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Abstract. We study a class of discrete-time multi-agent systems modeling opinion dynamics with
decaying confidence. We consider a network of agents where each agent has an opinion. At each
time step, each agent exchanges its opinion with its neighbors and updates its opinion by taking
into account only its neighbors opinions that differs from its own opinion less than some confidence
bound. This confidence bound is decaying: an agent gives repetitively confidence only to its neighbors
that approach sufficiently fast its own opinion. Essentially, the agents try to reach an agreement
with the constraint that it has to be approached no slower than a prescribed convergence rate.
Under that constraint, global consensus may not be achieved and only local agreements may be
reached. The agents reaching a local agreement form communities inside the network. In this paper,
we analyze this opinion dynamics model: we show that communities correspond to asymptotically
connected component of the network and give an algebraic characterization of communities in terms
of eigenvalues of the matrix defining the collective dynamics. Finally, we apply our opinion dynamics
model to address the problem of community detection in graphs. We propose a new formulation of
the community detection problem based on eigenvalues of normalized Laplacian matrix of graphs and
show that this problem can be solved using our opinion dynamics model. We provide experimental
results that show that our opinion dynamics model provides an approach to community detection
that is not only appealing but also effective.

1. Introduction

The analysis of multi-agent systems received an increasing interest in the past decades. In such
systems, a set of agents interact according to simple local rules in order to achieve some global
coordinated behavior. The most widely studied problem is certainly the consensus or agreement
problem where each agent in the network maintains a value and repetitively averages its value
with those of its neighbors, resulting in all the agents in the network reaching asymptotically a
common value called consensus value. It is to be noted that the graph of interaction describing
the network of agents is generally not fixed and may vary in time. Conditions ensuring consensus
have been established by various authors including [JLM03, BHOT05, Mor05, RB05] (see [OSFM07]
for a survey). More recently, there have been several works providing estimations of the rate of
convergence towards the consensus value [OT09, AB08, ZW09].

In this paper, we adopt a different point of view. We consider a discrete-time multi-agent system
where the agents try to reach an agreement with the constraint that the consensus value must be
approached no slower than a prescribed convergence rate. Under that constraint, global consensus
may not be achieved and the agents may only reach local agreement. We call communities the subsets
of agents reaching a consensus. Our model can be interpreted in terms of opinion dynamics. Each
agent has an opinion. At each time step, the agent receives the opinions of its neighbors and then
updates its opinion by taking a weighted average of its opinion and the opinions of its neighbors that
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are within some confidence range of its own opinion. The confidence ranges are getting smaller at
each time step: an agent gives repetitively confidence only to the neighbors that approach sufficiently
fast its own opinion. This can be seen as a model for negotiation process where an agent expects
that its neighbors move significantly towards its opinion at each negotiation round in order to keep
negotiating. Our model can be seen as an extension of the opinion dynamics with bounded confidence
proposed by Krause in [Kra97] and studied in [HK02, BHT06].

We analyze our opinion dynamics model by first studying the relation between asymptotic agreement
of a subset of agents and the fact that they are asymptotically connected. We show that under
suitable assumptions, these are actually equivalent (i.e. communities correspond to asymptotically
connected component of the network) except for a set of initial opinions of measure 0. We then
give an algebraic characterization of communities in terms of eigenvalues of the matrix defining the
collective dynamics.

Finally, we apply our opinion dynamics model to address the problem of community detection in
graphs. In the usual sense, communities in a graph are groups of vertices such that the concentration
of edges inside communities is high with respect to the concentration of edges between communities.
Given the increasing need of analysis tools for understanding complex networks in social sciences,
biology, engineering or economics, the community detection problem has attracted a lot of attention
in the recent years (see the extensive survey [For09]). We propose a new formulation of this problem
based on eigenvalues of normalized Laplacian matrix of graphs. Then, we show that the communities
that are obtained using our opinion dynamics model matches the classical notion of communities in
graphs. Using two examples of network, we show that our opinion dynamics model not only provides
an appealing approach to community detection but that it is also effective.

2. Opinion Dynamics with Decaying Confidence

2.1. Model Description. We study a discrete-time multi-agent model. We consider a set of n
agents, V = {1, . . . , n}. A relation E ⊆ V × V models the interactions between the agents. We
assume that the relation is symmetric ((i, j) ∈ E iff (j, i) ∈ E) and anti-reflexive ((i, i) /∈ E). V
is the set of vertices and E is the set of edges of an undirected graph G = (V,E), describing the
network of agents. Each agent i ∈ V has an opinion modeled by a real number xi(t) ∈ R. Initially,
agent i has an opinion xi(0) = x0

i independent from the opinions of the other agents. Then, at every
time step, the agents update their opinion by taking a weighted average of its opinion and opinions
of other agents:

(2.1) xi(t+ 1) =
n∑
j=1

pij(t)xj(t)

with the coefficients pij(t) satisfying

(2.2) ∀i, j ∈ V, (pij(t) 6= 0 ⇐⇒ j ∈ {i} ∪Ni(t))

where Ni(t) denotes the confidence neighborhood of agent i at time t:

(2.3) Ni(t) =
{
j ∈ V | ((i, j) ∈ E) ∧

(
|xi(t)− xj(t)| ≤ Rρt

)}
with R > 0 and ρ ∈ (0, 1) model parameters. We make the following additional assumptions:

Assumption 1. For t ∈ N, the coefficients pij(t) satisfy

(a) pij(t) ∈ [0, 1], for all i, j ∈ V .
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(b)
∑n

j=1 pij(t) = 1, for all i ∈ V .

This model can be interpreted in terms of opinion dynamics. At each time step t, agent i ∈ V
receives the opinions of its neighbors in the graph G. If the opinion of i differs from the opinion of
its neighbor j more than a certain threshold Rρt, then i does not give confidence to j and does not
take into account the opinion of j when updating its own opinion. The parameter ρ characterizes the
confidence decay of the agents. Agent i gives repetitively confidence only to neighbors whose opinion
converges sufficiently fast to its own opinion. This model can be interpreted in terms of negotiations
where agent i requires that, at each negotiation round, the opinion of agent j moves significantly
towards its own opinion in order to keep negotiating with j.

Remark 2.1. We assume that ρ ∈ (0, 1), however, let us remark that for a complete graph G (every
agent talks with all the other agents) and ρ = 1 (there is no confidence decay), our model would
coincide with Krause model of opinion dynamics with bounded confidence [Kra97, HK02, BHT06].

Our first result states that the opinion of each agent converges to some limit value:

Proposition 2.2. Under Assumption 1, for all i ∈ V , the sequence (xi(t))t∈N is convergent. We
denote x∗i its limit. Furthermore, we have for all t ∈ N,

(2.4) |xi(t)− x∗i | ≤
R

1− ρ
ρt.

Proof. Let i ∈ V , t ∈ N, we have from (2.1), Assumption 1 and (2.2)

|xi(t+ 1)− xi(t)| =

∣∣∣∣∣∣
 n∑
j=1

pij(t)xj(t)

− xi(t)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
n∑
j=1

pij(t)(xj(t)− xi(t))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈Ni(t)

pij(t)(xj(t)− xi(t))

∣∣∣∣∣∣
≤

∑
j∈Ni(t)

pij(t)|xj(t)− xi(t)|

Then, it follows from equation (2.3) that

|xi(t+ 1)− xi(t)| ≤
∑

j∈Ni(t)

pij(t)Rρt

Finally, Assumption 1 gives for all t ∈ N

|xi(t+ 1)− xi(t)| ≤ (1− pii(t))Rρt ≤ Rρt.

Let t ∈ N, τ ∈ N, then

|xi(t+ τ)− xi(t)| ≤
τ−1∑
k=0

|xi(t+ k + 1)− xi(t+ k)| ≤
τ−1∑
k=0

Rρt+k
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Therefore,

(2.5) |xi(t+ τ)− xi(t)| ≤
R

1− ρ
ρt(1− ρτ ) ≤ R

1− ρ
ρt

which shows, since ρ ∈ (0, 1), that the sequence (xi(t))t∈N is a Cauchy sequence in R. Therefore, it
is convergent. Equation (2.4) is obtained from (2.5) by letting τ go to +∞. �

The previous proposition allows us to complete the interpretation of our opinion dynamics model.
The agents try to reach an agreement with the constraint that the consensus value must be ap-
proached no slower than O(ρt). Under that constraint, global agreement may not be attainable and
the agents may only reach local agreements. We refer to the sets of agents that asymptotically agree
as communities.

Definition 2.3. Let i, j ∈ V , we say that agents i and j asymptotically agree, denoted i ∼∗ j, if and
only if x∗i = x∗j .

It is straightforward to verify that ∼∗ is an equivalence relation over V .

Definition 2.4. A community C ⊆ V is an element of the quotient set C = V/ ∼∗.

Let us remark that the community structure is dependent on the initial distribution of opinions. In
the following, we shall provide some insight on the structure of these communities. But first, we
need to introduce some additional notations.

2.2. Notations and Preliminaries. We define the set of interactions at time t, E(t) ⊆ V × V as

E(t) =
{

(i, j) ∈ E| |xi(t)− xj(t)| ≤ Rρt
}
.

Let us remark that (i, j) ∈ E(t) if and only if j ∈ Ni(t). The interaction graph at time t is then
G(t) = (V,E(t)).

For a set of agents I ⊆ V , the subset of edges of G connecting the agents in I is EI = E ∩ (I × I).
Let E′ ⊆ EI be a symmetric relation over I, then the graph G′ = (I, E′) is called a subgraph of
G. If I = V , then the graph G′ = (V,E′) is called a spanning subgraph of G. The set of spanning
subgraphs of G is denoted S(G). For all t ∈ N, G(t) ∈ S(G). Let us remark that the set S(G) is
finite: it has 2|E|/2 elements where |E| denotes the number of elements in E. Given a partition of
the agents P = {I1, . . . , Ip}, we define the set of edges EP =

⋃
I∈P EI and the spanning subgraph of

G, GP = (V,EP). Essentially, GP is the spanning subgraph of G obtained by removing all the edges
between agents belonging to different elements of the partition P. An interesting such graph is the
graph of communities GC = (V,EC) where:

EC = {(i, j) ∈ E| i ∼∗ j} .

Let G′ = (V,E′) ∈ S(G), a path in G′ is a finite sequence of edges (i1, i2), (i2, i3), . . . , (ip, ip+1) such
that (ik, ik+1) ∈ E′ for all k ∈ {1, . . . , p}. Two vertices i, j ∈ V are connected in G′ if there exists a
path in G′ joining i and j (i.e. i1 = i and jp = j). A subset of agents I ⊆ V is a connected component
of G′ if for all i, j ∈ I with i 6= j, i and j are connected in G′ and for all i ∈ I, for all j ∈ V \ I,
i and j are not connected in G′. The set of connected components of G′ is denoted K(G′). Let us
remark that K(G′) is a partition of V .
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We define the vectors of opinions x(t) = (x1(t), . . . , xn(t))> and of initial opinions x0 = (x0
1, . . . , x

0
n)>.

The dynamics of the vector of opinions is then given by

x(t+ 1) = P (t)x(t)

where P (t) is the row stochastic matrix with entries pij(t). For a set of agents I ⊆ V , with I =
{v1, . . . , vk}, we define the vector of opinions xI(t) = (xv1(t), . . . , xvk

(t))>. Given a n× n matrix A
with entries aij , we define the k× k matrix AI whose entries are the avivj . In particular, PI(t) is the
matrix with entries pvivj (t). Let us remark that PI(t) is generally not row stochastic. We state the
following preliminary result that will be useful in further sections.

Lemma 2.5. Let I ⊆ V be a subset of agents such that no agent in I is connected to an agent in
V \ I in the graph G(t), then under Assumption 1

xI(t+ 1) = PI(t)xI(t)

and PI(t) is an aperiodic row stochastic matrix. Moreover, if I is a connected component of G(t)
then PI(t) is irreducible.

Proof. Let i ∈ I, then

xi(t+ 1) =
n∑
j=1

pij(t)xj(t) =
∑
j∈I

pij(t)xj(t) +
∑
j∈V \I

pij(t)xj(t).

Since i is not connected to any agent in V \ I in G(t), it follows from equation (2.2) that pij(t) = 0
for all j ∈ V \ I. Therefore,

xi(t+ 1) =
∑
j∈I

pij(t)xj(t)

which gives xI(t+ 1) = PI(t)xI(t). Similarly, we obtain from Assumption 1

1 =
n∑
j=1

pij(t) =
∑
j∈I

pij(t)

Since in addition, all entries of PI(t) are nonnegative, it follows that PI(t) is a row stochastic matrix.
It is aperiodic because equation (2.2) gives that for all i ∈ I, pii(t) > 0. By definition of irreducibility,
if I is a connected component of G(t) then PI(t) is irreducible. �

The following sections are devoted to the analysis of the community structure of the network of
agents.

3. Asymptotic Connectivity and Agreement

In this section, we explore the relation between communities and asymptotically connected compo-
nents of the network. Let us remark that the set of edges E can be classified into two subsets as
follows:

Ef = {(i, j) ∈ E| ∃tij ∈ N, ∀s ≥ tij , (i, j) /∈ E(s)}
and

E∞ = {(i, j) ∈ E| ∀t ∈ N, ∃s ≥ t, (i, j) ∈ E(s)} .
Intuitively, an edge (i, j) is in Ef if the agents i and j stop interacting with each other in finite
time. E∞ consists of the interactions between agents that are infinitely recurrent. It is clear that
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Ef ∩ E∞ = ∅ and E = Ef ∪ E∞. Also, since E and thus Ef is a finite set, there exists T ∈ N such
that

(3.1) ∀(i, j) ∈ Ef , ∀s ≥ T, (i, j) /∈ E(s).

Let us remark that the sets Ef and E∞ and the natural number T generally depend on the vector
of initial opinions x0. We define the graph G∞ = (V,E∞).

Definition 3.1. Let i, j ∈ V , we say that agents i and j are asymptotically connected if and only
if i and j are connected in G∞. We say that they are asymptotically disconnected if they are not
asymptotically connected.

3.1. Asymptotic Connectivity Implies Asymptotic Agreement.

Proposition 3.2. Under Assumption 1, if two agents i, j ∈ V are asymptotically connected then
they asymptotically agree.

Proof. Let (i1, i2), (i2, i3), . . . , (ip, ip+1) be a path in G∞ joining i = i1 and j = ip+1. We can choose
a path without loops (i.e. ik 6= ik′ for all k 6= k′) and therefore p ≤ n− 1. Let t ∈ N, k ∈ {1, . . . , p},
since (ik, ik+1) ∈ E∞ there exists τk ∈ N such that (ik, ik+1) ∈ E(t + τk). Let us define in addition
τ0 = 0, τp+1 = 0, then

|xi(t)− xj(t)| = |xi1(t+ τ0)− xip+1(t+ τp+1)|
≤ |xi1(t+ τ0)− xi1(t+ τ1)|

+
p∑

k=1

(
|xik(t+ τk)− xik+1

(t+ τk)|+ |xik+1
(t+ τk)− xik+1

(t+ τk+1)|
)

≤
p+1∑
k=1

|xik(t+ τk−1)− xik(t+ τk)|+
p∑

k=1

|xik(t+ τk)− xik+1
(t+ τk)|.

Let τk = min(τk−1, τk) for k ∈ {1, . . . , p+ 1}, then from equation (2.5) we have for all k ∈
{1, . . . , p+ 1}

|xik(t+ τk−1)− xik(t+ τk)| ≤
R

1− ρ
ρt+τk ≤ R

1− ρ
ρt.

Moreover, since (ik, ik+1) ∈ E(t+ τk)

|xik(t+ τk)− xik+1
(t+ τk)| ≤ Rρt+τk ≤ Rρt.

Therefore,

|xi(t)− xj(t)| ≤ (p+ 1)
R

1− ρ
ρt + pRρt ≤ n R

1− ρ
ρt + (n− 1)Rρt

which shows by letting t go to +∞ that i and j asymptotically agree. �

Remark 3.3. The notion of asymptotic connectivity has already been considered in several works
(including [JLM03, BHOT05, Mor05]) for proving consensus in multi-agent systems. Actually, the
previous proposition could be proved using Theorem 3 in [Mor05]. However, for the sake of self-
containment, we preferred to provide a simpler proof of the result that uses the specificities of our
model.
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3.2. Asymptotic Agreement Implies Asymptotic Connectivity. The converse result of Propo-
sition 3.2 is much more challenging: it is clear that it cannot hold for all initial conditions. Indeed,
if all the initial opinions x0

i are identical, then it is clear that the agents asymptotically agree inde-
pendently from the fact that they are asymptotically connected or not. Hence, the better we can
expect is the converse result to hold for almost all initial conditions. In this paragraph, we will need
additional assumptions in order to be able to prove this result. The first one is the following:

Assumption 2. The sequence of matrices P (t) satisfy the following conditions:

(a) For all t ∈ N, P (t) is invertible.
(b) For all t ∈ N, t′ ∈ N, if G(t′) = G(t) then P (t′) = P (t).

Let us remark that the first assumption can be enforced, for instance, by choosing pii(t) > 1/2 for
all i ∈ V , for all t ∈ N, in that case P (t) is a strictly diagonally dominant matrix and therefore
it is invertible. The second assumption states that P (t) only depends on the graph G(t), then we
shall write P (t) = P (G(t)) where P (G′) is the matrix associated to a graph G′ ∈ S(G). From the
first assumption, P (G′) must be invertible. Then, we can define for all t ∈ N, the following set of
matrices:

(3.2) Qt =
{
P (G0)−1P (G1)−1 . . . P (Gt−1)−1| Gk ∈ S(G), 0 ≤ k ≤ t− 1

}
.

Let us remark that since S(G) is finite, the set Qt is finite: it has at most 2t×|E|/2 elements.

We shall now prove the converse result of Proposition 3.2 in two different cases.

3.2.1. Average preserving dynamics. We first assume that the opinion dynamics preserves the average
of the opinions:

Assumption 3. For all t ∈ N, for all j ∈ V ,
∑n

i=1 pij(t) = 1

This assumption simply means that the matrix P (t) is doubly stochastic. It is therefore average
preserving: the average of x(t) is equal to the average of x(t + 1). Similar to Lemma 2.5, we can
prove the following lemma:

Lemma 3.4. Let I ⊆ V be a subset of agents such that no agent in I is connected to an agent in
V \ I in the graph G(t), then under Assumption 3, PI(G(t)) is average preserving.

Proof. It is sufficient to remark that for all j ∈ I, and i ∈ V \ I, equation (2.2) gives that pij(t) = 0.
Therefore it follows that for all j ∈ I,∑

i∈I
pij(t) =

n∑
i=1

pij(t) = 1

which proves that PI(G(t)) is average preserving. �

We now state the main result of the section:

Theorem 3.5. Under Assumptions 1, 2 and 3, for almost all vectors of initial opinions x0, two
agents i, j ∈ V asymptotically agree if and only if they are asymptotically connected.
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Proof. The if part of the theorem is a consequence of Proposition 3.2. To prove the only if part, let
us define the following set

W = {(I, J)| (I ⊆ V ) ∧ (I 6= ∅) ∧ (J ⊆ V ) ∧ (J 6= ∅) ∧ (I ∩ J = ∅)}
Since V is a finite set, it is clear that W is finite (it has less than 22n elements). For all (I, J) ∈ W,
let |I| and |J | denote the number of elements of I and J respectively. We define the vector of Rn,
cIJ whose coordinates cIJ,k = 1/|I| if k ∈ I, cIJ,k = −1/|J | if k ∈ J , and cIJ,k = 0 otherwise. We
define the (n− 1)-dimensional subspace of Rn:

HIJ = {x ∈ Rn| cIJ · x = 0} .
Finally, let us define the subset of Rn:

X0 =
⋃
t∈N

 ⋃
(I,J)∈W

 ⋃
Q∈Qt

QHIJ


where Qt is the set of matrices defined in (3.2). Since W is a finite set and for all t ∈ N, Qt are finite
sets, X0 is a countable union of (n − 1)-dimensional subspaces of Rn. Therefore X0 has Lebesgue
measure 0.

Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V that
asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0 belongs
to the set X0. Let I and J denote the connected components of G∞ containing i and j respectively.
Since i and j are asymptotically disconnected, I ∩ J = ∅, therefore (I, J) ∈ W. Let T be defined as
in equation (3.1), since no agent in I is connected to an agent outside of I in G∞ (and hence in G(t)
for t ≥ T ), we have by Lemma 2.5, that for all t ≥ T , xI(t+ 1) = PI(G(t))xI(t). From Lemma 3.4,
we have that PI(G(t)) is average preserving. Therefore, for all t ≥ T , the average of xI(t) is the same
as the average of xI(T ). From Proposition 3.2, all agents in I asymptotically agree, then the limit
value is necessarily the average of xI(T ). Therefore x∗i = (1|I| · xI(T ))/|I| where 1|I| denote the |I|-
dimensional vector with all entries equal to 1. A similar discussion gives that x∗j = (1|J | ·xJ(T ))/|J |.
Since i and j asymptotically agree, we have (1|I| · xI(T ))/|I| = (1|J | · xJ(T ))/|J |. This means that
x(T ) ∈ HIJ and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T − 1))−1x(T ) ∈
⋃

Q∈QT

QHIJ

which leads to x0 ∈ X0. �

Hence, in the case of average preserving dynamics, asymptotic connectivity is equivalent to asymp-
totic agreement for almost all vectors of initial opinions. We shall now prove a similar result under
different assumptions.

3.2.2. Fast convergence assumption. We now replace the average preserving assumption by another
assumption. From Proposition 2.2, we know that the opinion of each agent converges to its limit
value no slower than O(ρt). This is an upper bound, numerical experiments show that in practice
the convergence to the limit value is often slightly faster than O(ρt). This observation motivates the
following assumption:

Assumption 4. There exists ρ < ρ and M ≥ 0 such that for all i ∈ V , for all t∈ N,

|xi(t)− x∗i | ≤Mρt.
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Remark 3.6. The previous assumption always holds unless there exists i ∈ V such that

lim sup
t→+∞

1
t

log(|xi(t)− x∗i |) = log(ρ).

It should be noted that unlike Assumptions 1, 2 and 3, it is generally not possible to check a
priori whether Assumption 4 holds. However, numerical experiments tend to show that in practice,
Assumption 4 holds.

The previous assumption allows us to state the following result:

Lemma 3.7. Under Assumptions 1 and 4, there exists T ′ ∈ N such that for all t ≥ T ′, G(t) = G∞.
Moreover, G∞ = GC.

Proof. We shall prove the lemma by showing that there exists T ′ ∈ N such that for all t ≥ T ′,
E(t) ⊆ E∞ ⊆ EC ⊆ E(t). Firstly, let T1 ≥ T where T is defined as in equation (3.1), then for all
t ≥ T1, E(t) ⊆ E∞. Secondly, let (i, j) ∈ E∞, then agents i and j are asymptotically connected.
From Proposition 3.2, it follows that i and j asymptotically agree. Therefore, (i, j) ∈ EC . Thirdly,
let (i, j) ∈ EC , then x∗i = x∗j and for all t ∈ N

|xi(t)− xj(t)| ≤ |xi(t)− x∗i |+ |x∗i − x∗j |+ |xj(t)− x∗j |
≤ |xi(t)− x∗i |+ |xj(t)− x∗j |

From Assumption 4, we have for all t ∈ N,

|xi(t)− xj(t)| ≤ 2Mρt.

Since ρ < ρ, there exists T2 ∈ N, such that for all t ≥ T2, 2Mρt ≤ Rρt. Then, for all t ≥ T2, (i, j) ∈
E(t). Let T ′ = max(T1, T2), then for all t ≥ T ′, E(t) = E∞ = EC and thus G(t) = G∞ = GC . �

The previous result states that after a finite number of steps, the graph of interactions between
agents remains always the same. Then, we can state a result similar to Theorem 3.5:

Theorem 3.8. Under Assumptions 1, 2 and 4, for almost all vectors of initial opinions x0, two
agents i, j ∈ V asymptotically agree if and only if they are asymptotically connected.

Proof. The if part of the theorem is a consequence of Proposition 3.2. To prove the only if part, let
us define the following set associated to a spanning subgraph G′ ∈ S(G):

W(G′) =
{

(I, J)| (I ⊆ V ) ∧ (J ⊆ V ) ∧ (I 6= J) ∧ (I ∈ K(G′)) ∧ (J ∈ K(G′))
}

Since V is a finite set, it is clear that W(G′) is finite (it has less than 22n elements). Let (I, J) ∈
W(G′), I =

{
v1, . . . , v|I|

}
, J =

{
w1, . . . , w|J |

}
. Since I and J are connected components of G′, we

have from Lemma 2.5 that PI(G′) and PJ(G′) are aperiodic irreducible row stochastic matrices. Let
eI(G′) and eJ(G′) be the left Perron eigenvectors of PI(G′) and PJ(G′), respectively:

eI(G′)>PI(G′) = eI(G′)> and eI(G′) · 1|I| = 1

and
eJ(G′)>PJ(G′) = eJ(G′)> and eJ(G′) · 1|J | = 1.

We define the vector of Rn, cIJ whose coordinates are given by cIJ,vk
= eI,k if vk ∈ I, cIJ,wk

= −eJ,k
if wk ∈ J and cIJ,k = 0 if k ∈ V \ (I ∪ J). We define the (n− 1)-dimensional subspace of Rn:

HIJ(G′) =
{
x ∈ Rn| cIJ(G′) · x = 0

}
.



10 IRINEL CONSTANTIN MORĂRESCU AND ANTOINE GIRARD

Finally, let us define the subset of Rn:

(3.3) X0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
(I,J)∈W(G′)

 ⋃
Q∈Qt

QHIJ(G′)


where Qt is the set of matrices defined in (3.2). S(G) is a finite set and for all G′ ∈ S(G), W(G′)
is a finite set. Moreover for all t ∈ N, Qt is a finite set. Then, X0 is a countable union of (n − 1)-
dimensional subspaces of Rn. Therefore X0 has Lebesgue measure 0.

Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V
that asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0

belongs to the set X0. Let I and J denote the connected components of G∞ containing i and j
respectively. Since i and j are asymptotically disconnected, I 6= J , therefore (I, J) ∈ W(G∞). Since
I is a connected component of G∞, it follows from Lemma 2.5 and Lemma 3.7 that for all t ≥ T ′,
xI(t + 1) = PI(G∞)xI(t). Moreover, PI(G∞) is an aperiodic irreducible row stochastic matrix and
from the Perron-Frobenius Theorem (see e.g. [Sen81]), it follows that 1 is a simple eigenvalue of
PI(G∞) and all other eigenvalues of PI(G∞) have modulus strictly smaller than 1. Therefore,

lim
t→+∞

xI(t) = (eI(G∞) · xI(T ′))1|I|

and x∗i = eI(G∞) · xI(T ′). A similar discussion gives that x∗j = eJ(G∞) · xJ(T ′). Since i and j

asymptotically agree, we have eI(G∞)·xI(T ′) = eJ(G∞)·xJ(T ′). This means that x(T ′) ∈ HI,J(G∞)
and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHIJ(G∞)

which leads to x0 ∈ X0. �

In this section, we showed that asymptotic connectivity of agents implies asymptotic agreement and
that under additional reasonable assumptions these are actually equivalent except for a set of vectors
of initial opinions of Lebesgue measure 0. In other words, we can consider almost surely that the
communities of agents correspond to the connected components of the graph G∞.

In the following, under Assumptions 1, 2 and 4, we show that an algebraic characterization of
communities can be given in terms of eigenvalues of the matrix associated to the graph of communities
P (GC).

4. Algebraic Characterization of Communities

Let G′ ∈ S(G), let I ⊆ V be a subset of agents such that no agent in I is connected to an
agent in V \ I in the graph G′, then from Lemma 2.5, PI(G′) is a row stochastic matrix. Let
λ1(PI(G′)), . . . , λ|I|(PI(G′)) denote the eigenvalues of PI(G′) with λ1(PI(G′)) = 1 and

|λ1(PI(G′))| ≥ |λ2(PI(G′))| ≥ · · · ≥ |λ|C|(PI(G′))|.

Let C ∈ C, then no agent in C is connected to an agent in V \ C in the graph GC . The following
theorem gives a characterization of the communities in terms of the eigenvalues λ2(PC(GC)) for
C ∈ C.
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Theorem 4.1. Under Assumptions 1, 2 and 4, for almost all vectors of initial opinions x0, for all
communities C ∈ C, such that |C| ≥ 2,

|λ2(PC(GC))| < ρ.

Proof. Let us consider a spanning subgraph G′ ∈ S(G), let I =
{
v1, . . . , v|I|

}
, with |I| ≥ 2, be a

connected component of G′ then from Lemma 2.5, PI(G′) is an aperiodic irreducible row stochastic
matrix. Then, from the Perron-Frobenius Theorem, it follows that 1 is a simple eigenvalue of PI(G′).
Therefore, λ2(PI(G′)) 6= 1. Let fI(G′) be a left eigenvector of PI(G′) associated to eigenvalue
λ2(PI(G′)). Let us define the vector of Rn, cI(G′) whose coordinates are given by cI,vk

(G′) = fI,k(G′)
if vk ∈ I and cI,k(G′) = 0 if k ∈ V \ I. We define the (n− 1)-dimensional subspace of Rn:

HI(G′) =
{
x ∈ Rn| cI(G′) · x = 0

}
.

Finally, let us define the subset of Rn:

Y 0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
I∈K(G′), |I|≥2

 ⋃
Q∈Qt

QHI(G′)

 .

where Qt is the set of matrices defined in (3.2). S(G) is a finite set and for all G′ ∈ S(G), K(G′)
is a finite set. Moreover, for all t ∈ N, Qt is a finite set. Then, Y 0 is a countable union of (n − 1)-
dimensional subspaces of Rn. Therefore Y 0 has Lebesgue measure 0.

Let X0 be given as in equation (3.3), let x0 ∈ Rn \ X0 be a vector of initial opinions. Let us
assume there is a community C ∈ C with |C| ≥ 2, such that |λ2(PC(GC))| ≥ ρ. Let us show that
necessarily, x0 belongs to the set Y 0. First, since x0 /∈ X0, we have from the proof of Theorem 3.8
that C is a connected component of G∞ = GC . Therefore, from Lemma 2.5 and Lemma 3.7, for
all t ≥ T ′, xC(t + 1) = PC(GC)xC(t) and PC(GC) is an aperiodic irreducible row stochastic matrix.
From the Perron-Frobenius Theorem, it follows that 1 is a simple eigenvalue of PC(GC) and all
other eigenvalues of PC(GC) have modulus strictly smaller than 1. Let eC(GC) be the left Perron
eigenvector of PC(GC):

eC(GC)>PC(GC) = eC(GC)> and eC(GC) · 1|C| = 1

Then
lim

t→+∞
xC(t) = x∗C where x∗C = (eC(GC) · xC(T ′))1|C|.

Let us remark that for all t ≥ T ′,
(4.1) xC(t+ 1)− x∗C = PC(GC)(xC(t)− x∗C).

Let fC(GC) be a left eigenvector of PC(GC) associated to eigenvalue λ2(PC(GC)):

fC(GC)>PC(GC) = λ2(PC(GC))fC(GC)>.

Then, it follows from equation (4.1) that for all t ≥ T ′,

fC(GC) · (xC(t)− x∗C) = fC(GC) · (xC(T ′)− x∗C)λ2(PC(GC))(t−T ′).

Therefore, by the Cauchy-Schwarz inequality, we have for all t ≥ T ′

‖xC(t)− x∗C‖ ≥
|fC(GC) · (xC(t)− x∗C)|

‖fC(GC)‖

≥
|fC(GC) · (xC(T ′)− x∗C)|

‖fC(GC)‖
|λ2(PC(GC))|(t−T

′).
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Since we assumed |λ2(PC(GC))| ≥ ρ, we have for all t ≥ T ′

(4.2) ‖xC(t)− x∗C‖ ≥
|fC(GC) · (xC(T ′)− x∗C)|

‖fC(GC)‖ρT ′ ρt.

Now, let us remark that it follows from Assumption 4 that for all t ∈ N

(4.3) ‖xC(t)− x∗C‖ ≤
√
|C|Mρt.

Inequalities (4.2) and (4.3) give for all t ≥ T ′

|fC(GC) · (xC(T ′)− x∗C)|
‖fC(GC)‖ρT ′ ρt ≤

√
|C|Mρt.

Since ρ < ρ, the previous inequality holds for all t ≥ T ′ if and only if |fC(GC) · (xC(T ′)− x∗C)| = 0.
Therefore, fC(GC) · xC(T ′) = fC(GC) · (xC(T ′) − x∗C) = 0 which means that x(T ′) ∈ HC(GC).
Therefore,

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHC(GC)

which leads to x0 ∈ Y 0. Therefore, we have proved that for all vectors of initial opinions x0 ∈
Rn \ (X0 ∪ Y 0), for all communities C ∈ C such that |C| ≥ 2, |λ2(PC(GC))| < ρ. We conclude by
remarking that X0 ∪ Y 0 is a set of Lebesgue measure 0. �

In this section, we showed that the community structure C satisfies some properties related to the
eigenvalues of the matrix PC(GC), for C ∈ C. In the following, we use this result to address the
problem of community detection in graphs.

5. Application: Community Detection in Graphs

In this section, we propose to use the model of opinion dynamics with decaying confidence to address
the problem of community detection in graphs.

5.1. The Community Detection Problem. In the usual sense, communities in a graph are groups
of vertices such that the concentration of edges inside one communitiy is high and the concentration of
edges between communities is comparatively low. Because of the increasing need of analysis tools for
understanding complex networks in social sciences, biology, engineering or economics, the community
detection problem has attracted a lot of attention in the recent years. The problem of community
detection is however not rigorously defined mathematically. One reason is that community structures
may appear at different scales in the graph: there can be communities inside communities. Another
reason is that communities are not necessarily disjoint. A formalization of the community detection
problem has been proposed in terms of optimization of a quality function called modularity [NG04].
However, it has been shown that this optimization problem is NP-complete [BDG+08]. Therefore,
approaches for community detection rely mostly on heuristic methods. We refer the reader to the
excellent survey [For09] and the references therein for more details.

In this section, we formulate the community detection problem using a measure of connectivity
of graphs given by the eigenvalues of their normalized Laplacian matrix. Let G = (V,E) be an
undirected graph with V = {1, . . . , n}, with n ≥ 2. For a vertex i ∈ V , the degree di(G) of i is the
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number of neighbors of i in G. The normalized Laplacian of the graph G is the matrix L(G) given
by

Lij(G) =


1 if i = j and di(G) 6= 0,

−1√
di(G)dj(G)

if (i, j) ∈ E,
0 otherwise.

Let us review some of the properties of the normalized Laplacian matrix (see e.g. [Chu97]). σ1(L(G)) =
0 is always an eigenvalue of L(G), it is simple if and only if G is connected. All other eigenvalues
are real and belong to the interval [0, 2]. The second smallest eigenvalue of the normalized Laplacian
matrix is denoted σ2(L(G)). It can serve as an algebraic measure of the connectivity: σ2(L(G)) = 0
if the graph G has two distinct connected components, σ2(L(G)) = n/(n − 1) if the graph is the
complete graph (for all i, j ∈ V , i 6= j, (i, j) ∈ E), in the other cases σ2(L(G)) ∈ (0, 1].

Remark 5.1. The second smallest eigenvalue of the (non-normalized) Laplacian matrix is called
algebraic connectivity of a graph. In this paper, we prefer to use the eigenvalues of the normalized
Laplacian matrix because it is less sensitive to the size of the graph. For instance, if G is the complete
graph then σ2(L(G)) = n/(n− 1) whereas its algebraic connectivity is n.

Let P be a partition of the set of vertices V . For all I ∈ P, with |I| ≥ 2, L(GI) denotes the
normalized Laplacian matrix of the graph GI = (I, EI) consisting of the set of vertices I and of the
set of edges of G between elements of I.

We now propose a formulation of the community detection problem:

Problem 5.2. Given a graph G = (V,E) and a real number δ ∈ (0, 1], find a partition P of V such
that for all I ∈ P, such that |I| ≥ 2, σ2(L(GI)) > δ.

If σ2(L(G)) > δ, it is sufficient to choose the trivial partition P = {V }. If δ ≥ σ2(L(G)), then
we want to find groups of vertices that are more densely connected than the global graph. This
coincides with the notion of community. The larger δ the more densely connected the communities.
This makes it possible to search for communities at different scales of the graph.

Let us remark that the problem is not really well posed as it may have several solutions. Indeed,
the trivial partition P = {{1}, . . . , {n}} is always a solution of the proposed problem. In order to
evaluate the quality of the computed partition, we propose to consider the following measure:

µ(G,P) =

{
max
I∈P

σ2(L(GI)) if for all I ∈ P, |I| ≥ 2

+∞ otherwise.

Note that if P is a solution of Problem 5.2, then µ(G,P) > δ. In order to solve the problem in an
effective way, µ(G,P) should be as close of δ as possible.

In the following, we show how to solve Problem 5.2 using an opinion dynamics with decaying confi-
dence model.

5.2. Opinion Dynamics for Community Detection. Let α ∈ (0, 1/2), we consider the opinion
dynamics with decaying confidence model given by:

(5.1) xi(t+ 1) =

 xi(t) +
α

|Ni(t)|
∑

j∈Ni(t)

(xj(t)− xi(t)) if Ni(t) 6= ∅

xi(t) if Ni(t) = ∅
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where Ni(t) is given by equation (2.3). It is straightforward to check that this model is a particular
case of the model given by equations (2.1) and (2.2) and that Assumption 1 holds. Moreover, since
α ∈ (0, 1/2) it follows that for all i ∈ V , t ∈ N, pii(t) > 1/2. Therefore the matrix P (t) is strictly
diagonally dominant and hence it is invertible. Also, P (t) = P (G(t)), where for a subgraph G′,
P (G′) = Id− αQ(G′) where Id is the identity matrix and

(5.2) Qij(G′) =


1 if i = j and di(G′) 6= 0,
−1

di(G′) if (i, j) ∈ E′,
0 otherwise.

where di(G′) denotes the degree of i in the graph G′. Therefore, Assumption 2 holds as well. Let
us remark that the matrix P (t) is generally not average preserving and therefore Assumption 3 does
not hold.

Before stating the main result of this section, we need to prove the following lemma :

Lemma 5.3. Let P be a partition of V , I ∈ P such that |I| ≥ 2. Then, λ is an eigenvalue of PI(GP)
if and only if σ = (1− λ)/α is an eigenvalue of L(GI).

Proof. First, let us remark that PI(GP) = Id−αQ(GI) where Q(GI) is defined as in equation (5.2).
Then, let us introduce the matrices R(GI) and D(GI) defined by

Rij(GI) =


1√

di(GI)
if i = j and di(GI) 6= 0,

−1

di(GI)
√
dj(GI)

if (i, j) ∈ EI ,
0 otherwise.

and

Dij(GI) =
{ √

di(GI) if i = j,
0 otherwise.

Then, let us remark that L(GI) = D(GI)R(GI) and Q(GI) = R(GI)D(GI). It follows that L(GI)
and Q(GI) have the same eigenvalues. The stated result is then obtained from the fact that the
matrix Q(GI) = (Id− PI(GP))/α. �

We now state the main result of the section which is a direct consequence of Theorem 4.1 and
Lemma 5.3:

Corollary 5.4. Let ρ = 1 − αδ, under Assumption 4, for almost all vectors of initial opinions x0,
the set of communities C obtained by the opinion dynamics model (5.1) is a solution to Problem 5.2.

In the next section, we propose to evaluate experimentally the validity of our approach.

5.3. Case Study 1: Zachary Karate Club. We propose to evaluate our approach on a standard
benchmark for community detection: the karate club network initially studied by Zachary in [Zac73].
This is a social network with 34 agents shown on the top left part of Figure 1. The original study
shows the existence of two communities represented on the figure by squares and triangles.

We propose to use our opinion dynamics model (5.1) to uncover the community structure of this
network. We chose 4 different values for δ. The parameters of the model where chosen as follows:
α = 0.1, R = 1 and ρ = 1 − αδ. For each different value of δ, the model was simulated for 100
different vectors of initial opinions chosen randomly in [0, 1]34. Simulations were performed as long
as enabled by floating point arithmetics.
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δ |C| min
C∈C,|C|≥2

σ2(L(GC)) µ(G,P) Occurrences

0.1 1 0.132 0.132 100
0.2 2 0.250 0.363 100
0.3 3 0.334 0.667 67
0.3 3 0.363 0.678 31
0.3 4 0.336 2.000 2
0.4 4 0.566 0.667 92
0.4 3 0.334 0.667 6
0.4 5 0.566 2.000 1
0.4 5 0.566 +∞ 1

Table 1. Quantitative properties of the partitions of the karate club network ob-
tained by the opinion dynamics model (100 different vectors of initial opinions for
each value of δ.

Figure 1. Graphs GC for the most frequently obtained partition of the karate club
network for δ = 0.1 (top left), δ = 0.2 (top right), δ = 0.3 (bottom left), δ = 0.4
(bottom right).

The experimental results are reported on Figure 1 and Table 1. For each different value of δ, we
indicate the different partitions in communities obtained after running the opinion dynamics model.
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For each partition C, we give the number of communities in the partition, the minimal value of
σ2(L(GC)) for C ∈ C, this value being greater than δ indicates that Problem 5.2 has been solved.
We computed the measure µ(G,P) in order to evaluate the quality of the obtained partition. We also
indicate the number of times that each partition occurred over the 100 simulations of the opinion
dynamics model.

We can check in Table 1 that all the computed partitions are solutions of Problem 5.2 with the
exception of the partition reported in line 7 that occurred 6 times over 100 simulations for δ = 0.4.
This partition is actually the same than the one reported in line 3. A closer inspection of the
simulation data shows that in the case of δ = 0.4, this partition would have been further subdivided
if the model had been simulated beyond what is allowed by floating point arithmetics.

Let us remark that in general the computed partition depends on the initial vector of opinions, this
is the case for δ = 0.3 and δ = 0.4. However, it is interesting to note that the partitions that are
obtained the most frequently have comparatively a good quality measure µ(G,P). This shows that
our approach not only allows to solve Problem 5.2 but solves it in an effective way.

In Figure 1, we represented the graphs of communities GC that are the most frequently obtained
for the different values of δ. It is interesting to remark that for δ = 0.2 we almost obtained the
communities that were reported in the original study [Zac73]. Only one agent has been classified
differently. One may argue that this agent has originally 4 neighbors in each community so it could
be classified in one or the other. It is also interesting to see that our approach allows us to search
for communities at different scales of the graph. When δ increases, the communities become smaller
but more densely connected.

5.4. Case Study 2: Books on American Politics. We propose to use our approach on a larger
example consisting of a network of 105 books on politics [NG04], initially compiled by V. Krebs
(unpublished, see www.orgnet.com). In this network, each vertex represents a book on American
politics bought from Amazon.com. An edge between two vertices means that these books are fre-
quently purchased by the same buyer. The network is presented on the top left part of Figure 2
where the shape of the vertices represent the political alignement of the book (liberal, conservative,
centrist).

We used our opinion dynamics model (5.1) to uncover the community structure of this network.
We chose 3 different values for δ. The parameters of the model are the same than in the previous
example: α = 0.1, R = 1 and ρ = 1 − αδ. For each different value of δ, the model was simulated
for 100 different vectors of initial opinions chosen randomly in [0, 1]105. Simulations were performed
as long as enabled by floating point arithmetics. The experimental results are reported on Figure 2
and Table 2.

Let us remark that all the computed partitions are solutions to the Problem 5.2. Also, for the same
value of δ, the quality measure is almost the same for all partitions. Actually, all the partitions
obtained for the same value of δ are almost the same. In Figure 2, we represented the graphs of
communities GC that are the most frequently obtained for the different values of δ. Let us remark that
even though the information on the political alignment of the books is not used by the algorithm, our
approach allows to uncover this information. Indeed, for δ = 0.1, we obtain 2 communities that are
essentially liberal and conservative. For δ = 0.2, we then obtain 4 communities: liberal, conservative,
centrist-liberal, centrist-conservative.
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δ |C| min
C∈C,|C|≥2

σ2(L(GC)) µ(G,P) Occurrences

0.1 2 0.134 0.187 99
0.1 2 0.129 0.182 1
0.15 3 0.187 0.329 89
0.15 3 0.182 0.322 11
0.2 4 0.269 0.791 71
0.2 4 0.266 0.810 18
0.2 4 0.269 0.810 5
0.2 4 0.268 0.791 4
0.2 4 0.269 0.750 2

Table 2. Quantitative properties of the partitions of the books network obtained by
the opinion dynamics model (100 different vectors of initial opinions for each value of
parameter δ.

Figure 2. Graphs GC for the most frequently obtained partition of the books net-
work: initial graph (top left), δ = 0.1 (top right), δ = 0.15 (bottom left), δ = 0.2
(bottom right). Shapes represent political alignment of the books: circles are liberal,
squares are conservative, triangles are centrist.
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6. Conclusion and Future Work

In this paper, we introduced and analyzed a model of opinion dynamics with decaying confidence
where agents may only reach local agreements organizing themselves in communities. Under suit-
able assumptions, we have shown that these communities correspond to asymptotically connected
component of the network. We have also provided an algebraic characterization of communities in
terms of eigenvalues of the matrix defining the collective dynamics. To complete the analysis of our
model, future work should focus on relaxing Assumption 4 by studying the model behavior when
there is an agent i ∈ V that approaches its limit value at a rate exactly ρ:

lim sup
t→+∞

1
t

log(|xi(t)− x∗i |) = log(ρ).

In the last part of the paper, we have applied our opinion dynamics model to address the problem of
community detection in graphs. We believe that this new approach offers an appealing interpretation
of community detection: communities are sets of agents that succeed to reach an agreement under
some convergence rate constraint. We have shown on two examples that this approach is not only
appealing but is also effective. In the future, we shall work on a distributed implementation of
our approach. Let us remark that this should be feasible since our approach is by nature based
on distributed computations. Then, we shall use our approach to analyze a number of networks
including large scale networks.
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