Some remarkson vehicle following control systems
with delays

Woihida Aggouné, Constantin-Irinel Morareséwand Silviu-lulian Niculescti

1 Equipe Commande des Systémes (ECS), ENSEA,
6 Av. du Ponceau, 95014 Cergy-Pontoise Cedex, France.
E-mail: aggoune@nsea. fr.

2 INRIA Rhone Alpes, BIPOP project
Inovalée, 655 avenue de I'Europe, 38330, Montbonnot, dgan
E-mail: const anti n. norar escu@ nri al pes. fr Corresponding author.

. 3 Laboratoire des Signaux et Systemes (L2S), CNRS-Supélec
3 rue Joliot-Curie, 91190 Gif-sur-Yvette, France,
E-mail: Si | vi u. Ni cul escu@ ss. supel ec. fr

Abstract In this paper, we consider the problem of vehicle followirantrol with delay. To solve
the problem of traffic congestion, one of the solutions to &esiered consists in organizing the traffic
into platoons that is groups of vehicles including a leader and a numbfilofvers "tightly” spaced, all
moving in a longitudinal direction. Excepting the stalilaf individual cars, the problem of avoidance
of slinky type effects will be explicitly discussed. Suféait conditions on the set of control parameters
to avoid such a phenomenon will be explicitly derived in ajfrency-domain setting.

1 INTRODUCTION

Traffic congestioffirregular flow of traffic) became an important problem in tast
decade mainly to the exponential increasing of the trartiapon around medium-
and large-size cities. One of the ideas to help solving ttablem was the use of au-
tomatic control to replace human drivers and their low-otable reaction with re-
spect to traffic problems. As an example, human drivers heaetion time between
0.25 — 1.25 sec of around0m or more atOkms/hour (see, for instance, Sipahi and
Niculescu [2007] for a complete description of human disuweractions, and further
comments on existing traffic flow models).

A way to solve this problem is to organize the traffic iqtl@atoons consisting
in groups of vehicles including a leader and a number of ¥odls in a longitudinal
direction. In this case, the controller of each vehicle ofi@qon would use the
sensor information to try to reach the speed and accelerafithe preceding vehi-
cle. Another problem to be considered is the so-cadlatky-type effecsee, e.g.
Burnhamet al.[1974], loannou and Chien [1993], Shiekholslam and Desb293]
and the references therein). This is a phenomenon of angtidit of the spacing
errors between subsequent vehicles as vehicle index sesea

In Huang and Ren [1998], a control scheme to solve this nobigactive con-
trol problem was proposed. Known astonomous intelligent cruise contrghe
controller in this scheme has access only to the relativie stdiormation of the
preceding vehicle. This study is made under the assumptii@ighe lead vehicle
performs a maneuver in finite time before reaching a steaatg sand that prior to
a maneuver, all the vehicles move at the same steady speedstdltility analysis
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of the system in closed-loop was performed by using a LyaptRazumikhin ap-
proach leading to conservative conditions. The slinkg@ftype phenomenon was
discussed and some sufficient conditions to avoid slinkgotffhave been proposed,
but without any explicit attempt in computing the whole setontroller's param-
eters guaranteeing the requested property. To the besedfuthors’ knowledge,
such a problem has not received a definitive answer.

The aim of this paper is to give better answers to the problemtibned above
- construction of explicit control laws guaranteeing sitankeously individual sta-
bility and the avoidance of the slinky-type effect phenomenNe use a frequency-
domain method to give necessary and sufficient conditionthéindividual stabil-
ity analysis by computing the explicit delay bounds guagairtg asymptotic stabil-
ity. Next, we shall explicitly compute bounds on the con&d$ gains ensuring the
avoidance of the slinky effects.

The remaining paper is organized as follows: In Section € pitoblem formu-
lation is presented. In Section 3, we state and prove our mesinlts. In section
4, an illustrative example is presented. Finally, some kafiog remarks end the
paper.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

The general schema of a platoonro¥ehicles is represented below, whetgt) is
the position of theth vehicle with respect to some reference pa@nand H; is the
minimum separation distance allowable between the cooretipg vehicles.

|

Av,+H, ‘ S,

Lead car

direction of travel

Figure 1: Platoon configuration

The goal is to maintain a distange; + H; between vehiclé andi — 1, wherei
is a prescribed headway constant anthe corresponding velocity (see Huang and
Ren [1998]). The spacing errdy between théth and(i — 1)st vehicles is defined
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as:
6i(t) = zica(t) — xi(t) — (Av; + Hy)

in the case of system (1).

2.1 Modéd of vehicle dynamics

For each vehicle of the platoon, the model is of the form:
0i(t) = i(t) (1)

wherez;(t), v;(t) and~;(t) represent respectively the position, the speed and the
acceleration of théth vehicle. Hereyp is the vehicle’s engine time-constant, is

the vehicle masg;, is the load torque on the engine speed, gear ratio, gradgehan
etc., and itis assumed to be constants the total (corresponding) delay (including
fueling and transport, etc.) for thiéh vehicle (see Huang and Ren [1997] for more
details).

2.2 Control law

In Huang and Ren [1998], the proposed control law is given by:

ui(t) = kydi(t) + ki, 0i(t) + T, (2)

where k! and k! are design constants. If one applies the control law (2) ¢ th
system (1), we shall obtain the following third order delayation:

d3 d?
E(Sz(ﬂ = —aﬁéi(t) — k:séi(t — 7'7;)
d d?
_ L A U SR (3)
(ko + k) 2 83(t = 71) = Ny 583(t = 73)

d
+ksbim1(t —miz1) + vaaéi—l(t — Ti—1),

wherek; andk, are derived fronk/ andk! by an appropriate re-scaling. For the
sake of simplicity, the corresponding computations areteui(see Huang and Ren
[1997] and Huang and Ren [1998]).

2.3 Problem formulation
2.3.1 Individual stability: Problem formulation

A basic control requirement for the overall system is thengstptic stability of the
ith vehicle if the preceding, th@ — 1)th, is at steady-state (i.e. the spacing errors
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verify: §;_1 = S = 0). In this case, the system is described by:

& d
ﬁéi(t) = —Zﬁ(si(ﬂ - k’séz‘(td—Q Ti) @)

Taking the Laplace transform, under zero initial condiipwe obtain a third-order
transcendental equation of the foff(s, ;) :=

§3 4 as? + [Meys? + (ky + Meg)s + ke 7®
=Q(s) + P(s)e™® =0. (5)

Assumption1 (a) P(0) #0
(b) The polynomial$(s) and@(s) do not have common zeros

If Assumption 1.(a) is violated, then O is a zerdlgfs, 7;) foranyr; € R.. There-
fore, the system is never asymptotically stable. If assiongt.(b) is not satisfied,
P(s) andQ(s) have a common factaf(s) # constant. Simplifying by:(s) we get
a system described by (5) which satisfies assumption 1.(b).

The individual vehicle stability is guaranteed if and orfly’ihas all its roots in
the left half complex plane. This depends on the delay madait;.

Then the problem of stability can be formulated as a reseafgrarameters
a, A\, ks andk, such that this condition is ensured.

2.3.2 Avoiding dinky effect: Problem formulation

The second part of the multi-objective problem previougdfied consist in con-
trolling the slinky effect. The goal is to find sufficient cdtidns to guarantee that
we avoid such a phenomenon. If we consider the system (3p&ed.aiplace trans-
formation, we geG(s) = d;(s)/di—1(s) =

(ks + sky)e™Tim18

. 6
(ks + (ky + Aks)s + Akys2)e™ ™8 + as? + 83 6)
We have nalinky-type effedtf:
di(jw)
G(s)|=|—=]| <1 7
66 =I5 G )

for anyw > 0 (see loannou and Chien [1993], Shiekholslam and Desoe]199
Swaroopet al.[1994]). Then the problem turns out in finding the set of pagtars

(ks, k,) and the delays; such that the stability of the system (4) is guaranteed and
the condition (7) is satisfied (to avoid slinky-effect).



Vehicle following control systems with delays 5

3 MAINRESULTS

3.1 Delay stability margin
Before proceeding further, we consider the case withoudydelAnalyzing the
asymptotic stability of the closed-loop system free of gélans out to check when

the polynomiall’;(s, 0), with 7; = 0, is Hurwitz. Sincex, ks, k, > 0, the third-
order polynomial:

5% 4 (@ + Meyp)s? 4 (ky + Mkg)s + ks = 0 (8)
is Hurwitz if and only if:
(a4 Aky) (ky + Aks) > ks, 9)
which is equivalent to
MEZ 4 (a4 NEo)ky 4 (@) — 1)k, > 0. (10)
Note that a sufficient condition for (10) is:

1—a\

ko > =5

Denote now by the set of crossing frequencies, that is the set of reals0,
such thatt-jw is a solution of the characteristic equation (5). We havddhewing:

Proposition 1 Consider the characteristic equation (5) associated to dpstem
(4). Then:

(a) the crossing frequency s@tis not empty, and

(b) the system is asymptotically stable for all delays= (0, 7*) wherer* is
defined by:

N 1
7' = — arccos
w

a(ks — Meyw?)w? + (ko + )\ks)w4) 11)

(ks — MNeyw?)? + (ko + Mes)2w?

wherew is the unique element 6f.

The condition(a) above simply says that the corresponding system cannot be
delay-independent asymptotically stable, and the camd{b) above gives an ex-
plicit expression of the delay margirt. In order to have a self-contained paper, a
proof of the Proposition above is included in the Appendirr & different proof,
see, for instance, Sipahi [2005].
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3.2 Stability analysisin controller parameter space (k,, ks)

In the sequel, we study the behavior of the system for a fix¢éaydeluer. More
precisely, for a givemr = 7% we search the crossing frequencieand the corre-
spondingcrossing pointsn the parameter spacé,, k) defined by the control law
such tha (jw, ky, ks, ) + P(jw, ky, ks, 7)€ 997 = 0.

According to the continuity of zeros with respect to the ggbarameters, the
number of roots in the right-half plane (RHP) can change evitgn some zeros
appear and cross the imaginary axis. Thus, it is natural tsider thefrequency
crossing sef) consisting of all real positives such that there exist at least a pair
(ky, ks) for which H (jw, k., ks, 7%) 1=

Q(jw) + P(jw)e /T = 0. (12)
Remark 1 Using the conjugate of a complex number we get
H(jw, ky, ks, 7) =0< H(—jw, ky, ks, 7) = 0.
Therefore, it is natural to consider only positive frequiescthat isQ C (0, o).

Considering that the sé&® and the parameteks, A are known we can easily
derive all the crossing points in the parameter sgageks).

Proposition 2 For a givent > 0 andw € () the corresponding crossing point
(ky, ks) is given by:

w2(1 — a)) coswt + w(a + Iw?) sinwr

v = 1
F 14+ A2w? (13)
w?2(Aw? + ) coswT + w3 (aX — 1) sinwr
- 14
k. 14+ A2w? (14)

Proof. Using the decomposition of the equation (12) into real anagimary part,
straightforward computation lead us to

ky + My = w(wcoswT + asinwr), (15)
ks — Meyw?® = w?(acoswr —wsinwr) (16)
and further we can derive the result stated above. O

To illustrate our purpose, let us consider the case where5, A = 1 andr = 0.5,
then for eachv € Q the corresponding crossing poiris,, k) are represented in
the following figure.
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Figure 2: Crossing points

Remark 2 For all w € © we haveP(jw) # 0. Indeed, it is easy to see that if
w € Q, then there exists at least one pdit,, k) such thatd (jw,k,T,7) = 0.
Therefore, assuming thd®(jw) = 0 we get alsoQ(jw) = 0 which contradicts
assumption 1.(b).

Since we are interested in finding the crossing pofhts k) such that:, and
ks arefinite the frequency crossing s@tis characterized by the following:

Proposition 3 The frequency crossing setconsists of a finite number of intervals
of finite length.

Proof. It is obvious from the equations (13) and (14) that the cdleirparameters
k, andk, approach infinity wheno — oo. Thus, in order to have finite values
for k, andks we have to impose an upper limit for the variationuofOn the other
hand, considerin@ C (0, M], itis clear that the inequalitids, > 0 andk, > 0 are
simultaneously satisfied far into a finite number of intervals included {0, M].

O

N
Let us suppose th& = U Q. Then (13) and (14) define a continuous curve.

=1
Using the notations introduced in the previous paragraghthe technique devel-
oped in Guet al. [2005a] and Morarescat al. [2007], we can easily derive the
crossing direction corresponding to this curve.

More exactly, let us denot& the curve defined above and consider the follow-
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ing decompositions into real and imaginary parts:

| OH (s, kv, ks,
Rotjly — J9HFKwksT)

5 0s s=jw

1 0H (s, kv, ks,
Ri+jL = 10H(s, ky, ks, 7) ,

s Ok, s—jw

. 1 OH (s, kv, ks,
s Ok =

Then, sinceH (s, k,, ks, T) is an analytic function of, k,, andk;, the implicit func-
tion theorem indicates that the tangent/ofcan be expressed as

dk,
do | _ 1 ( Rily — Rolh ) (17)
dk; Ryl — Roly \ Rola — Roly )
Ow
provided that
Rils — Roly #0. (18)

It follows that 7, is smooth everywhere except possibly at the points wheherit
(18) is not satisfied, or when

dk,  dk,

From the above discussions, we can conclude with the fatigwi

Proposition 4 The curveZy is smooth everywhere except possibly at the point cor-
responding ta = jw such thats = jw is a multiple solution of (12).

Proof. If (19) is satisfied then staightforward computations shewhatRy, = I =
0. In other wordss = jw is a multiple solution of (12).
On the other hand,

Ril, — Ry} = —w(1 4+ X2w?) <0, Yw > 0.

]

The next paragraph focuses on the characterization of thesicrg direction
corresponding to each of the curves defined by (13) and (B8, (®r instance,
Morarescu [2006] or Morarescu and Niculescu [2007] fomitar results for differ-
ent problems):

We will call the direction of the curve that corresponds torgasingw the pos-
itive direction We will also call the region on the left hand side as we hedtién
positive direction of the curvihe region on the left

Proposition 5 Assumev € Qy, k,, k; satisfy (13) and (14) respectively, ands a

simple solution of (12) and (jw', k,, ks, 7) # 0, Vo' > 0, v’ # w (i.e. (ky, ks)

is not an intersection point of two curves or different seasi of a single curve).
Then a pair of solutions of (12) cross the imaginary axis t tight, through

s = tjwif Rils — RoI; > 0. The crossing is to the left if the inequality is reversed.
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Remark 3 In the proof of Proposition 4 we have shown tifatls — Ro I is always
negative. Thus, a system described by (12) may have moretigestability region
in controller parameter spacg:,, k) if one of the following two items are satisfied:

e it has one or more crossing curves with some turning poitis @irection of
7, in controller parameter space changes).

e it has at least two different crossing curves with oppositeaion in (k,,, k)
- Space.

3.3 Avoiding dinky effects

Now, we treat the second part of the multi-objective problemder consideration.
This correspond to the characterization of the conditiareygnteeing that we avoid
slinky-effects. We consider the system (3). If we take Laplaxansformation, then
we obtain :

5
1(s) T (20)

ks + (ky + Mkg)s + Akyps2)e=7is + as2 4+ 37
(

There is no slinky effect if :

Gw)| <1 (21)

foranyw > 0.
This condition can be rewritten as:

A(w, ;) (w) = w?*B(w, ;) >0 (22)
with
B(w, ;) (w) = w* — 2\ky, sin(wr; )w?+
(A2k2 + a? + 2(aXky, — ky — Mkg)cos(wT;))w?+
2(ks — a(ky + Mks))sin(wr))w+
A2k2 — 2akgcos(wT;)

which should be satisfied for all € IR.
The objective is to define conditions on the parameters of¢iméroller, in order to
satisfy this constraint.

(23)

Consider first the case = 0. Then, we have:

B(w,0) = w4+ [(Mey+ a)? — 2(ky + Aks)]w?
(24)
+OA%RZ — 20k,

A necessary condition for the positivity & (w, 0) is
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NE2 — 20k, > 0, (25)
which implies that:
2
ks € (V’ +00) (26)

Under this condition, the positivity aB(w, 0) is guaranteed if :

[(Mey + @)% = 2(ky + Mky)]” < 4N2K2 — 2aky). (27)

which leads to:

2c
—2ksA\y /1 — o < (Mky + )% = 2(ky + Aks)
2
< 2ksA/1—
- M2k

In order to complete this analysis, we want to charactelizeset of parametefs,
guaranteeing the previous inequality under the const(asjt
If we consider first the right part of (28), which is equivaién:

(28)

2

NE2 + 200 — Dk, +a® — 20k, (1 + (/1 — 25 <0
we can remark that if
200 2ah — 1
ks > max{p, TAg} (29)

then there exists at least one positive valiye such that the right part of (28) is
satisfied. Moreovet,, should satisfy :

1—aX—VA 1-—aX+ VA
where
Ay = 1= 200+ 203k, (1 4 /1 — =2
1=1—-2aA+ s( + - )\Q—k.g)
The left inequality in (28) can be rewritten as :
2c0

NE2 42 — Dk, +a® — 20ks(1 — 4 /1 ) >0

A2k,
This leads to the following condition aky, :

1—al— \/Ag
o0, 2

1—()4)\+\/A2
+00

ky,e(— 2 +o0).

J U (31)
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where
2cv

Ay =1—2aX+ 2 k(1 — /1 - /\Q—Iss)

is assumed to be positive. X, < 0, then the left part of (28) will be satisfied for
all positivek,,.

Finally, using the conditions (30) and (31) function of thgnsof A,, it follows that
k, must be chosen in the intersection of the intervals defing@@yand (31).

Now we analyze the sign aB(w, ;) whenr; > 0. We consider again the
expression given in (22) aB(w, ;).
For the terms involvingos(wT;), we have:

—2akscos(wr;) > —2aks

and
2(aXky, — ky — Mks)cos(wr;) > =2|arky, — ky — k).

Concerning the terms involvingn(wr; ), sincesin(wt;) < wr; for w > 0 then:

—2\kysin(wr)w® > =2 \k,riw? > =2k, m*w?

and
2(ks — a(ky + Mks))sin(wr;))w
> —2|ks — alky, + Mkg)|Tiw?
> —2lks — alky, + M) |75 w2.
Therefore,
B(w, ;) > (1 — 2Xk, 7 )w* + [N2k2 + o2
—2|aky — ky — Mks| =27%|ks — ok, + Mks)|Jw?
%2 — 2ak,
> (1 — 20k, m*)w? + [( My — @)? — 2k, — 2)ks
—27%ks —27%a(ky + Mks)]w? + N2k2 — 2aks>0.
Letus set:

Clw, ) = (1 — 2Xk, 7)w? + [(Mky — @)? — 2k,

—2Xks — 277k — 27%a(ky + Akg)|Jw?HA2k2 20k,
We suppose that :
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1— 2\, > 0. (32)

Then the positivity o” (w, 7*) is ensured if (26) is satisfied and if we have:

[(Mey — )2 — 2k, — 2X\ky — 27k,

(33)
—27%a(ky + Mks)]2< 4(1 — 20k, ) (N2K2 — 2atks).
This leads to the condition:
Cokon (1 — 2291 = 20k r) <
s )\ka T ) S
My — )% — 2k, — 2X\k—27* (kst+a(k, + \ks)) (34)

2
< e _ *
< 21@3)\\/(1 )\ka)(l 20k, )

Now, we search to define the set of parametgra/hich satisfy these inequali-
ties.

If we consider the right part of (34jvhich can be rewritten as :

A2E2 —2(1 4 aX + at)k, + a® —27*(ks + a)ks)

5 (35)
— - — ) <
2/\1453(1 + \/(1 /\ka)(l 2k, T )) <0,
with k,, under the square root.
. N 2
Sincel — 2k, 7™ < 1 andl — AQ—ks < 1then
/\ng —2(1 4+ X + at™)k, + o? —27% (ks + alks)
2a .
—2Xks(1+ 4/ (1 - /\Q—kS)(l — 20k, )
(36)
< N2E22(1 + o) + att)ky+a? 27" (ks + alks)
SNk (1 (1 — 20k ) (1 — —2)
s v /\ka
Thus, if we can findk, such that:
A2k2 = 2(1 4 a4+ bat* — 27*\2k,)k,
(37)

4
a2 — 27(1 + a\)ks — 4Nk, + TO‘ <0
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then the right part of (34), would be satisfied.

A necessary condition to guarantee this previous condition have :

Ay = (1 + a\ + dSat* — 2T*)\2ks)2

4o
_ )2 2 * _ .
X2 (2 = 27 (1 + ad)k, — 40k, + A)

>0
and then under this condition, we chodseas follows :
a1 — \/T,T* < < a1 + \/T,T*
Tz JshsTe
wherea; = 1 + a\ + 5ar* — 27 \2k,.

max{0,

We can remark that (38) can be rewritten as :
AT N2 4 202 (2) — 7 (1 + 10a7* 4 a)))k,
+(1 4 5ar*)? + 2a\[bat* — 1] > 0
Note that this last inequality leads to the following coratitonk; :

ke € (—00,&] | (&, +0)

where
A2 (2/\ —7*(1 4 10a7* + oz/\)) — /Ay o+
a= 4% \4
and
A2 (2)\ —7*(1 4+ 10at* + oz/\)) +\/Aq
&= :

4% \4

13

(38)

(39)

(40)

i =M (20 = (1 4 1007 + o)) = 477 M[(1 4 5ar*)? + 20A(bar* — 1))

which is supposed to be positive. If it is not the case, thencibndition (38) is

verified for allk, > 0.

We consider now the left part of (34)hich can be rewritten as :
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0<AZk2 —2(1 + aX + at™)ky+a®—27" (ks + a)ks)

— 2k (1 — \/(1 - ;—(]);)(1 — 20k, 7).

Proceeding as above, we have :

NE2 —2(1 4 aX 4+ at)k, + a? — 27% (ks + a)ks)

2«
- A%s))

22k (1 — (1 — 20k, 7%)(1

<N%E2 2(1 + a)X + at™)ky + a?—27%(ks + a)ks)

— 2k (1 — \/(1 - %)(1 — 2)k, 7))

If there existsk, such that:

0 < Ak2—-2(1+aX+ar*

N 2c
+27' Ang(l — )\2—]{;5))l€1,
a2 — 20 (ks + arky) — 20k (1 — (1— =)
N2k,

then the left part of (34), will be verified.
This inequality can be simplified as :
0 < A%Kk2 —2(1 + a) — 3ar* + 27 A2k, ky

4
+a? = 27%(1 + aN)ks — Toz

This is satisfied for alk, such that :

14 aX —3ar* + 272 %k, — | /AQJ*]
)2

k, € (— 0,

[1 + aX = 3ar* + 27" 2k, + o fNo
)2

,—l—oo).

where

2
Ag e = (1 FaX—3ar + 27’*)\2ks)

A2 (a2 — 27 (1 + aNks — 47“)

(41)

(42)

(43)

(44)

(45)

(46)
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is supposed to be positive.
If this quantity is negative, then the inequality (43) anccbysequence (41), would
be satisfied for alk, > 0.

The positivity of A -~ can be rewritten as :
A7 N2 4 6A27%[1 4 o — 207k,

+(1 = 3a7*)2 + 6a\(1 — art*) >0
which leads to the condition dr, given by :

b ( e 3N T (2a1* — 1 —a) — \/AQJ*]

4\AT*?
(47)
3N (20 — 1 — ) + 4/ Ag o+
ANAT*? ’ +OO) '
if A -+ defined by :
Aorr = N1+ — 2072
(48)

—AN T [(1 = 3ar*)? + 6 (1 — ar*))]
is positive.

It is clear that ifA, ;« is negative, then the positivity ak, -~ would be satisfied
forall ks > 0.

Now the hypothesis of negativity @k, ., which would imply that the left part of
(34) is satisfied for alk, positive, turns out to write that :

A XNE2 4 6A27*[1 4+ o — 207k,
+(1 = 3ar*)2 + 6aA(l —ar*) <0

which is satisfied for

3N (20" — 1 — ) — /Ag 1+
F<k

max{0, i < ks )
32T (201" — 1 — @) + /Ao
- ( 2 )+ /A, |
AN4T*

whereA, .. is assumed to be positive.

In conclusion, the determination of the parametgrandk, guaranteeing that
(34) is satisfied, can be summarized for the right part of ,(Bf)the choice of,
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in the interval defined by (39) under the necessary condihiah/\; .- is positive.
And for the left part of (34), we can choose any> 0 or k, in the interval defined
by (45), according to the sign df, ..

We can note that\; .. andA, .. are function of,. Their sign are conditioned by
the sign ofA; ;- andA, ..

In the following section, we illustrate our results with seexamples.

4 Simulation results

We consider a platoon of 4 following vehicles. We supposgitiiially these ve-
hicles travel at the the steady-state velocitywgf= 20m/s. The following figure
correspond to the velocity and acceleration profile of tlael leehicle.

vO

I L I L I L
5 o 5 10 15 20 25 30

Figure 3: Velocity profile of the lead vehicle

a0

I I I L I L
-5 o 5 10 15 20 25 30

Figure 4: Acceleration profile of the lead vehicle
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We assume that the safety distance is characterized yl, andH; = 2m.
with the parametera. = 5. We choose the controller parametéss = 19 and
kv = 0.12. Then by Proposition 1, we obtain tleptimal delay margirequal to
7* = 0.215. The system (4) is then asymptotically stable for all delays 0.215.

We arrive to the same conclusion by using the Matlab packddfe-BIFTOOL
(bifurcation analysis of delay differential equationsgé Engelborghet al.[2001],
Engelborghet al.[2002]) to represent the rightmost roots of the charadiegsjua-
tion. Indeed, if we choose the limit value of the delay- 0.215 then we can ob-
serve that rightmost roots of the characteristic equatrenoa the imaginary axis.
When we choose a delay larger, the system is unstable siamedRists roots in the
right half plane.

. . . . . .
-1.4 -12 -1 -0.8 -0.6 -0.4 -0.2 o
o

Figure 5: Rightmost roots of the characteristic equatiornrfe- 0.215

4 . . . . . .
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
[T

Figure 6: Rightmost roots of the characteristic equatianfe= 0.25
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Now, if we consider the second part of the multi-objectivetgem, we can
remark that the conditions to avoid slinky-effect We caroaiste that in order to
have no slinky effects we just have to restrict this bound te 0.0504.

Then, if we choose a delay = 0.2, we can observe the phenomenon of slinky
effect. This is what we can observe in the following figures.
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50
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Acceleration (m/sz)

_30|
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_s0 I i i i
-5 o 5 10 15 20
Time (s)

Figure 7: Control responses of 4 following vehicles witheihelay 0.2 s

If we choose a delay = 0.05, then we can remark that there is no slinky effect.
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Control responses of 4 following vehicles withdichelay 0.05 s
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Thus, in order to guarantee the individual stability of \@é$ of the platoon
and to avoid the slinky effect phenomenon, it suffices to skoihe delayr <
min(0.215,0.0504) = 0.0504.

5 CONCLUSIONS

In this paper, we have considered the problem of vehiclefahg control system.
For a given controller structure, we have developed comudiitiguaranteeing the
individual stability of each vehicle of the platoon, and tiegived conditions depend
on the size of the delay. Moreover, we considered the proldéslinky-effect
phenomenon, and we proposed sufficient conditions to awoidMe have given
an explicit characterization of some sets of controllerpagters which solve the
problem.
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A Proof of Proposition 1

(a) Straightforward. Assume by contradiction that the getalependent stability
holds. As discussed in Niculescu [2001], a necessary donddr delay-independent
stability is the Hurwitz stability of), and this is not the case.

(b) Since the system free of delay is asymptotically stahke conclusion of (a)
leads to the existence of a delay margin such that the system is asymptotically
stable for all delays € [0, 7*). Furthermore at = 7*, the characteristic equation
(5) has at least one roat = jw on the imaginary axis, withw € 2 (crossing
frequency). Since

P(]w) _ —JjwT __ . . e
Q6w e = — cos(wT) + j sin(wr) (50)
this implies that:
P(jw)
cos(wr) = —R - )
(wr) (Q(jw))
We compute the right hand side of this equation with:
PGjw) _ alks — Moy w?)w? + (ky + kg )w?
Q(]'LU) - (k‘? - Akvw2)2 + (k11 + )\ks)QwQ
(ks — Meyw?)w® — ja(ky + Nes)w® (51)
(ks — Mepw?)2 + (ky + Aks)2w?
Therefore,
1 a(ks — Meyw?)w? + (ky + Mg )w?
*_ 52
T w arccos( (kg — )\k‘q,wQ)Q n (kq) n /\ks)Q’LUQ )7 ( )

wherew is acrossing frequency
In the sequel, we explicitly determinate the expressiomefdrossing frequen-
cies by solving the equation:

w® + (® — N2E2)w* — (2 + NEHw? — k2 = 0. (53)

For this equation inv?, we have one real solution (and two complex roots) or three
real roots. We have to analyze their sign to consider onl\ptisitive candidates.

If we denote byr;, (i = 1...3), the roots of the equation, we know that they
are solutions of:

22 — Sz? + Iz — I3 = 0,
3
whereS = Z?“i, I, = H TiTj » 13 :H Ti .
i=1 i#je{1...3} i€{1...3}

Sincell; = k2 > 0, if we have only one real root (the others are complex
and conjugate), this root is positive and if we have thre¢ naats, we have one
positive root and two real roots with the same sign. In theetatase, we only
take into account only the case where the three real rootpasitive. Moreover,
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with TI, = —(k2 + A?k2) < 0, we can remark that we cannot have three positive
real roots. Finally, we can have only one positive real regug@re of the crossing
frequency). Now we apply the method of Cardan to define tha fafrthis crossing
frequency. We can establish that if:

3
(a4 +AZ(AZEL + 3K2 — 207K2) + 3k3)
2

1
< 7 (02 = NE2)[2(a? = X2K2) + 9(NK2 + k2)] — 27k2)

then the crossing frequency is of the form:

2 21.2
W1 | 1 we.1 o — Nk
= —— )3 _— - v 4
wy \/( 54)3+( 54)3 3 ; (54)
where
wi =y ++/G and ws =y — /G, (55)
with
y1=((a? = N2k2)[2(a® — N2k2)? + 9(N*K2 + k2)] — 27k2),
and .
G =71 —4((® = N2k2)* + 3(\2kZ + k2))
If ,
(a4 +A2(A2k4 4 3K2 — 207K2) + 3k3)
1 2 21.2 2 21.2 21.2 2 2 2
> Z((a A 2(a% — A%K2) + 9(AZK2 + k2)] —27k5) ,
then it is of the form :
~ ~ 2 21.2
_ w11 Wa, 1 o — ANk
wf—\/( 54)3+( 54)3 3 ; (56)
where

W = +jiv-CG and Wy =1 —jv/ -G (57)



