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Abstract

This paper focuses on the characterization of the stability crossing curves of Cushing linearized equation.
More explicitly, we compute the crossing set, which consists of all frequencies corresponding to all points on
the stability crossing curve, and we give their complete classification. Furthermore, the directions in which
the zeros cross the imaginary axis are explicitly expressed. A numerical example complete the paper.

1 Introduction

The study considered here is mainly motivated by biological applications including gamma-distributed delays with
a gap in population dynamics. In [14], the author largely discusses the connection between gamma distribution
delay models, and population dynamics, and a particular attention is paid to the so-called distributed delay
with some gap. To the best of the authors’ knowledge, the first population dynamics model including gamma-
distributed delays is due to Cushing [4], and it received a lot of attention starting with the 80s [3, 1, 2]. The
linearized model [3] simply writes as:

ẋ(t) = −αx(t) + β

∫ t

0

x(t− θ)g(θ)dθ, (1)

under appropriate initial conditions. A narrow distribution will lead to some simple discrete delay system of the
form ẋ(t) = −αx(t) + βx(t−h), whose dynamics, and stability are completely understood (see, for instance, [12]
and the references therein). Next, if one assumes that the delay kernel is given by the gamma-distribution law:

g(ξ) =
an+1

n!
ξne−aξ, (2)

the Laplace transform applied to (1), under the definition (2) reduces the stability analysis of (1) to the analysis
of some parameter-dependent polynomials of the form:

D(s, τ̄ , n) := (s + α)
(

1 + s
τ̄

n + 1

)n+1

− β = 0, (3)

where τ̄ =
n + 1

a
denotes the corresponding mean delay value. One of the problem discussed in [3] was the

analysis of the behavior of the roots of the characteristic equation with respect to the imaginary axis when the
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supported through a European Community Marie Curie Fellowship and in the framework of the CTS, contract number: HPMT-CT-
2001-00278
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mean delay value τ̄ , or the exponent n are varying. The main interest of such a study was to compute the stability
regions with respect to the corresponding parameters, and to analyze the sensitivity of such regions when the
parameters change. Further discussions on this topics can be found in [14].

Next, Nisbet, and Gurney [18] mention that population dynamics models based on partial differential equa-
tions, and reduced for convenience to integro-differential forms are more realistic if the corresponding delay kernel
ĝ includes some gap (see also [1, 14]), that is if it can be expressed as:

ĝ(ξ) =

{
0, ξ < τ

an+1

n! (ξ − τ)ne−a(ξ−τ), ξ ≥ τ,
(4)

for some positive delay values τ . Simple computations prove that the corresponding mean delay is defined

by τ̂ = τ +
n + 1

a
. In this case, the stability analysis becomes more complicated, since the parameter-dependent

polynomial D(s, τ̄ , n) in (3) becomes a parameter-dependent quasipolynomial of the form (see, for instance, [1, 2]):

D(s, τ̄ , τ, n) := (s + α)
(

1 + s
τ̄

n + 1

)n+1

− βe−sτ = 0. (5)

The paper addresses the problem of analyzing the effects of the gap, and mean delay values on the stability
regions of the general characteristic equation (5). Whereas several particular cases received a lot of attention,
see, for instance, [3, 1, 2, 14] using various frequency-domain methods, the corresponding methodologies becomes
extremely complicated to apply to (5). We think that our approach overcomes this difficulties, and gives a simple,
and appealing way to treat such a stability problem. More explicitly, we shall define the stability crossing curves,
that is the curves consisting of all delays such that the corresponding characteristic quasipolynomial has at least
one root on the imaginary axis. Next, we explicitly compute the crossing set, that is the set represented by all
the frequencies corresponding to all the points in the stability crossing curves, and we discuss the way such a set
can be computed as well as its properties. The classification of the stability crossing curves follow naturally from
the procedure considered. Finally, we detail the directions in which zeros cross the imaginary axis. To the best
of the authors’ knowledge, there does not exist any similar analysis in the literature for such a case study.

The main interest of the approach is twofold: first, to understand the underlying mechanisms of stabil-
ity/instability issues in the case of linear systems including gamma-distributed delays with a gap, and second,
to derive some simple stability criteria for such systems. Indeed, it is well known (see, for instance, [5]) that
the complete stability characterization of the linear delay systems is still an open problem. Furthermore, it was
proved in [20], that the problem is NP-hard even in the case of multiple discrete (piece-wise) constant delays.
However, the geometry of the stability regions in the delay-parameter space for the two (piece-wise) delays case
was completely developed in [8]. The intention of this paper is to give similar insights for this class of dynamical
systems with respect to the corresponding gap, and average delay values, respectively. Some illustrative examples
complete the approach considered, and give a simple, and easy way to follow the methodology considered.

The remaining paper is organized as follows: Section 2 presents the problem formulation, and some simple
prerequisites necessary in developing our results. Next section contains a brief overview over the existing results
regarding the stability analysis of Cushing equation. The main results (crossing sets, stability crossing curves
classification, tangent and smoothness, crossing directions) and one numerical example are presented in Section
4 and concluding remarks end the paper. The notations are standard.

2 Problem formulation, and preliminaries

As mentioned in the Introduction, our main interest is to analyze the effects of the gap, and mean delay values
on the stability regions of the general characteristic equation (5). Consider now the following system, whose
dynamics are described by the following characteristic equation:

D(s, T, τ) = (s + α)(1 + sT )n + βe−sτ = 0. (6)
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More explicitly, we study the occurrence of any possible stability switch/reversal 1 resulting by increasing the
time delay τ or the average delay T . In other words, we explicitly study the change of number of zeros of (6) on
C+ as the delays (T, τ) vary on R2

+.
Since the main objective of this study is to identify the regions of (T, τ) in R2

+ such that D(s, T, τ) is (as-
ymptotically) stable, we will exclude some cases, and the following assumption appears naturally, as discussed
below:

Assumption 1. α + β > 0;

If α + β = 0 then 0 is a zero of (6) for any (T, τ) ∈ R2
+, and therefore we can never get the stability by

increasing T , and τ . For stability at zero delay we require α + β > 0.
In [11], the authors introduced the notion of hyperbolicity for linear delay system. More explicitly, the

characteristic equation (6) is said to be hyperbolic at some point (T0, τ0) if no root of the characteristic equation
lies on the imaginary axis for T = T0, and τ = τ0.

Using the assumption, and the hyperbolicity notion introduced above, we have the following simple result:

Proposition 1. The system (6) is hyperbolic for all (T, τ) ∈ R+ × R+ if and only if:

|α| > |β| , (7)

Proof: ”⇐” It is clear that:
| α + jω |≥| α |, ω ∈ R.

Next, using (7), it follows:
| (1 + jωT )n(α + jω) |>| β |,

for all (ω, T ) ∈ R×R+. In conclusion, the modulus equation associated to (6) cannot have any solution jω, with
ω ∈ R∗, for all (T, τ) ∈ R+ × R+, fact which is equivalent to say that the corresponding characteristic equation
has no roots on the imaginary axis, excepting eventually the origin.

Let us consider the case at the origin now. Using a simple continuity argument, (7) leads to the inequality
| α |≥| β |, and thus the only case that one needs to consider is | α |=| β |, case which is excluded by Assumption
1. In conclusion the hyperbolicity property follows.

”⇒” The argument can be simply done by contradiction, and it is omitted. The proof is completed.

Remark 1. The proposition above gives a simple frequency-sweeping characterization of the so-called delay-
independent hyperbolicity property. Further discussions on this topics can be found in [17]. In the case, when
the system free of delays is asymptotically stable, then the result above gives a very simple condition of delay-
independent stability (see also [7], and the references therein).

We can ignore cases where α < 0 on biological grounds. So in all that follows we assume 0 < α < β.

3 Stability analysis of Cushing equation: an overview

This section is devoted to existing results in the literature, in the analysis of Cushing model. It is very important
to note that even for the simple case without the gap, some of the first results concerning its stability analysis
include errors.
In [3] Cooke K.L and Grosmann Z. made a stability analysis using an algebraic approach. They studied the case
when τ = 0 so equation (6) becomes (s + α)(1 + sT )n + β = 0 and

ds

dT
= − ns(s + α)

1 + sT + nT (s + α)
. (8)

1We are using the same terminology as in Cooke and Grossman [3], that is a root of the characteristic equation crossing the
imaginary axis, when some parameter is varying.
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At the root s = −jω, if any, we have

ds

dT
=

−njω(jω + α)
nTα + 1 + j(n + 1)Tω

=
nω2 − jnωα

nTα + 1 + j(n + 1)Tω
,

Re
ds

dT
=

n2Tαω2 + nω2 − n(n + 1)Tαω2

(nTα + 1)2 + (n + 1)T 2ω2
⇒

sign
{

Re
ds

dT

}
= sign[nTα + 1− (n + 1)Tα] = sign(1− Tα).

Writing s = ρ + jω and using (8) for Tα > 1 they stated that any root with a positive real part, if such exists
for some T , must cross the imaginary axis and undergo an irreversible change of sign of the real part as T is
increased.
In [1] Blythe and all, corrected the results which characterize the behaviors in presence of a distributed delay.
First they stated for linearized Cushing model whose behavior is given by characteristic equation

(s + α)
(

1 + s
τ1

n + 1

)n+1

+ β = 0 (9)

that we have a crossing towards instability and there is a range of values of α/β within which restabilisation
occurs but beyond which it cannot. Next, they studied a model with a gap given by:

(s + α)
(

1 + s
τ1

n + 1

)n+1

+ βe−sτ2 = 0 (10)

and they defined the angular quantity θ, by tan θ =
ωτ1

n + 1
.

For

P = (cos y)n+1 cos
[
(n + 1)

(
θ +

τ2

τ1
tan θ

)]
and M = −(cos z)n+1 (11)

where y is a solution of: tan θ +
(

1 +
τ2

τ1
sec2 θ

)
tan

[
(n + 1)

(
θ +

τ2

τ1
tan θ

)]
= 0 and z is a solution of

θ +
τ2

τ1
tan θ =

π

n + 1

they obtained the restabilisation ”window”

W (n, τ2/τ1) = (P −M)/P, (12)

which falls to zero as n and/or τ2/τ1 increases.
Using another method Boese pointed out in [2] that both papers contain errors and weakness. Boese focussed
on the analysis of some models related to

Theorem 1. The function
f(s) = (s + α)n + βe−sτ (13)

with real a,d,τ with a > 0 and d, τ ≥ 0 as well as n ∈ N is stable if τ < τ(a, d) and unstable for τ > tau(a, d)
where

τ(a, d) =





+∞ d ≤ an

max

{
0,

π − n arctan(
√

d2/na−2 − 1)
a
√

d2/na−2 − 1

}
d > an (14)
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4 Main results

The characterization of the stability crossing curves in the delay parameter space needs the following ingredients:
(a) first, the identification of the corresponding crossing points, that is the set of frequencies corresponding to all
the points in the stability crossing curves. Next, we define the associated crossing set, which will be defined by
a finite number of intervals of finite length; (b) second, the classification of the corresponding stability crossing
curves, including some simple geometric characterization (tangent, smoothness); (c) finally, the characterization
of the way the roots cross the imaginary axis.

All these steps are detailed in the next paragraphs, and one example illustrating our algorithm end this
section. The presentation is as simple as possible, and intuitive.

4.1 Identification of crossing points

Let T denote the set of all (T, τ) ∈ R2
+ such that (6) has at least one zero on imaginary axis. Any (T, τ) ∈ T

is known as a crossing point. The set T , which is the collection of all crossing points, is known as the stability
crossing curves.

Based on the results presented in the previous section, it becomes clear that crossing points potentially exist
if the condition (7) is not satisfied for some frequency values ω. Such aspects, together with various simple, and
intuitive geometrical figures will be addressed in the sequel.

Remark 2. 1) There is τ ∈ R+ which satisfies equation (6) for a fixed s = jω if and only if

|(1 + jωT )n| |α + jω| = |β| (15)

2) There exists T ∈ R+ which satisfies (15) for a fixed s = jω, ω 6= 0 if and only if

|α + jω| ≤ |β| and α + jω 6= 0 (16)

Therefore T is the set of (T = T (ω), τ = τ(ω)) with ω satisfies (16).

Remark 3. If ω is a real number and (T, τ) ∈ R2
+ then

(−jω + α)(1− jωT )n + βejωτ = (α + jω)(1 + jωT )n + βe−jωτ

Therefore we only need to consider positive ω. Let Ω be the set of all positive real number which satisfy (16).
We will refer to Ω as the crossing set. It contains all the ω such that some zero(s) of D(s, T, τ) may cross the
imaginary axis at jω.

Remark 4. If D(jω, T, τ) = 0 then D(jω, T, τ + 2kπ) = 0, ∀k ∈ Z. In this context exists τ0 ∈ (−π, π) such that
D(jω, T, τ0) = 0.

Proposition 2. The following statements are true:

1) The crossing set Ω consists of one interval
(
0,

√
β2 − α2

]
of finite length.

2) lim
ω→
√

β2−α2
T = 0

3) lim
ω→0

T and lim
ω→0

τk are infinite.

Proof. 1) From definition Ω is the set of all ω which satisfy (16). Using Remark 3, Ω is the set of all positive
ω which satisfy ω ≤

√
β2 − α2. Therefore Ω =

(
0,

√
β2 − α2

]
.

For each given ω∗ ∈ Ω we may easily find all the corresponding pairs (T, τ) satisfying (6) as follows:

T =
1
ω∗

(∣∣∣∣
β

α + jω∗

∣∣∣∣
2
n

− 1

) 1
2

, τk =
1
ω∗

(
arg

−β

(1 + jω∗T )n(α + jω∗)
+ 2kπ

)
,
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where k ∈ Z such that τk > 0.

2) Obvious lim
ω→
√

β2−α2
T = lim

ω→
√

β2−α2

1
ω

(∣∣∣∣
β

α + jω

∣∣∣∣
2
n

− 1

) 1
2

= 0.

3)

lim
ω→0

T = lim
ω→0

1
ω

(∣∣∣∣
β

α + jω

∣∣∣∣
2
n

− 1

) 1
2

= ∞

and

lim
ω→0

τk = lim
ω→0

1
ω

(
arg

−β

(1 + jωT )n(α + jω)
+ 2kπ

)
= − 1

ω
arctan

ω

α
− n

ω
arctanωT +

2kπ

ω
= ∞

Proposition 3. The following monotonicity properties are true:

1) T = T (ω) is a decreasing function on Ω;

2) τ = τ(ω) is a decreasing function on Ω;

3) τ = τ(T ) is a increasing function on (0,∞).

Proof. 1) Let 0 < ω1 < ω2 <
√

β2 − α2 ⇒





ω2
1 + α2 < ω2

2 + α2 ⇒ β2

ω2
1 + α2

>
β2

ω2
2 + α2

1
ω1

>
1
ω2

⇒

T (ω1) =
1
ω1

(∣∣∣∣
β

α + jω1

∣∣∣∣
2
n

− 1

) 1
2

>
1
ω2

(∣∣∣∣
β

α + jω2

∣∣∣∣
2
n

− 1

) 1
2

= T (ω2)

2) Using the formula of τk given in previous proposition we can write

τk =
1
ω

[
(2k + 1)π − arg β − arctan

ω

α
− n arctanωT

]

and it is easy to show that τk is decreasing.
3) T = T (ω) : Ω 7→ (0,∞) is decreasing continuous function and lim

ω→0
T = ∞, lim

ω→
√

β2−α2
T = 0 so

ω = ω(T ) : (0,∞) 7→ Ω is decreasing continuous function. Therefore τ = τ(T ) is increasing function on (0,∞).

Example 1. Consider a system with
P (s) = s + 3 and Q(s) = 5 (17)

Figure 1 plots
|P (jω)|
|Q(jω)| against ω. The crossing set Ω can be easily identified from the Figure 1, it contains one

interval

Ω = (0, 4] of type 02,1
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Figure 1: |P (jω)|
|Q(jω)| versus ω for the system represented by (17)

4.2 Tangents and smoothness

Next, we will discuss the smoothness of the curves in T . In this part we use an approach based on implicit
function theorem. For this purpose we consider T and τ as implicit functions of s = jω defined by (6). As s
moves to imaginary axis, (T, τ) = (T (ω), τ(ω) moves along the T . For a given ω ∈ Ω, let

R0 = Re

(
j

s

∂D(s, T, τ)
∂s

)

s=jω

=

1
ω

Re
{
[nT (α + jω) + (1 + jωT )] (1 + jωT )n−1 − τβe−jωτ

}

I0 = Im

(
j

s

∂D(s, T, τ)
∂s

)

s=jω

=

1
ω

Im
{
[nT (α + jω) + (1 + jωT )] (1 + jωT )n−1 − τβe−jωτ

}

and

R1 = Re

(
1
s

∂D(s, T, τ)
∂T

)

s=jω

= Re
(
n(1 + jωT )n−1(α + jω)

)

I1 = Im

(
1
s

∂D(s, T, τ)
∂T

)

s=jω

= Im
(
n(1 + jωT )n−1(α + jω)

)

R2 = Re

(
1
s

∂D(s, T, τ)
∂τ

)

s=jω

= −Re
(
βe−jωτ

)

I2 = Im

(
1
s

∂D(s, T, τ)
∂τ

)

s=jω

= −Im
(
βe−jωτ

)

Then, since D(s, T, τ) is an analytic function of s, T and τ , the implicit function theorem indicates that the
tangent of T can be expressed as

( dT

dω
dτ

dω

)
=

(
R1 R2

I1 I2

)−1 (
R0

I0

)
=

1
R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (18)

provided that
R1I2 −R2I1 6= 0. (19)
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It follows that T is smooth everywhere except possibly at the points where either (19) is not satisfied, or when

dT

dω
=

dτ

dω
= 0. (20)

Proposition 4. The curves in T are smooth everywhere except possibly at the degenerate points corresponding
to ω in any one of the following cases:

1) s = jω is a multiple solution of (6)

2) ω =
√

β2 − α2 .

Proof. If (20) is satisfied then s = jω is a multiple solution of (6).

Condition (19) is not satisfied if and only if
I1

R1
=

I2

R2
⇔

arg
(
n(1 + jωT )n−1(α + jω)

)
= arg

(−βe−jωτ
) ⇔ 1 + jωT

|1 + jωT | = 1 ⇔
T = 0 ⇔ (α + jω) + βe−jωτ = 0 ⇔ |α + jω| = |β|.

4.3 Direction of crossing

Next we will discuss the direction in which the solutions of (6) cross the imaginary axis as (T, τ) deviates from a
curve in T . We will call the direction of the curve that corresponds to increasing ω the positive direction. Notice,
as the curve passes through the points corresponding to the end points of Ω,the positive direction is reversed.
We will also call the region on the left hand side as we head in the positive direction of the curve the region on
the left. Again, due to the possible reversion of parametrization the same region may be considered on the left
with respect to one point of the curve,and on the right with respect to another point of the curve.

To establish the direction of crossing we need to consider T and τ as functions of s = σ + jω i.e.,function
of two real variables σ and ω, and partial notation needs to be adopted instead. Since the tangent of T along

the positive direction is
(

∂T

∂ω
,
∂τ

∂ω

)
, the normal to T pointing to the left hand side of positive direction is

(
− ∂τ

∂ω
,
∂T

∂ω

)
. The crossing of a pair of conjugate complex solutions of (6) is given by the moving of (T, τ) along

the direction
(

∂T

∂σ
,
∂τ

∂σ

)
. So, if a pair of conjugate complex solutions of (6) cross imaginary axis to the right half

plane then: (
∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

> 0 (21)

i.e. the region on the left of T at ω has two more solutions in right half plane. If the inequality (21) is reversed
then the region on the left of T at ω has two fewer solutions in right half plane. Like in (18) we can express

( dT

dσ
dτ

dσ

)

s=jω

=
(

R1 R2

I1 I2

)−1 (
I0

−R0

)
=

1
R1I2 −R2I1

(
R0R2 + I0I2

−R0R1 − I0I1

)
, (22)

where Ri and Ii are defined in previous section. Using this we can arrive to the following result:

Proposition 5. Let ω ∈ Ω and (T, τ) ∈ T . Then a pair of solutions of (6) cross the imaginary axis to the right,
through the ”gates” ±jω if R2I1 −R1I2 > 0, and cross to the left if the inequality is reversed.

Proof. Easy computation shows that
(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

=
(R2

0 + I2
0 )(R2I1 −R1I2)

(R1I2 −R2I1)2
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Therefore (21) can be written as R2I1 −R1I2 > 0.

Example 2 (linearized Cushing equation with a gap). In this example we apply the above method for the Cushing
linearized equation (s+a)(1+sT )n+be−sτ = 0. First it’s easy to remark that the only interesting case is |a| < |b|.
All other cases don’t present any stability switch because the crossing set Ω is empty.
If |a| < |b| then Ω = (0,

√
b2 − a2 ] and the corresponding pairs (T, τ) are given by:

T =
1
ω

[(
b2

ω2 + a2

)1/n

− 1

]1/2

, τi =
1
ω

[
arg

( −b

(a + jω)(1 + jωT )n

)
+ 2iπ

]

According with the Proposition 2 we get lim
ω→√b2−a2

T = 0, lim
ω→√b2−a2

τi =
1√

b2 − a2

(
2iπ + arg

−b

a
− arctan

√
b2 − a2

a

)
,

lim
ω→0

T = ∞ and lim
ω→0

τi = ∞. Also the slopes of the corresponding asymptotes are given by

lim
ω→0

τ

T
=

−n arctan

[(
b2

a2

)1/n

− 1

]1/2

+ arg
−b

a
+ 2iπ

[(
b2

a2

)1/n

− 1

]1/2

The following picture plots τk, k ∈ {0, 1, 2, 3, 4} against T in the case n = 1 and n = 4 for a = 3 and b = 5. We
can easily see that τk+1(ω) > τk(ω), ∀k > i0 and ω ∈ Ω.
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Figure 2: τk, k ∈ {0, 1, 2, 3, 4} versus T when n = 1

Proposition 6. For the previous system all the crossing directions of the characteristic roots are towards insta-
bility.

Proof We can easily compute

ds

dτ

∣∣∣∣
s=jω

=
jωbe−jωτ

(1 + jωT )n + nT (jω + a)(1 + jωT )n−1 − bτe−jωτ
(23)

and then

sgn Re
(

ds

dτ

)−1
∣∣∣∣∣
s=jω

= sgn

(
ω

a2 + ω2
+

nωT 2

1 + ω2T 2

)
> 0 (24)
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and the proof is complete.

So, after the first cross the stability is lost and never regained. Therefore, for all n, we have only one stability
region delimited by T 0.

5 Concluding remarks

In this paper we have characterized the geometry of the stability crossing curves in the parameter space. Our
approach is easier than other existing approach. The presentation is as simple as possible, and intuitive. We
intend to adapt this method to more general cases and give various applications.
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