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Abstract

In this study one considers the tracking control problem afaess of nonsmooth Lagrangian systems with flexible joimis subject to

frictionless unilateral constraints. The task under coesition consists of a succession of free-motion and cainstl-motion phases.
A particular attention is paid to impacting and detachmemages. A passivity-based switching controller that alldwsextend the

stability analysis described in our previous works to theecaf systems with lumped flexibilities, is proposed. Nuwedrtests show the
effectiveness of the controller.
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1 Introduction al (1995). More precisely, this paper focuses on the prob-
lem of tracking control of complem_entarity_ Lag_rqngian sys-

The control of systems undergoing impacts has received at-1€MS Moreau (1988), encompassing flexible-joint manipu-

tention in the literature Albu-Schaffet al (2004); Leeet Iator'sullaject to frictionless unilateral constraints, \saaly-

al (2003); Pagilla (2001, 2004); van Vet al (2000); Xu ~ hamics is supposed to be expressed as:

et al (2000). In parallel with such works focusing solely on

the collision phase, more general studies concerning #ie st M(q)i+C(q,q)i+G(q) + K(g—0) = DT X

bility and tracking control of nonsmooth unilaterally con- .

strained mechanical systems have been published Bents- JO+ K0 —q)-KZ(q.0)=U (1)
man and Miller (2007b); Bourgeot and Brogliato (2005); >0, (@HTA=0,A>0

Brogliatoet al(1997); Galeangt al (2008); Leine and van de Collisi |

Wouw (2008a,b); Menini and Tornambé (2001a,b); Miller ollision ruie

and Bentsman (2006); Tornambé (1999); Yu and Pagilla
(2006). Until now these works have been limited to per- whereqg € R" is the vector of rigid links angle$, € R" is
fectly rigid systems. The consideration of flexibilitiesiris- the vector of motor shaft angles/(q) = M”(q) € R™*"
portant. On one hand impacts may damage systems withis a positive definite inertia matrix('(¢, ¢) is the matrix
too small flexibility, whereas flexibility can reduce the dam  containing Coriolis and centripetal force§,(¢) contains
age by impact absorption Wolf and Hirzinger (2008). On conservative forcesy € R™ is the vector of contact forces
the other hand, impact phenomena may excite vibrational (or Lagrangian multipliers) associated to the constraints
modes, which is not desirable in practice and may destabi- R"*" is the diagonal and constant matrix of actuator inertia,
lize the system (see Section 7) when the flexibilities are too K = K > 0, K € R™*" represents the stiffness matrix,
large. Introducing flexibility however is challenging fdre U € R" is the vector of generalized torque inputs, and
control design. In this work it is shown that the trackingeon ¢' = Dq € R™ with D = [I,5, 0., (n—m)]- A cONstrainti
trol framework developed in Bourgeot and Brogliato (2005); is said to beactiveif ¢; = 0, andinactiveif ¢! > 0. The
Brogliatoet al (1997); Morarescu and Brogliato (2008) can dynamicsin (1) is a simplified dynamics obtained from more
be adapted to the flexible-joint case, using the passivity- general Lagrangian systems using a generalized coordinate
based motion control solutions proposed in Brogliato transformation as in McClamroch and Wang (1988), that is
supposed to hold globally in the configuration space. Notice

Email addresses: that a nonlinear stiffnes& Z(q, ¢) may appear due to the
Const antin. Morarescu@nri al pes. fr transformation. Details on the transformation may be found
(Constantin-Irinel Morarescu), in Morarescuet al (2008).
bernard. brogliato@nri al pes. fr (Bernard Brogliato). General notations and definitions.|| - || is the Euclidean
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norm,b, € R? andb,_, € R"~? are the vectors formed
with the firstp and the last, — p components ob € R",
respectivelyA, i, (-) andX,,... (-) represent the smallest and
the largest eigenvalues, respectively. The time-devigatf

a function f(-) is denoted byf(-). For any functionf(-)
the limit to the right at the instant will be denoted by
f(T) and the limit to the left will be denoted by(¢™)
when they exist. A simple jump of the functigf{-) at the
momentt = ¢, is denotedo(t,) = f(t]) — f(t;). For

a real valued functiorf : R™ — R one denotes by (f)
the set of all real valued functiog : R™ — R such that
there exists a positive real constank ¢ < oo satisfying
g(t) < cf(t), Vt > 0. One writesg € S(1) = L™ if
f@) = 1,vt > 0.0, is then-vector with entries 0, and
Opnxm iS then x m-zero matrix.Z,, is them x m identity
matrix A vector is considered positive if all its component
are positive. A Linear Complementarity Problem (LCP) with
unknown)\ is a systemA > 0, AA+b > 0, AT (AA+b) = 0,
which is compactly rewritten a8 < A L AX+b > 0.
Such an LCP has a unique solution forzaif and only if A

is a P-matrix Facchinei and Pang (2003). Positive definite
matrices (not necessarily symmetric) are P-matrices.

The admissible domain associated to the system (1)

A

is the closed setp {(g,0) € R?™ | ¢ > 0} =
(ﬂ1gigm (I)i) x R™ where®;, = {q € R" | ¢} > 0}.

In the sequel(ﬂlgigm <I>7;) will be denoted byd C R”".

Notice thatm > 1 allows both simple impacts (when one

constraint is involved) and multiple impacts (when several
constraints are involved). Let us introduce the following
notion of p.-impact.

Definition 1 Lete > 0 be a fixed real number. We say that
a p.-impact occurs at the instantif

(@), <e. J[att)=0

i€l
wherel C {1,...,m}, card(I) = p.

If e =0 all p surfacess; = 0%, = {g € R" | ¢} =0}, i €
I are struck simultaneously. When> 0 the system collides
0% in a neighborhood of the intersectign, ., ¥;.

A collision (or restitution) rule is a relation between the
post-impact and the pre-impact velocities. Among the vari-
ous models of collision rules, Moreau’s rule is an extension
of Newton’s law which is energetically consistent Mabrouk
(1998) and is numerically tractable Acary and Brogliato
(2008). In the special coordinates of (1) this reads as
Gl (tT) = —eql(t™) whengqy;(t) = 0 and ¢} (t7) < 0,
where: € {1, ...,m} ande € [0, 1]. Under mild conditions

on the data, the solutions are such that positighg and

6(-) are absolutely continuous functions of time, whereas
the generalized velocity is right continuous of local boedd
variation. Well-posedness results may be found in Dzonou

and Marques (2007); Mabrouk (1998) and references
therein. The continuity of)(-) holds Brogliato (1999) and
will be used in the stability analysis developed in section 6

The structure of the paper is as follows: in Section 2 one
presents some basic concepts and necessary prerequisites.
Section 3 is devoted to the controller design. In this sec-
tion one also defines the desired (or "exogenous”) trajecto-
ries entering the dynamics. The desired contact-force that
must occur on the phases where the motion is persistently
constrained, is explicitly defined in Section 4. Section 5 fo
cuses on the strategy for take-off at the end of the constrain
phases. The main results related to the closed-loop siabili
analysis are presented in Section 6. A numerical example ob-
tained with the 8oNos platform and concluding remarks
end the paper.

2 Basic concepts
2.1 Typical task

Since the system’s dynamics does not change when the num-
ber of active constraints decreases one gets the following

typical task representation:
) ) 2)

mi
e = (o uapeu (Ut
k>0 i=1
By, C By1; Bit1 C Bimy, C Biymy—1 C - B

where the superscripB;, represents the set of active con-
straints B, = {i € {1,...,m} | F;(X) = 0}) during the
corresponding motion phase, aﬁ,ﬁk denotes the transient
between two(2;, phases when the number of active con-
straints increases. We note that = () corresponds to free-
motion. When the number of active constraints decreases no
transition phases are needed, thus, for the sake of siryplici
and without any loss of generality we replacg", QQB,jH

By

by Q,,:,, and the typical task representation simplifies as:

)

Bk+1 - BZ

R = | (08 v uoth,,
k>0
By C B,’w

3)

Since the tracking control problem involves no difficultyrdu
ing theQ,-phasesthe central issue is the study of the pas-
sages between them (the design of transition phasesd
detachment conditions), and the stability of the trajeieer
evolving along (3)i.e. an infinity of cycles). Throughout
the paper, the sequenf&? U 1,7+ U, %, | will be referred

to as the cyclé of the system’s evolution.

2.2 System properties

For kinematic chains with prismatic or revolute joints the
following properties hold.



Property 1 The matrix [4 M (q)] — 2C(q,q) is skew-  d) V(tk) < p*V(7§) + € wherep*, £ € R,

symmetric andV (¢) £ £M(q) = C(q,4) + C" (q,9). _ .

Furthermore the matrixC(q, ¢) is a smooth function of ThenV (7)) < 6(v,€), Vk > 1 whered(v,£) is a function

and ¢ with the well-known propertie8C(q, ¢)|| € S(||4]|) that can be made arbitrarily small by increasing either the

andC(q,y)z = C(q,2)y, Y q,y,z € R". value ofy or the length of the time interv@l , ¢ f]. Thus, the
system is practically weakly stable with= a~!(5(v, £)).

Property 2 The conservative forces vect@(q) is such that

‘OG(")’ € S(1) which implies by the mean value theorem

PROOF. From assumptioffb) one has
1G(q1) — G(a2)l] € S(llar — @2[]), Va1, ¢2 € R™

V(th) < V (ke (it
Property 3 The matnxC(q ¢) is such thatHaC(q’q) (t7) < Vi)

S(lgll) and || 25422

|
‘ € 5(1). and using conditiorfd) and(c) we arrive at

kY « o= v(#5—tE) ( * A
2.3 Stability analysis criteria Vity) < et (p" +8) =0(3,)

k+1 k
The system (1) is a complex nonsmooth and nonlinear dy- Assumpt]lon(b) also guarantees that(rp ™) < V(tf) and
namical system. A stability framework for this type of sys- thus V(7 ot1) < 6(7,€), Vk > 1. The termd(v, £) can be
tems has been proposed in Brogliabal (1997) and ex- made as smaII as desired increasing either the length of
tended in Bourgeot and Brogliato (2005); Morarescu and the intervalltf,, ¢%]. The proof is completed by the relation
Brogliato (2008). This is an extension of the Lyapunov sec- «(||z||) < V(z,t), Vz, t.
ond method adapted to closed-loop mechanical systems with
unilateral constraints. Since we use this criterion in tle f
lowing tracking control strategy it is worth to clarify the |t is worth to point out the local character of the stability
framework and to introduce some definitions. Let us define criterion in Proposition 1. This is firstly due to condition
Q2 as the complement iR of I = U IPF and assume that  (c) and secondly by the synchronization constraints of the
k>0 control law and the motion phase of the system (see (3)

the Lebesgue measure Of denoted\[(2], equals infinity.  and (4)-(5) below). The weak stability relies amost non-
Let z(-) be the state of the closed-loop system in (1) with increasing functionsas introduced in Brogliatet al (1997)
some feedback controllér(q, ¢, 0, 0, t). (see also Casagrareteal (2008)). Condition(d) means that

the impacts may be considered as a kind of disturbance that
Definition 2 (Weakly Stable System)The closed loop  €an be suitably upper bounded. This is certainly the most
system is called weakly stable (Bourgeot and Brogliato crucial pointin Proposition 1.
(2005)) if for eache > 0 there existsi(¢) > 0 such that
[|z(0)]| < d(e) = ||z(t)]] < eforallt > 0,t e Q. The
system is asymptotically weakly stable if it is weakly stabl

and lim «(¢t) = 0. Finally, practical weak stability ) ) ) )
tell, t—~oo Throughout the paper, the following trajectories will play
holds if there exist§ < R < +oo andt* < +oo such that role in the closed-loop dynamics:

[lz(t)|| < Rforall t > t*, ¢t € Q.

3 Tracking control framework

e ¢"¢(.) denotes the desired trajectory that the system
should track if there were no constraints. We suppose that

Consider;”* £ [r¥ 5] and V(-) such that there exists ¢-"¢(1)) < 0 for somet, otherwise the problem reduces
strictly increasing functions(-) andg(-) satisfying the con- to the tracking control of a system with no constraints.
ditions: a(0) = 0, 8(0) = 0 and a(|[z|]) < V(z,t) < e ¢:(-) denotes the signal entering the control input and
B(||z]]). In the sequel, we consider that for each cycle the  playing the role of the desired trajectory during some parts
sequence of impact instanf¢} },~o has an accumulation of the motion.
point¢”_. e q4(-) represents the signal entering the Lyapunov function
V(-). This signal is set on the boundaip after the first
Proposition 1 (Weak Stability) Assume that the task ad- impact of each cycle.

mits the representation (3) and that
These signals may coincide on some time intervals as we
a) \[I*] < +o0, VEk €N, ;
b) outside the impact accumulation phagds ¢® | one has  shall see later. Let us remind that= <9> ¢ —1qand
V(x(t),t) < —yV(x(t),t) for some constant > 0, . . )
c) the system is initialized of}y such thatV/ (1) < 1, introduce the notationsi; = ¢ + V24, s = 0 + Y20, s =



51 ) One of the difficulties of the flexible-joint case, compared
» Gr = qda—"72q, ¢ = q—qz ands; = g+2q, where  with the rigid case, is that the jumps in the functibi-)
52 in (6) are less easy to characterize. Indeed the téf(g
qd andf,(-) are designed from a backstepping procedure and
. cannot be given arbitrary values, contrarily to other debir
trajectories. The calculations of various upper bounds (se
the Appendix) are consequently intricate.

v9 > 0 is a scalar gain an¢g; = <
d

3.1 Controller design

3.2 Design of the exogenous trajectory
The tracking problem is solved using a generalization of the

controller proposed in (Brogliatet al, 1995, Equ. (28)) and
the closed-loop stability analysis of the system is based on
Proposition 1. the controller is defined by

We consider that the unconstrained desired trajeajBfy-)

can be split into two parts, one of them belonging to the

admissible domain (inner part) and the other one outside the
admissible domain (outer part). Throughout the paper we
considerZ”* = [, 5] wherer} is chosen by the designer

U=J0,+ K0 — qa) — ~-KZ
{ + K0~ qa) = ms W) 4) as the start of the transition phasﬁk andt’} is the end of

0a=qa+ K 'U: this phase. During the transition phases the system must be
stabilized on the intersection of some surfaggsThis will
whereU, is given by: be done by mimicking the behavior of a ball falling on the

ground under gravity. Therefore all the components except
the ones that are normal to the constraints belongingto

@ A _ . o\ . _ ) .
Ue = Une = M(q)§r + C(g,4)4r + G(g) = m51 will be frozen. Moreover for robustness reasons one avoids

fort e ng a tangential approach and imposes some impacts defining
B, B, a exogenous signaf; that violates the constraints. In the
U, = Ut = Une — Py + Ky (Py — Fa) fort € O sequel we deal with the tracking control strategy when the
UBt  fort € I+ before the first impact trajectorygq(-) is constructed such that:

By _ .. . - R
U;:* = M(q)dr + C(q,4)G- + G(q) — 1151 (i) when no activated constraint the orbit @f(-) coincides

for t € I+ after the first impact with the orbit of¢"¢(-) and g (7§) = 0,
(5) (i) whenp < m constraints are active, its orbit coincides with
wherey; > Oisascalargaink; > 0, P, = DT andP, = the projection of the outer part @f'®(-) on the surface

constrained motion. It is clear that durirﬁf’“ not all the . ) . .

constraints are active and, therefore, some componerits of [N order to simplify the presentation we introduce the fol-
and )\, are zero. Notice that on impacting phases no force lowing notations (where aI_I superscrigts” will refer to the
feedback is applied. Als® is a function ofg, 6, ¢, 6 only cyclek of the system motion):

no acceleration feedback).
( ) . t’é is the first impact during the cycle,

e t_is the accumulation point of the sequer{¢g} >, of

The closed-loop error dynamics is given by:
P Y 6t is 9 Y the impact instants during the cyole(t} > t% ),

b - ) .
. . . o 7 will be explicitly defined later and represents the in-
Mfg)é + Cla, q)fl s+ K(G=0) =0 stant when the exogenous siggalreaches a given value
Jéa+v182+ K@ —q¢) =0 chosen by the designer in order to impose a closed-loop

dynamics with impacts during the transition phases,
The rationale behind the change of structurelbf after o % is the desired detachment instant.
the first impact, is that it facilitates the calculation ofre®
upper-bounds which are necessary to recast the closed-loopt is noteworthy that;, t*_, t* are state-dependent whereas

stability analysis into Proposition 1 (see section 6 and the 7F and7} are exogenous and imposed by the designer.
Appendix).
: * : By,
In order to prove the stability of the closed-loop system (1) 3.3 Design of(-) andqa(-) during the phases,
(4) (5) we will use the following positive definite function:
During the impacting transition phases the system must be

~ 1 5 1 4 T - stabilized ong®. Obviously, this does not mean that all
V(t,s,9) = 551 M(g)s1+ 552 Js2 + 720 the constraints have to be activated (iyg(t) = 0, Vi =
S S (6) 1,...,m). Let us consider that only the firgt constraints
+ 72070+ 5(q - 0)" K(q-0) (eventually reordering the coordinates) define the bordler o



® where the system must be stabilized. The sigfél) will to allow the detachment. Therefore we need a lower bound
be then defined as follows: of the desired force which assures both the contact (without
any undesired detachment which can generate other impacts)

e choosing’ > 0 and denoting’ = t,:TC’f,C , the components  during theQsz’zrl phases and a smooth detachment at the
T~ To . . .
(qé)* i=1,...,pof (qz)p are defined as: end onQk’grl Dropping the time argument, the dynamics
of the system omf,;;l can be written as

( i)*(t) az(t')? + aa(t')? + ag, t € [7F, min{rF;tk}] -
q = 71 = -
‘ V(). t e (minfrksdh), 24 M@+ F=0+KDp A=)

(7) Jso+v1s2+ K@ —§) =0 (11)
where V() is defined in (6) andr{ is chosen by the 0<qyLA>0
designer such that the limit conditiong)” (rf) =
—vV3(78), (¢5)" (tF) = 0 hold, which allows the _ N . .
computation of the previous coefficients as: wherer = F(q,4,4,4,0) = =M(q)g+C(g s1+msi+

K(Gg— 9) andD, = [I,, Opx (n—p)] € RPX™, OnQ% , the

as = 2[(¢* )n ( )+ vV 2 (7F)] system has to be permanently constrained which is equiv-
_ 1/2(k alent tog,(-) = 0 andg,(-) = 0. In order to assure these
a2 = [( ) () + V()] (8 conditions it is sufficient to hava, > 0.
a0 = (¢')" ()
o all the other components af;(-) are frozen: M~1(q M=Y))pno
S S
(@) n—p () = arS, (1), t € (15, 1] (9) Vin=pr Vin=pn-p
Cla,Dpp  Cla,d)pn—
As we said before, behind the choice gf(-) is the strat-  and C(q,q) = Clo.d " Clad mr where
egy to assure a robust stabilization 6@ by mimicking (@ Dn—pp €& Dn-pn-p

the bouncing-ball dynamics. On the other hand this enablesthe meaning of each component is obvious. Let us also
one to compute suitable upper-bounds that will help using denote bykK, the matrix made of the firsb rows andp
Proposition 1. columns of K.

In order to I|m|t the deformation of the desired trajectory Proposition 2 On QBk the constraint motion of the closed-
¢;(-) w.rt. ¢"%(-) during ther; phases, we impose in the loop system (11), (4) (5) is assured if the desired contact

sequel force is defined by

Pl < m (10) -
wherer; > 0 is chosen by the designer. It is obvious that K0, M, »(q) 1 .
a smallery; leads to smaller deformation of the desired (Ad)» = Vp + 1+K; 1+K; ([M (@)p.pCpn—p(a,4)

trajectory and to smaller deformation of the real trajegtas . ]

we shall see in Section 7. Nevertheless, due to the tracking + [M ™ (@)]pn—p(Crn—pn—p(a ) + %Infp))(sl)nfp
error,v; cannot be chosen zero. We also note that (10) is a (12)
practical way to choose}.

where M, ,(q) = (M~ (q)]p.) "' = (DM~ (q)DT) ™"

DL:rlng the Xansmpn phf‘."‘s.esv we dern?(q‘i)"fpd(t)h:. is the inverse of the so-called Delassus’ matrix Moreau
(43),,_, (t). Assuming a finite accumulation period, the im- (1988) andy, € R?, v, > 0.

pact process can be considered in some way equivalent to
a plastic impact. Thereforég,), (-) and (4a), (-) are set

to zero on the right off. It is Worth to recall that the first

PROOF. It is noteworthy that the third relation in (11) im-
impact timet% of each cycldc is unknown. OOF. Itis noteworthy that the third relatio (11)

plies onQ2,€+1 (see Glocker (2001))

4 Design of the desired contact force during constraint 0<gy LA >00<D,GL A >0. (13)
phases
From (11) one easily gets:
The desired contact force; = DT \; must be designed
such tha}gt it is large enough to assure the constraint motion i=MYg)[-F+(1+ Kf)D;(/\ — )]
on the(2;", ,-phases. Some contact force components have

also to be decreased at the end ofﬂfgﬂ-phases inorder  Combining the last two equations we obtain the following



LCP with unknownh: Proposition 3 The closed-loop system (11) (4) (5) is per-
manently constrained oh’},t’;) and a smooth detachment
0< DM q)[—F— (14 Ky)D} (\a)y] (14) is guaranteed ot%, t% + ¢) (¢ is a small positive real num-
+(1+ K;)DyM = (q)D] A, L X, >0 ber chosen by the designer) if

Since(1+ Ky)D,M~'(q)D, > 0and hence is a P-matrix, ) (Ad)y, (t§) _
the LCP (14) has a unique solution and one deduces tha(t (M), _, t’;)
Ap > 0 if and only if ’

1%, DM (@)= F = (1+Kp)DE(Aa)y] <0< Cr 4 A (b — AT (h0).)
Myp(9) 1 e (18)
(Aa)p > _ﬁDpM Ho)F & (15) where
M, N A Ty A -1 >
(Aa)p = vp — #I}Eq;DpM Yo F by £0(g,4,U;) = —DpyM ™ (q)F >0

andC; € R, Cy € RP~" such thatC; > 0, Cy > 0.
with v, € R?, v, > 0. SinceF = —M (q)§, + C(q,¢)s1 + (i) On[th ¢tk +¢)

vs1 + K(G—0), (Gr)p, = 0 and(sy1), = 0, (15) rewrites

as (12) and the proof is finished. It is noteworthy that the qi(t)
solution of the LCP (14) is 2(t) = qa(t) = | o ;
qnfh(t)
_ Myp(9) -1 T N . . : .
Ao = T4 e DM~ (q)[F + (1+ K;)D, (Aa)y) whereg; (-) is a twice-differentiable function such that
) (16)
My p(q) -1 " *
= (Aa)p + WDPM (OF =y qh(ts) =0, qh(ts +e€) = qgc(ts +€), (19)

(th) =0, g (th + €) = gRC(th + ¢)

=)

where (12) has been used.
andd;;(t’;*) = a > max (0, —Al(q)()\d)h(t];_)).

5 Strategy for take-off at the end of constraint phases =~ PROOF. See Appendix .1.

B
QQkI,C+1

In this Section we are interested in finding the conditions on & Closed-loop stability analysis

the control signal/?+ that assures the take-off at the end of .

constraintphase}?, | . As we have already seen before, the ;rO si(rjnplitfy 'thte ndotati(irr]i/(t, s(t), w(tl)t) i? t(:?noted a¥/(t). y

By, L k n order to introduce the main result of this paper we make
phaser(_Z%Jrl Cgrrispon_ds to the time mtewﬁf},td). The the next assumption, which is verified in practice for dissi-
dynamics orit;, ;) is given by (11) and the system is per-  pative systems with € [0,1).
manently constrained, which implies(-) = 0 andg,(-) =
0. Let us also consider that the firdtconstraints § < p) Assumption 1 The controllerU in (4) (5) assures that all
have to be deactivated. Thus, the detachment takes place ahe transition phases are finite.
tkif G, (t5T) > 0 which requires\, (t5~) = 0. The lasp—h
constraints remain active which meaks 5 (t%7) > 0. Lemma 1 Consider the closed-loop system (1) (4) (5) with

(¢3)p(-) defined on the intervty, 5] as in (7)-(9). Let us
To simplify the notation we drop the time argumentin many 2SO suppose that conditids) of Proposition 1 is satisfied.
equations of this section. We decompose the LCP matrix The following inequalities hold:
(which is the Delassus’ matrix multiplied by+ K ) as:
(76)

<

Gt < o s <y —0 L
- : Ala) As(a) gt Il < P [[s1(to Il < o (M (0))
(1+ Kf)DyM~(q)D, = r (17)
Asx(q)" As(q) = e V() — 2V (1)
10t Il < PP [[s2(to )l < o (J)
with 4; € R*h A, € RP*(P=h) gnd A3 € R(P—1)x(p—h) (20)



and 7 llustrative example

1/2 Some experimental results are obtained by simulating
llatts Il < 4 the behavior of a planar two-link flexible-joint manip-
(21) ulator in presence of two constraints. As in Morarescu

1/2 and Brogliato (2008) we impose an admissible domain
6(t57)I| < ®={(z,9)|y>0,07—z ch%). Let us also consider an
Amin( unconstrained desired trajectaf}<(-) whose orbit is given
_ by the circle{(z,y) | (z—0.7)2+y* = 0.5}. It violates both
Furthermore, iftf < rF one has constraints. In other words, the two-link planar manipoitat

must track a quarter-circle; stabilize on and then follow th
line 1 = {(z,y) | y = 0}; stabilize on the intersection

11(ga)p(t V(r5) of ¥, and%y = {(x,y) | = = 0.7}; detach from%; and
172 follow X5 until the unconstrained circle re-entebsand fi-

[(da)p (tE)|| < kb + E* VY7 22) nally take-off from3, in order to repeat the previous steps.

The task representation here is given by (see (2))
k
11(Ga)p (£ I < 6v2(|lap( O)H + V() Bk =0, mar =1, Bak,y = {1}, Bogsr = {1}, maops1 =
3) B 2 B .
(g c(l )p(th k || < 6\/§(||qgc(7'{f)|| + \/ﬁyvlﬂ(TéC)) 2, Bog+1,1 = {1,2}, Bogt1,2 = {2}. The numerical values

used for the dynamical model gtte: lo = 0.5m, my =

wheree is the real constant fixed in Definition 1 akdk* > Zﬁd thel Ifg]})gcts aIr?e imgbiﬁ%gbyé ‘ﬁ) in (% (8).OT1r]]fag§TtriLﬁ-

0 are some constant real numbers that will be defined in the \ooq matrix is defined b = diag(2000N /m, 2000N /m).

proof. Let us say that the quarter-circle is completely tracked in
one round. We set the period of each round to 10 seconds
and we simulate the dynamics during 6 rounds using the

PROOF. See Appendix .2. Moreau’s time-stepping algorithm of thelc®NoOS soft-

ware platform (Acary and Brogliato (2008)). We set the

controller gainsy; = 10, v» = 1 and we choose; = 0.1

(like this we implicitly set7} see (10)) in order to better

Itis noteworthy that(+) is a continuous signal. Nevertheless point out the deformation af,(-) on the transition phases

q(+) presents discontinuities of the first kind at the impact /. : :
fimes. From (5) one deduces that the contrallerjumps (Figure 1 (left)). In Flgure 2 we have shifted backward the

also at the impact times generating a jump in the desired desired trajectory 0d2 * to highlight that the Lyapunov
signalf,(-). Therefore, in order to study the evolution of the ~function at the instant{’ is smaller wheri; increases.

Lyapunov function candidate (6) one has to analyze)
andos(-).

Lemma 2 The controllerU in (4) (5) guarantees that

g Ol llog (Il € S(1) = L.

PROOF. See Appendix .3.

We now state the main result of this paper. Fig. 1. Left:The trajectory of the system during 6 roundsgtRi
The variation of the almost non-increasing Lyapunov funrcti
Theorem 1 Let Assumption 1 holds = 0 and ¢j;(-) de- ~ during the first round.

fined as in (7)-(9). The closed-loop system (1) (4) (5) ini-
tialized on$y such thatV(TO) < 1, satisfies the require-
ments of Proposition 1 and is therefore practically weakly The behavior of the system during one round is emphasized

stable with the closed-loop state(-) = W(.),S(_)] and in llzzlgure 13(r|ght) and the shape of the control law is demicte
in Figure

R = \/e’”(t?’t@(p* +&)/p wherep*, p and ¢ are de-

fined in the proof. 7.1 Compensation of flexibilities

) As noticed in Brogliatoet al (2007) the control laws de-
PROOF. See Appendix .4. signed for rigid systems (the Slotine & Li control and its
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=T i On the other hand using the controller designed in this paper
=0 5 o s s 2o the desired trajectory is well tracked (see Figure 7) and the
control signal is quickly stabilized during thg phases (see
Fig. 3. The control law applied t8; during the first round. Figure 8).
adaptation for systems with one or multiple constraintslBou .....|

geot and Brogliato (2005); Morarescu and Brogliato (2008)
behave well for manipulators with large joint stiffnessgse
also Figure 4 for the multi-constraint case).

oooooo

Fig. 7. The variation of the end-effector coordinates usivith
the controller (4) (5).

[

Fig. 4. The variation of the end-effector coordinates using 1,/
the rigid controller when the stiffness matrix is defined by _ 07\‘/4 J

K = diag(5000N/m, 5000N/m).

In order to highlight the importance of flexibilities’ com- =t S .
pensation we keep the numerical values used in the previous -
Subsection with one exception, the stiffness matrix is @efin

by K = diag(200N/m,200N/m). Using the control with

no flexibility compensation (named the "rigid controller”)
one obtains a completely deteriorated behavior (see Figure
5). Furthermore, the control signal oscillates very much af More numerical results can be found in Moraresstual
ter the first impact (Figure 6). (2008)

“1o

=y = = s = ETS)

Fig. 8. The control law applied t8; during the first round.



8 Conclusions

In this paper we have proposed a solution for the control

of nonsmooth Lagrangian systems with flexible-joint. All
the ingredients entering the dynamics (desired trajeesori

desired contact forces, exogenous instants playing a role

in the definition of the control law) are explicitly defined.
Numerical simulations are done with thec®Nos software
platform in order to illustrate the results.

.1 Proof of Proposition 3

The necessary condition for take-off after the instgts
given by \,(t57) = 0 and \,_1,(t") > 0. Precisely, we
impose a positive contact force 4t ¢};) with the firsth

components approaching 0 wheapproaches);. From (17)
and (11) it is straightforward that the LCP (13) rewrites as:

A
0§< h )J_
Ap—h

(1)
<bh + A1 (A = Aa)n + As(X — Aa)p—n

bp—n + AT N = X)n + As(A — Na)p—n

)=0

Since(1 + K;)D,M~*(q)D} > 0, the LCP (13) (or the
equivalent one (.1)) has a unique solution. Imposipg= 0
one gets

0< Ap—n Lbpon — AT (Na)r + As(A = Aa)p—r =0
with the solution
)\p,h = —Agl (bp,h — Ag()\d)h - Ag()\d)p,h) (.2)

Thus\,_, > 0 is equivalent to

(/\d)p—h > Agl (bp—h - Ag (/\d)h)
which leads to the second part of definition (18). Further-
more, replacing(Aq),—n in (.2) we geth,_, = C, and
b+ A1 (A= Xa)n+ As(A— Ag)p—p > 0Yyields the first part
of definition (18). Consequently the solution of the LCP (.1)
0
iS A = (C ) € RP? when(\q), is defined by (18).
2

The jumps in the Lyapunov function are avoided during the

detachment phase using a twice differentiable desired tra- <

jectory q4(-) defined as in iten{ii) of the Proposition. In

order to assure a smooth detachment (without impacts) on (¢3)® (tf~) =
[tk tk + ¢) we need a large enough positive desired accel-

eration(gy),. At t“~ one has

in(ts™) = —DpM ™ (q)[F + (1 + Kf)D}, (Aa)n)

while at t“+ one hasg, ,(t5*) = D,M~1(¢)F. Since
(Ga)n(t57) = 0 we arrive at

T (k) = (Ga)n (t5%) + A (@) Aa)n(th)

Thereforeéjld(t(’ﬁ) has to be positive and large enough
in order to compensate for-A;(q)(A\)x(th™) at the
instant tX. Consequently one defineg (t5™) a >

max (0, —A1(¢)(\a)n(t57)) and the detachment is as-
sured.

.2 Proof of Lemma 1

From (6) we can deduce thaf(tE~) > ~viya||G(tE)]|?,
V(tg™) > gs{ (t5 )M (q(ts™))s1(tg~) and

VI(tg™) 2 583 (t5 ) s2(ty )

N =

V(ts™) = mell8(t )l

Since conditionb) of Proposition 1 is satisfied one has
V() > V() and (20) becomes trivial. Let us recall
that s1(t) = (1) + 124(t) and sa(t) = O(t) + 720(1)
which implies||q(t5 )| < [[s1(t57 )l + 72lla(ts ™)l and
16t )11 < ls2(t5 )| + 72/18(t5 )| respectively. Com-
bining this with (20) we derive (21).

The proof of (22) follows the ideas presented in Morarescu
and Brogliato (2008). Roughly the first inequality in (22)
is based on the definition gf.-impacts (see Definition 1).
The remaining inequalities in (22) are based on the partic-
ular definition of (¢}),(-) (see (7) (8)). The upper bound

of [|(da),(tE7)|| was derived in Morarescu and Brogliato

o= 64/
(2008) with s = 1% and
™ — 718
6./p < 1 )
k* = +v)(v+uv)+tev
le —Té“ Y172 ( )

Finally, differentiating (7) two and three times respeelw
one obtains

dto7) = lim  6((¢")"(E) + vV ()2t - 1)
t—tg,t<ty
lim  6((¢")"%(rg) +vV'/2(xf))

t—th 1<t
lim  6((¢")"(r) + vV?(r5))
t—tg,t<ty

which leads to the upper bounds @fd),(t7)|| and
(a5, (t5 )| respectively.



.3 Proof of Lemma 2

Since 6(-),0(-) are continuous onR, and 04(-),04(-)
are continuous orRy \ {t& | k € Z} one deduces
that o5(t) = 0 = o5(t), ¥t # t;. Therefore Lemma 2

holds if there exist some real constants that upper bound

o5t o (th)]], ¥k € Z. The definition offy() (see
(4)) allows us to write

o4(ts) = —06,(t5) = —0q,(t5) — K~ ou, (5)
k—
_ ((qd)PO(tO )) _ K_lo'UT (tl(;)
4k kY k —1_ . 4k (:3)
o;(t5) = —0g,(t5) = —04,(tg) — Koy, (15)
. k—
_ <(qd)PO(t0 )) _ K—lJUT(tlg)
Therefore
log (I < 11(aa)p(t67)1 + Amaz (K~ H)|low, (¢5)]]
llo; () < 11(da)p (t6 )+ Amaa (K~ H|log, (t5)]
Using (5) one obtains
ou, (t5) = M(9)og, (t5) + 00 (g.q)4,. (1) — 1195, (£5)

From (9) one hagqq)n—p(t) = 0, (da)n—p(t) = 0 ¥Vt €
[ro,tk] Moreover, as we have mentioned at the end of
Sectlon 3.4qd)p(+), (da)p(-) and implicitly (G4),(-) are set

to zero on(to,tk] Thus taking into account the relation

mas (M
45D < wllg(tE)]l (wherew = \/322U8) and
Property 1 one arrives at

llog, ()11 < 11Ga)p(t5 7)1 + 72ll(da)n(t5 )l

+72(1 4+ w)llg(t5 )]
lloca. ) < lloe .-t I+ 110, d(t5*)ag, (66)]]
€ S(2(1 +2)l1d(ts)I11(da)p(t5 I + 72ll(ga)s (257)11)
llos, (EI < (1 +w)lld(t )| + [1(da)p (87l

+ 2] (ga)p (85|
(4)

When V(7F) < 1, Lemma 1 states that(da),(tk~
1(qa)p(t5

)ik

)| and ||¢(th~)|| are bounded by some con-

stants. Thus all the quantities in (.4) are bounded by some

constants mdependent of the cycle indexX his means that
llow, (tF)|| is bounded by a constant mdependent of the
cycle index, which implies the same fide;(¢5)||. In other
words||og(#)[| € S(1).
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Differentiating (5) one obtains

Ur(t) = M(q)a{¥ (t) + M(q)ér (t) + C(q, @)iir (t)

N ey oG . ) (.5)
+Clg,9)dr(t) + 8—ch(t) —7151(t)
where)M, C stand for and ~ respectively.

Itis clear that

%—§<q7 Di) + 2 (@ i)

Cla.)(t) = 5

and using Properties 1 and 3 one derives

1C(a, @)(®)]] € SUIa(@)|* + [1d(t)]])

Furthermore, Lemma 1 and the first equation in (1) as-

sure that ||4(t)|]*, [|§(t)|| € S(1). Thus [|C(q.q)()]l,
lloe(q,q ()l € S(1) and one derives that

1660y () (1 < N0y ()11 ()

+1C(g, @) (85 7)1 oy, (t6)]] € S(1)
(.6)

Property 1 allows us to repladé (¢q) by C(q, )+ C7 (¢, §)
which leads to

(t) + Cla. @)ir (t) = (2C(a, 4) + C" (¢, 4))iir (1) =
»(t) + Clg, )a-@)|] < 3[|C(g, DII[1G- )| =
Gr(t) + Clg, 4)ar (01| € Sall-g- @)

sincel[d (t))]] < Ilda(t)|| +21d(1)||. using Lemma 1 one

gets '

1M (q)gir(t) + Clg, 9)§r(t)]] € S(1) (7
The definitions (7)-(9) and the first equation in (1) assure
that||¢"® (£)|| € S(1). Therefore

M (q)dr(t
oy
[[M(q)g

1M (@) ()] < Amaa(M)llaP ()] € S(1)  (8)
Property 2 states th@t%” € S(1), which implies
G .
[5ao|| € sUa®ID | _ 1196 1 < opy (o
A }:Hé)qq@) €5(1) (9)

Introducing (.6)—(.9) in (.5) and taking into account thstla
inequality in (.4) we arrive at/oy; (¢)[| € S(1) and thus

o) € S(1).

.4 Proof of Theorem 1

First we observe that conditiorz§ andc) of Proposition 1
hold when the hypothesis of the Theorem are verified. Thus



Theorem 1 holds if the conditions), d) of Proposition 1
are verified.
b) Using thatM (¢q) — 2C(q, ¢) is a skew-symmetric matrix

(see Property 1), straightforward computations show that

on Ry \ Usolt6, 5] the time derivative of the Lyapunov
function is given by

V(t) = —nllall* — v 3lldl* — 1l1011> — v1v31101
—72(G—0)TK(G—0) + (1 + Ky)s{ D] (A = Xa),

—7lldl® = mlal? = nll0l? —vy3]18]12
—2(G—0)"K(G-6)<0

where we have used the fact that), = 0, (¢a), = 0,

g =0, ¢, =0, thus(sy1), = 0 on constraint phases and
Ap = 0, (A\g)p = 0 on free-motion phases. On the other
hand

)\maa: (M(Q)) )\maw(J)
2 2

~ 1 - S
+7172||9||2+§(q—0)TK(q—9)

V(t) < lIs1]” + [152[* + 717214l

<A lldl® + 3 l1al? + 10l + 13116112
+72(G—0)"K(G—0)]

where

1+2
7_1 = max {)\mam (M(Q)) %a
71

Amaz(M(q)) (72 +2) +2y1 1 }
;— >0
27172 27

M(q) Onxn
with M(g) = (4) Onx
Ouscn J

—y7'V(t) onRy \ Ukzo[tlga tl}]

d) There is only one impact during each transition phase
sincee = 0 and with the choice ot/ in (5). Therefore
V(th) = V(i ) +ov (th) < V(1) +ov(th). We compute
now the jump of the Lyapunov function at the impact time

X K
tg. Let K =

IN

) . Therefore V(t)

K) andy = (¢",07)".
K

V(tg) = V(tg™) = mye0o 7 5 (t6) +

S (T HM@)s(h) — 7 (7 )MCa)s(rh ) +

> (5 Tk d) - 0 Tk Kde)

. (.10)

Replacingy(tg*) by 1 (t5 ™) + o5(t5), the second term of
the right hand side of (.10) becomes

5 (20 T Ko th) + o (th)Krgth))
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which is upper bounded by

Amaz () (10 (t5 I - llo g (t6)1] + %ll%(t’g)lﬁ)

Therefore Lemma 1 and 2 imply that there exists a real
positive constant; such that

5 (8 TUETKIET) — 9 TR < e vk 20
(.11)
On the other hand

sT (6T )M(@)s(tgh) — s (157 )M(a)s(ts™) =

USI M(q)s1 (tlg) + Js; Jsa (tlg)
It is easy to see that

07 15, (16) = 255 (t57) 05, (86) + 0.4, (6) T o5, (1)

and using Lemma 1, Lemma 2 and the relatiag(tf)
o;(t5)+205(t5) one deduces that there exist a real positive
constant, such that

04715, (16) <02, VE >0 (.12)
As proved in Morarescu and Brogliato (2008) there exists a
real positive constant; such that

ToT M(gysy (16) + M720574(t5) < 3, VR >0 (13)

Finally, Lemma 2 assures the existencep& R such that

ymaéré(t’g) <ecg, Vk>0 (.14)
In conclusion, inserting (.11), (.12), (.13) and (.14) ibQ).
one gets

V(E) -V ) <er4catcztcs, VE>0 (15)
Thus condition d) of Proposition 1 is verified for
p* =1, £ = ¢1 + c2 + ¢35 + ¢4 and the closed-loop
system (1) (4) (5) is practically weakly stable with
R= oz_l(e_“’(t’;_tgo)(l +)).
Let us considerp = min{\;,;»n(M(q))/2;7172}. Defin-
ing o : Ry — Ry, alw) pw? we get a(0)
0, a(||[s(t),q(®)]|]) < V(t,s,q) and the proof is finished.
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