃ ⊤(tk+0 )Kψ̃(tk+0 ) − ψ̃ ⊤(tk−0 )Kψ̃(tk−0 )
)

≤ c1, ∀k ≥ 0

(.11)
On the other hand

s⊤(tk+0 )M(q)s(tk+0 ) − s⊤(tk−0 )M(q)s(tk−0 ) =

σs⊤
1
M(q)s1 (t

k
0) + σs⊤

2
Js2(t

k
0)

It is easy to see that

σs⊤
2
Js2(t

k
0) = 2s⊤2 (tk−0 )Jσs2(t

k
0) + σ⊤

s2(t
k
0)Jσs2(t

k
0)

and using Lemma 1, Lemma 2 and the relationσs2(t
k
0) =

σ ˙̃
θ
(tk0)+γ2σθ̃(t

k
0) one deduces that there exist a real positive

constantc2 such that

σs⊤
2
Js2(t

k
0) ≤ c2, ∀k ≥ 0 (.12)

As proved in Morărescu and Brogliato (2008) there exists a
real positive constantc3 such that

σs⊤
1
M(q)s1 (t

k
0) + γ1γ2σq̃⊤ q̃(t

k
0) ≤ c3, ∀k ≥ 0 (.13)

Finally, Lemma 2 assures the existence ofc4 ∈ R+ such that

γ1γ2σθ̃⊤θ̃(t
k
0) ≤ c4, ∀k ≥ 0 (.14)

In conclusion, inserting (.11), (.12), (.13) and (.14) in (.10)
one gets

V (tk+0 ) − V (tk−0 ) ≤ c1 + c2 + c3 + c4, ∀k ≥ 0 (.15)

Thus condition d) of Proposition 1 is verified for
ρ∗ = 1, ξ = c1 + c2 + c3 + c4 and the closed-loop
system (1) (4) (5) is practically weakly stable with
R = α−1

(

e−γ(tkf−t
k
∞

)(1 + ξ)
)

.
Let us consider̄ρ = min{λmin(M(q))/2; γ1γ2}. Defin-
ing α : R+ 7→ R+, α(ω) = ρ̄ω2 we get α(0) =
0, α(||[s(t), q̃(t)]||) ≤ V (t, s, q̃) and the proof is finished.
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