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Abstract— This paper focuses on the fragility analysis of PI-
controllers for single-input-single-output (SISO) systems subject
to input (or output) delays. Using a geometric approach,
we present a simple and user-friendly approach not only to
analyze the fragility of PI controllers, but also to provide
practical guidelines for the design of non-fragile PI controllers.
The proposed methodology is illustrated by analyzing several
examples encountered in the control literature.

Index Terms— PI-controller, Stability, Fragility, Delay.

I. INTRODUCTION

As reported in the literature [25], [27], more than 98%

of the control-loops in the paper industries are controlled by

SISO PI controllers. The “popularity” of PI and PID con-

trollers can be attributed to their particular distinct features:

simplicity and easy implementation. A long list of PI and

PID tuning methods for controlling processes can be found

in [25], [2]. As mentioned by [1], such controllers have to

be designed by considering: (a) performance criteria; (b)

robustness issues and, finally, (c) fragility. Roughly speaking,

a controller for which the closed-loop system is destabilized

by small perturbations in the controller parameters is called

“fragile”. In other words, the fragility describes the deterio-

ration of closed-loop stability due to small variations of the

controller parameters.

This paper focuses on the fragility of PI controllers for

SISO systems in the presence of I/O delays. The prob-

lem received a lot of attention in delay free systems, see,

e.g., [16] (robustness techniques design leading to fragile

controllers), [10] (non-fragile PID control design proce-

dure), [1] (appropriate index to measure the fragility of PID

controllers). In this context of delay free systems, some

remarks concerning the controller robustness via coprime

factorization and robustness optimization tools can be found

in [17], [15]. However, there exists only a few results in

the delay case: [28], where only (stable) first-order systems

were considered, and more recently, [18], where the authors

proposed a robust non-fragile control design for a TCP/AQM

models and, to the best of the authors’ knowledge, there does
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not exist any complete characterization of the fragility of PI

controllers.

In this paper, we develop a simple method to analyze the

fragility of a given PI-controller for any SISO system subject

to (constant) time-delay. The method is based on two “ingre-

dients”: (i) the construction of the stability crossing curves

in the parameter-space defined by “P” (proportional) and “I”

(integral) coefficients, and (ii) the explicit computation of

the distance of some point to the closest stability crossing

curves by taking into account the smoothness properties of

the curves. The first step sends back to the D-decomposition

method suggested by Neimark [24] in the 40s (see [19]

for further comments). More precisely, the stability cross-

ing curves represent the collection of all points for which

the corresponding characteristic equation of the closed-loop

system has roots on the imaginary axis. These curves define

a “partition” of the space of parameters in several regions,

each region having a constant number of unstable roots

for all the parameters inside the region. Next, by taking

into account the crossing boundaries characterization in the

controller parameter-space we derive an algorithm allowing

us to determine explicitly the optimal non-fragile controller.

In other words, we present an algorithm that allows to

explicitly compute the (closed-loop) stability radius in the

controller parameter space.

Finally, as a by-product of the analysis, we can easily

derive the maximum controller gain interval guaranteeing

the closed-loop stability for a prescribed integral coefficient.

Such a geometrical argument completes in the SISO frame-

work the results [31], [26] based on the small-gain theorem.

The remaining part of the paper is organized as follows:

some preliminary results are briefly presented in Section 2.

Next, the fragility algorithm for PI controllers is described

in Section 3 and some illustrative examples are considered

in Section 4. Concluding remarks end the paper.

II. PRELIMINARY RESULTS

Consider now the class of strictly proper SISO open-loop

system with I/O delays given by the transfer function:

Hyu(s) =
P (s)

Q(s)
e−sτ = cT (sIn − A)−1be−sτ (1)

where (A, b, cT ) is a state-space representation of the open-

loop system. The control law is defined by a classical PI

controller K(s) of the form:

K(s) = k

(

1 +
1

Tis

)

= kp +
ki

s
. (2)

16th Mediterranean Conference on Control and Automation
Congress Centre, Ajaccio, France
June 25-27, 2008

978-1-4244-2505-1/08/$20.00 ©2008 IEEE 529



Therefore, the stability of the closed-loop systems is given

by the locations of the zeros of the following meromorphic

function H : C × R2 × R+ 7→ C given by:

H(s; kp, ki, τ) = 1 +
P (s)

Q(s)

(

kp +
ki

s

)

e−sτ (3)

which has an infinite (countable) number of roots (see,

e.g., [6], [9]).

As mentioned in the Introduction, the goal of this paper is

to derive an appropriate PI controller (k∗
p, k∗

i ) and a positive

value d such that the control law (2) stabilizes the system

(1) for any kp and ki as long as

√

(kp − k∗
p)2 + (ki − k∗

i )2 < d.

For the brevity of the paper and without any loss of gener-

ality, we make the following:

Assumption 1: The polynomials P (s), Q(s) in (3) are

such that P (s) and sQ(s) do not have common zeros.

If the condition above is violated, two situations may occur:

(a) P (0) = 0, or (b) there exists a nontrivial factor c(s)
( 6= constant) such that P (s) = c(s)P1(s) and sQ(s) =
sc(s)Q1(s). Consider first P (0) = 0. It is easy to see that

P rewrites as P (s) = sP0(s) and (3) becomes:

H(s; kp, ki, τ) = 1 +
P0(s)

Q(s)
(kps + ki)e

−sτ ,

which corresponds to a delayed SISO system subject to a

PD controller. As expected, our method works also in such

a situation but this analysis is omitted. In the second case,

by simplifying by c(s), we obtain a system described by (3)

which satisfies the Assumption above.

In the sequel, we recall some geometric results that enable

us to generate the stability crossing curves in the space

defined by the controller’s parameters (kp, ki) (similar results

for different types of dynamics can be found in [7], [20],

[23]). These curves represent the collection of all pairs

(kp, ki) for which the characteristic equation (3) has at least

one root on the imaginary axis of the complex plain.

According to the continuity of zeros with respect to the

system parameter (see, for instance, [4] for the continuity

with respect to delays), the number of roots in the right half

plane (RHP) can change only when some zeros appear and

cross the imaginary axis. Therefore, a useful concept is the

frequency crossing set Ω defined as the set of all real positive

ω for which there exist at least a pair (kp, ki) such that

H(jω; kp, ki, τ) := 1+
P (jω)

Q(jω)

(

kp − j
ki

ω

)

e−jωτ = 0 (4)

We only need to consider positive frequencies ω, that is Ω ⊂
(0,∞) since, obviously,

H(jω; kp, ki, τ) = 0 ⇔ H(jω; kp, ki, τ) = 0.

Proposition 1 ([22]): For a given τ ∈ R
∗
+ and ω ∈ Ω the

corresponding crossing point (kp, ki) is given by:

kp = −ℜ

(

Q(jω)

P (jω)
ejωτ

)

, (5)

ki = ω · ℑ

(

Q(jω)

P (jω)
ejωτ

)

. (6)

It is easy to see that ∀ ω ∈ Ω we have P (jω) 6= 0. Otherwise,

Q(jω) = 0, that contradicts the Assumption 1.

Proposition 2 ([22]): Let k∗
p and k∗

i > 0 be given. Let

Ωk∗p,k∗
i

denotes the set of all frequencies ω > 0 satisfying

equation (4) for at least one pairs of (kp, ki) in the rectangle

|kp| ≤ k∗
p , |ki| ≤ k∗

i . Then Ωk∗p ,k∗
i

consists of a finite number

of intervals of finite length. Precisely, ω ∈ Ωk∗p,k∗
i

if and only

if
∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

2

≤
(

k∗
p

)2
+

(

k∗
i

)2

ω2
(7)

Then, when ω varies within some interval Ωl satisfying

the inequality (7), (5)-(6) define a continuous curve. Denote

this curve by Tl and consider the following decompositions:

R0 + jI0 = j
∂H(s, kp, ki, τ)

∂s

∣

∣

∣

∣

s=jω

,

R1 + jI1 = −
∂H(s, kp, ki, τ)

∂ki

∣

∣

∣

∣

s=jω

,

R2 + jI2 = −
∂H(s, kp, ki, τ)

∂kp

∣

∣

∣

∣

s=jω

.

The implicit function theorem indicates that the tangent of

Tl can be expressed as follows:






dkp

dω
dki

dω






=

(

R2 R1

I2 I1

)−1 (

R0

I0

)

=
1

R1I2 − R2I1

(

R1I0 − R0I1

R0I2 − R2I0

)

(8)

provided that

R1I2 − R2I1 6= 0. (9)

In order to derive the stability region of the system given by

(3), [22] characterized the smoothness of the crossing curves

and the corresponding direction of crossing.

Proposition 3: The curve Tl is smooth every where except

possibly at the point corresponding to s = jω such that

s = jω is a multiple solution of (3).

Proposition 4: Assume ω ∈ Ωl, kp, ki satisfy (5) and (6)

respectively, and ω is a simple solution of (4) and

H(jω′, kp, ki, τ) 6= 0, ∀ω′ 6= ω

(i.e. (kp, ki) is not an intersection point of two curves or

different section of a single curve). Then, as (kp, ki) moves

from the region on the right to the region on the left of

the corresponding crossing curve, a pair of solution of (3)

crosses the imaginary axis to the right (through s = ±jω) if

R1I2 − R2I1 > 0.

The crossing is to the left if the inequality is reversed.
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III. MAIN RESULT: FRAGILITY OF PI CONTROLLERS

Consider now the PI fragility problem, that is the problem

of computing the maximum controller parameters deviation

without losing the closed-loop stability – given the pair of

parameters (k∗
p , k∗

i ) such that the roots of the equation:

Q(s) + P (s)
(

k∗
p +

k∗
i

s

)

e−sτ = 0,

are located in C− (that is the closed-loop system is asymptot-

ically stable), find the maximum parameter deviation d ∈ R+

such that the roots of (3) stay located in C− for all controllers

(kp, ki) satisfying:
√

(kp − k∗
p)2 + (ki − k∗

i )2 ≤ d.

This problem can be more generally reformulated as: find

the maximum parameter deviation d such that the number of

unstable roots of (3) remains unchanged.

First, let us introduce some notation:

T =

N
⋃

l=1

Tl, Tl =
{

(kp, ki)
∣

∣ω ∈ Ωl

}

−−→
k(ω) = (kp(ω), ki(ω))

T
,

−→
k∗ =

(

k∗
p, k∗

i

)T

Let us also denote dT = minl∈{1,...,N} dl, where

dl = min
{√

(kp − k∗
p)2 + (ki − k∗

i )2 | (kp, ki) ∈ Tl

}

With the notation and the results above, we have:

Proposition 5: The maximum parameter deviation from

(k∗
p, k∗

i ), without changing the number of unstable roots of

the closed-loop equation (3) can be expressed as:

d = min

{

|k∗
i |, min

ω∈Ωf

{∥

∥

∥

−−→
k(ω) −

−→
k∗

∥

∥

∥

}

}

, (10)

where Ωf is the set of roots of the function f : R+ 7→ R,

f (ω) ,

(−−−→
k (ω) −

−→
k∗

)

�
d
−−−→
k (ω)

dω
, (11)

where ” �” means the dot product.

Proof: We consider that the pair (k∗
p, k∗

i ) belongs to a

region generated by the crossing curves. Since the number

of unstable roots changes only when (kp, ki) get out of this

region, our objective is to compute the distance between

(k∗
p, k∗

i ) and the boundary of the region. Furthermore, the

boundary of such a region consists of “pieces” of crossing

curves and possibly one segment of the kp axis. In order

to compute the distance between (k∗
p, k∗

i ) and a crossing

curve we only need to identify the points where the vector

(kp−k∗
p, ki−k∗

i ) and the tangent to the curve are orthogonal.

In other words we have to find the solutions of

f(ω) = 0,

where f is defined by (11). Taking into account the relation

(8) we may write (11) as

f (·) =
(

kp − k∗
p

)

(R1I0 − R0I1)+(ki − k∗
i ) (R0I2 − R2I0)

It is noteworthy that f(ω) is a polynomial function and,

therefore, it will have a finite number of roots. Let us consider

{ω1, . . . , ωM} the set of all the roots of f(ω) when we take

into account all the pieces of crossing curves belonging to

the region around (k∗
p, k∗

i ). Since the distance from (k∗
p, k∗

i )
to the kp(ω) axis is given by |k∗

i |, one obtains:

d = min

{

|k∗
i |, min

h={1,...,M}

{∥

∥

∥

−−−→
k(ωh) −

−→
k∗

∥

∥

∥

}

}

,

that is just another way to express (10).

The explicit computation of the maximum parameter de-

viation d can be summarized by the following algorithm:

Step 1:First, compute the “degenerate” points of each

curve Tl (i.e. the roots of R1I2 − R2I1 = 0 and

the multiple solutions of (3)).

Step 2:Second, compute the set Ωf defined by Proposition

5 (i.e. the roots of equation f(ω) = 0, where f is

given by (11)).

Step 3:Finally, the corresponding maximum parameter de-

viation dl is defined by (10).

Remark 1 (On the gains’ optimization): It is worth men-

tioning that the geometric argument above can be easily used

for solving other robustness problems. Thus, for instance, if

one of the controller’s parameters is fixed (prescribed), we

can also explicitly compute the maximum interval guarantee-

ing closed-loop stability with respect to the other parameter.

In particular if Ti (“integral”) is fixed, we can derive the

corresponding stabilizing maximum gain interval. This gives

a different insight to the results proposed by [31], [26]

by using the small-gain theorem (see, for instance, the

illustrative examples below).

IV. ILLUSTRATIVE EXAMPLES

Example 1 (Chemical Process): Consider the problem of

controlling a continuous stirred tank reactor (CSTR) as

in Fig.1 with the numerical values taken from [12] (see,

e.g., [14], [29] for more details on CSTR). The goal is to

control the reactor composition by manipulating the cool rate

through the control signal u. Without getting into details, the

transfer function of the system has the form:

Hyu(s) = −
1.308

(13.515s + 1)(6.241s + 1)
e−4.896s. (12)

Fig. 1. A CSTR control system
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The use of a PI-controller leads to H(s; kp, ki) =:

(13.515s+1)(6.241s+1)−1.308

(

kp +
ki

s

)

e−4.896s. (13)

The system (13) has one stability region plotted in Fig.2.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05
k
i

k
p

Fig. 2. The boundary of the stability region in the
`

kp, ki

´

parameters
space for the system (12)

Next, we will study the fragility of PI-setting for some of

the PI controllers proposed in the literature:

• Huang-Chou-Wuang[12]: (k∗
p = −1.6881, k∗

i =
−0.0732);

• Hwang[13]: (k∗
p = −1.2173, k∗

i = −0.0529);
• Chao-Lin-Guu-Chang[3]: (k∗

p = −1.1294, k∗
i =

−0.0387);
• Ziegler-Nichols[33]: (k∗

p = −1.4702, k∗
i = −0.0601).

By applying Proposition 5, the derived results are summa-

rized in Table I and illustrated in the Fig.3.

ω dT min
˘

dT , k∗

i

¯

Huang-Chou-Wang 0.1387 0.1114 0.0732
Hwang 0.1225 0.1202 0.0529
Chao-Lin-Guu-Chang 0.1194 0.1308 0.0387
Ziegler-Nichols 0.1323 0.1210 0.0601
Optimal Non-Fragile 0.1405 0.0925 . . . 0.0925 . . .

TABLE I

PI FRAGILITY COMPARISON FOR THE SYSTEM (12)

Fig. 3. The maximum parameter deviation without losing stability for the
system (12), where the Optimal Non-Fragile controller is given by k∗

p =
−1.7420542840243 . . . and k∗

i = −0.09250851510052 . . .

Example 2 (A TCP/AQM network model): Consider the

fluid-flow model introduced by [11] for describing the behav-

ior of TCP/AQM networks and subject to PI controllers. As

mentioned by [18], the stability of the linearized closed-loop

system reduces to the root location of H(s, kp, ki, τ) :=

s2+ 1

τ

(

1+ n
τc

)

s+ 2n
τ3c

+
[

n
τ2c

s+ c2

2n

(

kp+ ki

s

)

]

e−τs = 0 (14)

Here, n denotes the load factor (number of TCP sessions),

τ the round-trip time (seconds) and c the link capacity

(packets/sec). The crossing curves are given by:

kp =
2n

c2

[(

ω2 −
2n

τ3c

)

cos(ωτ) +
ω

τ

(

1 +
n

τc

)

sin(ωτ)

]

ki =
2nω

c2

[

ω

τ

(

1 +
n

τc

)

cos(ωτ) +

(

2n

τ3c
− ω2

)

sin(ωτ)

+
nω

τ2c

]

Considering the same network parameters as in [11], [18]

(n = 60, c = 3750, τ = 0.246) and applying Proposition 4

we get that all the crossing directions are towards instability.

Furthemore, we have only one stability region. Consider now

some of the controllers proposed in the literature:

• Melchor-Niculescu[18]: (k∗
p = 9.1044 × 10−5, k∗

i =
6.8 × 10−5);

• Hollot-Misra-Towsley-Gong[11]: (k∗
p = 1.8485 ×

10−5, k∗
i = 9.7749× 10−6);

• Üstebay-Özbay[30]: (k∗
p = 3.5252 × 10−5, k∗

i =
8.9564× 10−6);

• Ziegler-Nichols[33]: (k∗
p = 7.4401 × 10−5, k∗

i =
5.7057× 10−5);

• Huang-Chou-Wang[12]: (k∗
p = 10.0011 × 10−5, k∗

i =
6.4880× 10−5).

The results are briefly outlined in the table II and illustrated

in Fig.4.

ω dT min
˘

dTl
,
˛

˛k∗

i

˛

˛

¯

ˆ

×10−5
˜ ˆ

×10−5
˜

Melchor ω1 = 1.76 dT1
= 6.74

and ω2 = 2.75 dT2
= 8.78 6.7410

Niculescu ω3 = 3.49 dT3
= 6.82

Hollot-Misra ω1 = 0.72 dT1
= 3.00

and ω2 = 3.00 dT 2 = 17.0 0.9774
Towsley-Gong ω3 = 3.69 dT 2 = 15.6

Üstebay ω1 = 0.81 dT1
= 4.56

and ω2 = 2.93 dT2
= 16.2 0.8956

Özbay ω3 = 3.72 dT3
= 14.0

Ziegler ω1 = 1.55 dT1
= 5.89

and ω2 = 2.85 dT2
= 10.2 5.7057

Nichols ω3 = 3.52 dT3
= 8.77

Huang ω1 = 1.79 dT1
= 7.65

Chou and ω2 = 2.68 dT2
= 9.07 6.1094

Wang ω3 = 3.53 dT3
= 6.10

TABLE II

PI-FRAGILITY COMPARISON FOR THE CHARACTERISTIC EQUATION (14)

Remark 2: As mentioned in the previous chapter, it is

also possible to solve the following problem – given a fixed

integral (gain) parameter Ti =
kp

ki
, find the optimal interval

for the gain (integral) parameter kp = k, such that, the
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Fig. 4. Fragility comparison of the PI-controllers for the system

resulting closed-loop system is stable for all gain (integral)

parameters In this case, it is sufficient to find the “mid-point”

of the maximal interval which belong to the stability region.

Reconsider the previous controllers:

• “optimal” gain (Hollot-Misra-Towsley-Gong): k =
7.91 × 10−5;

• “optimal” gain (Üstebay-Özbay): k = 8.56 × 10−5;

• “optimal” gain (Melchor-Niculescu): k = 7.34 × 10−5

It is easy to see that the controller proposed by Üstebay-

Özbay is “closer” to the “non-fragile” one than Hollot-Misra-

Towsley-Gong. The above results are also depicted in Fig.5

Fig. 5. Gain fragility comparison of the PI-controllers for the system (14)

Example 3 (Unstable, non-minimum phase): Consider a

second-order, non-minimum-phase and unstable open-loop

system, described by the transfer function:

Hyu =
(s − 2)e−2s

s2 − 1/2s + 13/4
, (15)

leading to the closed-loop equation:

2 −
1

2
s +

13

4
+ (s − 2)

(

kp +
ki

s

)

e−2s = 0 (16)

Fig.6 depicts the stability region and the “optimal”

non-fragile controller is given by (k∗
p, k∗

i ) =
(−0.4959,−0.3559 . . .) (see also the Table III).

Fig. 6. The boundary of the stability region in the (kp, ki) parameters
space, together with the maximum parameter deviation without losing
stability for the system (15)

Frequency dTl

˛

˛k∗

i

˛

˛ min
˘

dT ,
˛

˛k∗

i

˛

˛

¯

ω1 = 1.3294
ω2 = 1.6313
ω3 = 1.9530

0.1649067
0.2888059
0.1649067

0.355948 0.1649067

TABLE III

PARAMETER DEVIATION RESULTS WITHOUT LOSING THE STABILITY

Example 4 (Fourth-order process): Consider a fourth-

order, non-minimum-phase and unstable open-loop system,

with the transfer function:

Hyu(s) =
(−1.3s + 3)e−2.8s

0.2s4 − 0.08s3 + 1.345s2 − 0.4s + 1.725
. (17)

Similarly to the previous cases, the problems reduces to the

analysis of equation:

0.2s4 − 0.08s3 + 1.345s2 − 0.4s + 1.725 +

(−1.3s + 3)

(

kp +
ki

s

)

e−2.8s = 0 (18)

The “optimal” non-fragile PI-controller for the system (17)

is given by (k∗
p , k∗

i ) = (0.1149 . . . , 0.0778 . . .) (see also

Table IV and Fig.7):

Frequency dTl

˛

˛k∗

i

˛

˛ min
˘

dT ,
˛

˛k∗

i

˛

˛

¯

ω1 = 1.2311
ω2 = 1.2422
ω3 = 1.3232
ω4 = 1.5556
ω5 = 1.7025

0.0313616
0.0313627
0.0311658
0.0400741
0.0311658

0.077849 0.0311658

TABLE IV

PARAMETERS DEVIATION RESULTS WITHOUT LOSING THE STABILITY
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Fig. 7. The stability crossing curves for the dynamic system (17),
the boundary of the stability region (shadowed region) in the (kp, ki)
parameters space and the maximum parameter deviation without losing
stability

V. CONCLUDING REMARKS

In this paper, we have developed a simple geometrical

method for computing the fragility of PI-controllers for

a class of strictly proper SISO systems with I/O delays.

To prove the efficiency of the method, several illustrative

examples have been considered. It is important to note that

such an idea can be easily extended to proper SISO systems

with I/O delays as well as to the case of PD controllers.
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