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Abstract

This paper focuses on the stability of a class of linear systems including
gamma-distributed delay with a gap. More precisely, a complete characteri-
zation of stability regions is given in the corresponding (delay, mean-delay)
parameter-space. Optimal delay intervals are explicitly computed. The sta-
bilizing/destabilizing delay effect will be explicitly outlined, and discussed.
Several illustrative examples complete the paper. Copyright IFAC 2006.

1 Introduction

The stability of dynamical systems in presence of time-delay have been extensively
studied for the past 50 years. For a good introduction to the subject, see, for in-
stance, Hale and Verduyn-Lunel (2003); Gu et al. (2003); Niculescu (2001) and
the references therein. Most of the work that has been done treats delay differential
equations with one or a few discrete delays, and it is well-known by now that the
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characterization of stability regions wrt the delays turns to be an NP -hard prob-
lem (see, e.g., Toker and Ozbay (1996)). Some insights in the quasipolynomial
case including two independent delays can be found in Gu et al. (2005).

The problem becomes more difficult in the case when the delays are distributed.
Realistic models in this sense can be encountered in modeling the physiological
behavior, the population dynamics, and various schemes for controlling objects
over networks. In most of the cases, the overall delay is defined by a distributed
delay term (where the kernel is defined by some appropriate gamma-distribution
laws in the simplest case, see, for instance, MacDonald (1989), and the references
therein), with a gap. Such a gap1 simply describes the propagation, which is in-
herent to most of the dynamical models encountered in biology, and in most of
the closed-loop schemes for describing controlling objects over (communication)
networks.

To the best of the authors’ knowledge, the first population dynamics model
including gamma-distributed delays is due to Cushing Cushing (1981), and it re-
ceived a lot of attention starting with the 80s: Cooke and Grossman (1983); Blythe
et al. (1985); Boese (1989), to cite only a few. The linearized model ( Cooke and
Grossman (1983)) simply writes as:

(1) ẋ(t) = −αx(t) + β

∫ t

0
g(t− θ)x(θ)dθ,

under appropriate initial conditions. It is easy to see that a narrow distribution leads
to some simple “discrete delay” system of the form ẋ(t) = −αx(t) + βx(t − h),
whose dynamics, and stability are completely known, and understood by now (see,
e.g., Hale and Verduyn-Lunel (2003)). Next, if one assumes that the delay kernel
is given by the gamma-distribution law:

(2) g(ξ) =
an+1

n!
ξne−aξ,

the Laplace transform applied to (1), under the definition (2) reduces the stability
analysis of (1) to the analysis of some parameter-dependent polynomials of the
form:

(3) D(s, τ̄ , n) := (s + α)
(

1 + s
τ̄

n + 1

)n+1

− β = 0,

where τ̄ =
n + 1

a
denotes the corresponding mean-delay value. One of the prob-

lem discussed in Cooke and Grossman (1983) was the analysis of the behavior of
1By a gap, we usually understand a “discrete delay value” added to the corresponding model (see,

for instance, the terminology in MacDonald (1989).
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the roots of the characteristic equation with respect to the imaginary axis when
the mean delay value τ̄ , or the exponent n are varying. The main interest of such a
study was to compute the stability regions with respect to the corresponding param-
eters, and to analyze the sensitivity of such regions when the parameters change.
Further discussions on this topics can be found in MacDonald (1989).

Next, Nisbet and Gurney (1983) mention that population dynamics models
based on partial differential equations, and reduced for convenience to integro-
differential forms are more realistic if the corresponding delay kernel ĝ includes
some gap (see also Blythe et al. (1985); MacDonald (1989)), that is if the kernel
can be expressed as:

(4) ĝ(ξ) =

{
0, ξ < τ

an+1

n! (ξ − τ)ne−a(ξ−τ), ξ ≥ τ,

for some positive delay values τ . Simple computations prove that the correspond-

ing mean delay is defined by τ̂ = τ +
n + 1

a
. In this case, the stability analysis

becomes more complicated, since the parameter-dependent polynomial D(s, τ̄ , n)
in (3) becomes a parameter-dependent quasipolynomial of the form (see, for in-
stance, Blythe et al. (1985); Boese (1989)):

D(s, τ̄ , τ, n) := (s + α)
(

1 + s
τ̄

n + 1

)n+1

− βe−sτ .(5)

It is important to note that, even for this simple example, some of the first re-
sults ( Cooke and Grossman (1983); Blythe et al. (1985)) concerning its stability
analysis includes errors as discussed by Boese (1989).

Recently, it was pointed out that such gamma-distri-buted delays with some gap
can be also encountered in the problem of controlling objects over communication
networks ( Roesch et al. (2005)). More explicitly, the overall communication delay
in the network is modeled by a gamma-distributed delay with a gap, where the
gap value corresponds to the minimal propagation delay in the network, which is
always a strictly positive quantity. Without entering in the details, the stability of
the closed-loop system reduces to the stability analysis of the following parameter-
dependent quasipolynomial:

D(s, τ̄ , τ, n) := Q(s)
(

1 + s
τ̄

n + 1

)n+1

+ P (s)e−sτ ,(6)

where P (s), Q(s) are polynomials of some appropriate degree. It is quite simple
to observe that (5) represents a particular case of (6).

In this paper, we consider systems described by (6), and we shall give a com-
plete characterization of the behavior of the roots of (6) in the parameter-space
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(gap, mean-delay). This paper can be seen as the “dual” of Morărescu et al.
(2005a), where the characterization of the crossing curves2 was given using some
geometric arguments. More precisely, we shall explicitly compute all the “points”(

τ,
τ̄

n + 1

)
, for which a change of the number of roots in C+ will take place, and

next for each mean-delay value interval, an explicit computation of the correspond-
ing (stability) delay interval can be performed.

The interest of the approach is twofold:

• First, the computation of the corresponding delay intervals can be performed
relatively easily, and the corresponding algorithm includes a finite number of
steps. Furthermore, various interesting instability cases can be detected, and
the underlying ideas can be applied to various other delay analysis problems;

• Second, the propagation delay (gap τ ) can be used as a design parameter
in the case of controlling objects over communication network. Such an
idea was already exploited in the context of constant communication delays
(see, e.g., Niculescu (2002)), and to the best of the authors’ knowledge, there
does not exist any extension in the distributed delay case. In other words, the
propagation delay can be used to define a so-called “wait-and-act” strategy
similar to the one encountered in synchronisation, and also mentioned in the
case of delayed output feedback stabilization problems ( Niculescu (2001)),
etc.

The remaining paper is organized as follows: In Section 2 we briefly present the
problem formulation and some prerequisites necessary to develop our (frequency-
domain) stability analysis. The main results are presented in Section 3, and illus-
trative examples are given in Section 4. Some concluding remarks end the paper.
For the brevity of the paper, the proofs are omitted, but they can be found in the
full version of the paper ( Morărescu et al. (2005b)).

2 Problem formulation, and preliminaries

Without any loss of generality, the (asymptotic) stability of (5), and (6) is equivalent
to:

(7) D(s, T, τ) = Q(s)(1 + sT )n + P (s)e−sτ = 0.

2Crossing curves represent curves in the delay-parameter space for which at least one root of the
corresponding characteristic equation lies on the imaginary axis.
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for some appropriate pair (T, τ). We will make now the following supplementary
assumptions: (i) deg(Q) = nq > deg(P ) = np; (ii) P (0) + Q(0) 6= 0; (iii) P (s)
and Q(s) have no common zeros.

The assumption (i) can be relaxed to nq ≥ np, but with the supplementary

constraint lim
s→∞

Q(s)
P (s)

< 1 if equality (see Gu et al. (2003) for some discussions on

retarded, and neutral systems). If assumption (ii) is not satisfied then 0 becomes
one zero of (7) for any (T, τ) ∈ R2

+, and therefore (7) can never be stable. Finally,
if (iii) is violated there is a common factor c(s) 6= constant such that P (s) =
c(s)P1(s) and Q(s) = c(s)Q1(s), and the problem can be reduced to the previous
case using the pair (P1, Q1) instead of (P,Q), etc.

The problem addressed in the sequel can be resumed as follows: deriving nec-
essary, and sufficient conditions in terms of (T, τ) for guaranteeing the asymptotic
stability of (7).

In this sense, the following two quantities will play a major role in the stability
study:

1) card(U), where U is the set of roots of D(s, T, 0) = 0, situated in the closed
right half plane, and card(·) denotes the cardinality (number of elements).

2) card(S), where S = {ω > 0 | (1 + ω2T 2)n|Q(jω)|2 − |P (jω)|2 = 0}.

The characteristic equation (7) is said to be hyperbolic at some point (T0, τ0)
if no root of the characteristic equation lies on the imaginary axis for T = T0, and
τ = τ0 (see,e.g. Hale et al. (1985)). Thus, we have the following result:

Proposition 1 The system (7) is hyperbolic for all (T, τ) ∈ R+ × R+ if and only
if:

(8) |Q(jω)| > |P (jω)| , ∀ω ∈ R∗,

Furthermore, if card(U) = 0 (> 0) for T = 0, the system is delay-independent
stable (unstable).

Remark 1 In the stability case, the frequency-sweeping test (8) represents a slight
modification of the Tsypkin criterion (see, for instance, Niculescu (2001); Gu et al.
(2003)), and it gives a simple condition for which cardS) = 0 for all the pairs
(T, τ).

In the sequel, we shall assume that the condition (8) in Proposition 1 does
not hold. If not, we have stability (or instability) for all the pairs (T, τ), etc. In
conclusion, the problem of interest is reduced to analyze the cases when crossing
roots exist.
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Without any loss of generality, assume now that Q(0) 6= 0. If not, we get
P (0) = 0 from (7), which is not possible since it contradicts the assumption (ii).
The next step is the characterization of the way the quantities card(U), card(S)
depend on the parameter T if τ = 0.

2.1 Quantity card(U)

Introduce now the following Hurwitz matrix associated to some polynomial

A(s) =
na∑
i=0

ais
na−i:

(9) H(A) =



a1 a3 a5 . . . a2na−1

a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4

...
. . .

...
0 0 0 . . . ana


∈ Rna×na ,

where the coefficients al = 0, for all l > na. Next, it is easy to see that

D(s, T, 0) can be rewritten as: D(s, T, 0) =
n∑

k=0

Pk(s)T k, with P0(s) = P (s) +

Q(s), P1(s) = sQ(s), . . ., Pn(s) = snQ(s) Next introduce the matrix pencil:
Σ(λ) = det(λU + V ), with U, V given by:

U=


I

. . .
I

H(Pn)

, V =


0 −I · · · 0
...

...
. . .

...
0 0 · · · −I

H(P0) H(P1) · · · H(Pn−1)

,
where the identity, and the zero-blocks matrices have appropriate dimension, and
H(Pk) ∈ R(n+nq)×(n+nq) represents the corresponding Hurwitz matrix3 associ-
ated to the polynomial Pk(s) defined above.

The following result gives the characterization of card(U) as a function of T ,
and represent a generalization of some matrix pencil method proposed by Chen
(1995) in the context of static output feedback for SISO systems:

Proposition 2 Let 0 < λ1 < λ2 < . . . λh, with h ≤ n+nq be the real eigenvalues
of the matrix pencil Σ(λ) = det(λU + V ). Then the system (7) cannot be stable

3The order of Pk is nq + k, for all k = 0, . . . , n, and H(Pk) will be constructed as a (n +
nq) × (n + nq) matrix by setting the coefficients of high-order terms as zeroes, that is p` = 0, for
all ` > n + k.
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for any T = λi, i = 1, 2, . . . h. Furthermore, if there are r unstable roots (0 ≤
r ≤ n + nq) for T = T ∗, T ∗ ∈ (λi, λi+1), then, there are r unstable roots for any
mean-delay value T ∈ (λi, λi+1). In other words, card(U) remains constant as T
varies within each interval (λi, λi+1). The same holds for the intervals (0, λ1) and
(λh,∞).

Proposition 2 allows studying the behavior of card(S) as a function of T . First
we have to compute the positive real eigenvalues of Σ, and then the number of
unstable roots inside each interval defined by the corresponding eigenvalues. The
characterization is complete when computing U for intermediate values of T .

2.2 Quantity card(S)

Based on the arguments, assumptions, and remarks above, we have the following
result:

Proposition 3 If the card(S) changes at a value T ∗ then there exists a frequency
ω∗ > 0 such that for ω = ω∗ the following relations hold:

(10) F (ω, T ) = (1 + ω2T 2)n|Q(jω)|2 − |P (jω)|2 = 0

and

(11)
d

dω

[
1
ω2

(∣∣∣∣P (jω)
Q(jω)

∣∣∣∣2/n

− 1

)
− T 2

]
= 0

Proof. For any T , F cannot have a root ω where Q(jω) = 0, because this would
imply that also P (jω) = 0. So that the roots of F coincide with the roots of

(12) G(ω, T ) =
1
ω2

(∣∣∣∣P (jω)
Q(jω)

∣∣∣∣2/n

− 1

)
− T 2 = 0

A changes of card(S) at T = T ∗ implies that G(ω, T ∗) has a root with multiplicity
larger than one at some frequency ω∗, i.e.

G(ω∗, T ∗) =
d

dω
[G(ω∗, T ∗)] = 0.

This leads to (10) and (11).

Remark 2 The equation
d

dω
[G(ω∗, T ∗)] = 0 has a finite number of roots. Thus,

the quantity card(S) changes for a finite number of values of T .

As in the previous case, the characterization is complete when computing S for
intermediate values of T .
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3 Stability analysis

For the sake of simplicity, assume that all the roots of F are simple. Notice that
this condition is satisfied for almost all T . Next, we need to explicitly compute
the sensitivity of the roots with respect to the delay parameter τ when crossing the
imaginary axis, that is, in other words, the delay crossing direction. We have the
following result:

Theorem 1 The characteristic equation has a root jω on the imaginary axis for
some τ0 if and only if ω ∈ S. Furthermore, for ω ∈ S, the set of corresponding
values of τ where card(U) changes is given by4

(13) Tω =
{

1
ω

[
−jLog

P (jω)
(1 + jωT )nQ(jω)

+ 2kπ

]
≥ 0, k ∈ Z

}
When increasing the delay, the corresponding crossing direction of characteristic

roots is towards instability (stability) when F ′(ω) > 0(< 0).

The above theorem combined with the continuous dependence of the charac-
teristic roots with respect to the delay, allows to say that T =

⋃
ω∈S

Tω makes a

partitions of the τ -delay space (R+) into intervals in which the number of roots in
the open right half plane is constant. Such an argument will be used in developing
our stability region characterization.

3.1 Small delays

3.1.1 Robustness stability issues

First, assume that the system free of delays is asymptotically stable (τ, T = 0), that
is card(U) = 0 with T = 0, and that the frequency-sweeping condition (8) does
not hold. Then Theorem 1, combined with the Propositions 2, and 3 give a simple
way to compute the first delay-intervals guaranteeing stability:

Proposition 4 Under the assumption card(U) = 0 for the system free of delays,
the system (7) is asymptotically stable for all the pairs (T, τ), with 0 ≤ T < T ∗,
where T ∗ is the smallest positive generalized eigenvalue of Σ, and τ ∈ [0, τ∗),
where τ∗ is given by:

τ∗ = min
ω∈S(T )

{Tω(T )}(14)

as a function of T , for all T ∈ [0, T ∗).
4Here, Log denotes the principal value of the logarithm. Consequently when |z| = 1, Log(z) =

j arg(z)
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In other words, Proposition 4 defines the explicit dependence of the stability
boundary in (T, τ) space bounded by the corresponding OT , and Oτ -axis, and by
the curve τ(T ), defined as a function of T , for all T ∈ [0, T ∗). The case T = 0
gives the standard first delay-interval bound (see, e.g. Niculescu (2001)). Using
the terminology of Gu et al. (2003), we derive the corresponding delay margins in
OTτ parameter-space.

3.1.2 Delay-induced stability/instability

Assume now that the system free-of-delays (τ = 0, T = 0) is unstable. We start
by presenting various cases in which the gap, seen as a free-parameter cannot have
a stabilizing effect. We have the following results:

Proposition 5 If the card(U) is an odd number then the stability of the system
cannot be obtain increasing the time delay τ .

Proposition 6 If card(S) ∈ {0, 1} then the stability of the system cannot be obtain
increasing the time delay τ .

The first case, when the delay gap τ may induce stability in the system by
increasing its value appears when card(S) ∈ {2, 3}. More precisely, we have the
following result:

Proposition 7 If card(S) ∈ {2, 3} then the stability of the system can be obtain
increasing the time delay τ , if and only if:
1. card(U) = 2

2. τ− < τ+, where


τ− = min

⋃
ω∈S, F ′(ω)<0

Tω

τ+ = min
⋃

ω∈S, F ′(ω)>0

Tω \ {0}

In this case, for all delay values τ ∈ (τ−, τ+) the system is stable.

Remark 3 One can conclude that in the previous case is sufficiently to investigate
the first crossing in order to check the stabilizability in the delay. When one de-
termines the stability by numerically computations the Proposition 4 is very useful
because we can stop the computations after the first root crossing.

In the case card(S) = 2, the set of all stabilizing delay values can be expressed
analytically:

Corollary 1 Assume that the following conditions are satisfied
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1. card(S) = 2

2. card(U) = 2

3. τ− < τ+

Then all the stabilizing delay values are defined by τ ∈ (τk, τk), k = 0, 1, ..., km,
where

τk = τ− +
2kπ

ω−
, τk = τ+ +

2kπ

ω+

and km is the largest integer for which τk < τk, which can be explicitly expressed
as

(15) km = max
l∈Z

{
l <

ω−ω+

ω+ − ω−
· τ+ − τ−

2π

}
3.2 General case

Based on the results, and the remarks above, we have the following

Proposition 8 Assume that card(S) = 2p or card(S) = 2p + 1, with p ≥ 1 and
card(U) > 2p. Then there does not exist any gap τ > 0 such that (7) becomes
asymptotically stable.

Define now the following quantities:

n+(τ) =
∑

ω∈S+, F ′(ω)>0

card {Tω ∩ (0, τ ]} ,(16)

n−(τ) =
∑

ω∈S+, F ′(ω)<0

card {Tω ∩ [0, τ ]} ,(17)

for some positive τ > 0. Furthermore, introduce the sets T +, and T −, which
represent a partition of T in function of the sign of the derivative F ′ evaluated at
the corresponding crossing frequency, that is:

T + =
⋃

ω∈S+, F ′(ω)>0

Tω \ {0} ,

T − =
⋃

ω∈S+, F ′(ω)<0

Tω.

Based on the conditions and the notations above, we conclude with the following
result:

Proposition 9 For a given T the system with characteristic equation (7) is asymp-
totically stable if and only if the following conditions are satisfied:
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1. card(U(T )) is a strictly positive even integer and the following inequality
holds: card(U(T )) ≤ card(S(T ))

2. there exists at least one gap value τ∗ ∈ T , such that: n−(τ∗) = n+(τ∗) +
card(U(T )).

Then all gap values τ ∈ (τ∗, τ∗+), with τ∗+ = min{T + ∩ (τ∗,+∞)} guarantee the
asymptotic stability.

4 Illustrative examples

Several examples are considered (see Morărescu et al. (2005b), the full version
of the paper). For the sake of brevity, we present only two simple examples: the
Cushing equation, and a second-order system, respectively.

Example 1 (linearized Cushing equation with a gap) In this example we apply
the above method for the Cushing linearized equation (s+a)(1+sT )n + be−sτ =
0, a > 0, b < 0. First it is easy to remark that (s + a)(1 + sT )n + b has at least
one (strictly) unstable root if and only if a + b < 0. Consider the case n = 1, that
is the polynomial F (ω, T ) is given by:

F (ω, T ) = (ω2 + a2)(1 + ω2T 2)− b2

= ω4T 2 + ω2(a2T 2 + 1) + a2 − b2.(18)

For a2− b2 ≥ 0 (a+ b 6= 0) we have card(S) = 0, that is no crossing with respect
to the imaginary axis for all T (see Proposition 1), while for a2 − b2 < 0 we have
card(S) = 1. According to the results of the previous section, the stability of the
Cushing equation can be delay-independent stable (unstable), function of the sign
of a + b for all (T, τ) if card(S) = 0. If the system is not delay-independent sta-
ble (unstable), Proposition 4 will give the corresponding delay-intervals for which
stability is preserved under the assumption of asymptotic stability for some mean-
delay intervals (in T ) given by Proposition 2, etc.

Example 2 (second-order system) Consider the following second-order system:

(19) P (s) = −s, Q(s) = s2 + 2

Simple computations prove that Q(s)(1 + sT ) + P (s) has two unstable roots.
So that card(U) = 2.
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The characteristic equation of the closed-loop system is given by

(20) (s2 + 2)(1 + sT )− se−sτ = 0

and polynomial F (ω, T ) by

F (ω, T ) = (2− ω2)2 + (1 + ω2T 2)− ω2

= ω6T 2 + ω4(1− 4T 2) + ω2(4T 2 − 5) + 4.

So we need to find how many positive roots has the following equation:

(21) x3T 2 + x2(1− 4T 2) + x(4T 2 − 5) + 4

First it is easy to see that the previous equation has at least one real negative

solution because x1x2x3 = − 4
T 2

< 0 (where x1, x2, x3 are the solutions of the
equation (21)). Computing the discriminant and the Hurwitz determinants of the

equation (21) we find card(S) =


2 T >

1
2

0 T ≤ 1
2

. According to the result of the

previous section a necessary condition for asymptotic stability of the closed-loop
system is given by

(22) T >
1
2

Furthermore, for T satisfying (22) the existence of a stability region in the delay
parameter is determined by the condition τ− < τ+.

Summarizing,we have:

Proposition 10 The system (19) is asymptotically stable if and only if T >
1
2

and
in addition τ− < τ+, where:

τ− = min
⋃

ω∈S, F ′(ω)<0

1
ω2T

, τ+ = min
⋃

ω∈S, F ′(ω)>0

1
ω2T

A stability region is defined by the pair (T, τ), where T >
1
2

, and τ ∈ (τ−(T ), τ+(T )).

5 Concluding remarks

This paper addressed the stability problem of a class of of linear systems including
distributed delays with a gap. A characterization of stability regions in the (mean-
delay,gap) parameter-space has been proposed. Illustrative examples complete the
presentation.
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