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Abstract In this paper, we consider the problem of vehicle following control with delay. To solve

the problem of traffic congestion, one of the solutions to be considered consists in organizing the traffic

into platoons, that is groups of vehicles including a leader and a number offollowers ”tightly” spaced, all

moving in a longitudinal direction. Excepting the stability of individual cars, the problem of avoidance

of slinky type effects will be explicitly discussed. Sufficient conditions on the set of control parameters

to avoid such a phenomenon will be explicitly derived in a frequency-domain setting.

1 INTRODUCTION

Traffic congestion(irregular flow of traffic) became an important problem in thelast
decade mainly to the exponential increasing of the transportation around medium-
and large-size cities. One of the ideas to help solving this problem was the use of au-
tomatic control to replace human drivers and their low-predictable reaction with re-
spect to traffic problems. As an example, human drivers have reaction time between
0.25− 1.25 sec of around30m or more at60kms/hour (see, for instance, Sipahi and
Niculescu [2007] for a complete description of human drivers reactions, and further
comments on existing traffic flow models).

A way to solve this problem is to organize the traffic intoplatoons, consisting
in groups of vehicles including a leader and a number of followers in a longitudinal
direction. In this case, the controller of each vehicle of a platoon would use the
sensor information to try to reach the speed and acceleration of the preceding vehi-
cle. Another problem to be considered is the so-calledslinky-type effect(see, e.g.
Burnhamet al.[1974], Ioannou and Chien [1993], Shiekholslam and Desoer [1993]
and the references therein). This is a phenomenon of amplification of the spacing
errors between subsequent vehicles as vehicle index increases.

In Huang and Ren [1998], a control scheme to solve this multi-objective con-
trol problem was proposed. Known asautonomous intelligent cruise control, the
controller in this scheme has access only to the relative state information of the
preceding vehicle. This study is made under the assumptionsthat the lead vehicle
performs a maneuver in finite time before reaching a steady state, and that prior to
a maneuver, all the vehicles move at the same steady speed. The stability analysis
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of the system in closed-loop was performed by using a Lyapunov-Razumikhin ap-
proach leading to conservative conditions. The slinky-effect type phenomenon was
discussed and some sufficient conditions to avoid slinky effects have been proposed,
but without any explicit attempt in computing the whole set of controller’s param-
eters guaranteeing the requested property. To the best of the authors’ knowledge,
such a problem has not received a definitive answer.

The aim of this paper is to give better answers to the problem mentioned above
- construction of explicit control laws guaranteeing simultaneously individual sta-
bility and the avoidance of the slinky-type effect phenomenon. We use a frequency-
domain method to give necessary and sufficient conditions for the individual stabil-
ity analysis by computing the explicit delay bounds guaranteeing asymptotic stabil-
ity. Next, we shall explicitly compute bounds on the controller’s gains ensuring the
avoidance of the slinky effects.

The remaining paper is organized as follows: In Section 2, the problem formu-
lation is presented. In Section 3, we state and prove our mainresults. In section
4, an illustrative example is presented. Finally, some concluding remarks end the
paper.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

The general schema of a platoon ofn vehicles is represented below, wherexi(t) is
the position of theith vehicle with respect to some reference pointO andHi is the
minimum separation distance allowable between the corresponding vehicles.
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Figure 1: Platoon configuration

The goal is to maintain a distanceλvi +Hi between vehiclei andi−1, whereλ
is a prescribed headway constant andvi the corresponding velocity (see Huang and
Ren [1998]). The spacing errorδi between theith and(i − 1)st vehicles is defined
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as :
δi(t) = xi−1(t) − xi(t) − (λvi + Hi)

in the case of system (1).

2.1 Model of vehicle dynamics

For each vehicle of the platoon, the model is of the form:











ẋi(t) = vi(t)
v̇i(t) = γi(t)

γ̇i(t) = − 1

η
γi(t) + 1

mη
ui(t − τi) − 1

mη
TL,

(1)

wherexi(t), vi(t) andγi(t) represent respectively the position, the speed and the
acceleration of theith vehicle. Here,η is the vehicle’s engine time-constant,m is
the vehicle mass,TL is the load torque on the engine speed, gear ratio, grade change
etc., and it is assumed to be constant.τi is the total (corresponding) delay (including
fueling and transport, etc.) for theith vehicle (see Huang and Ren [1997] for more
details).

2.2 Control law

In Huang and Ren [1998], the proposed control law is given by:

ui(t) = k′
sδi(t) + k′

v δ̇i(t) + TL, (2)

wherek′
s and k′

v are design constants. If one applies the control law (2) to the
system (1), we shall obtain the following third order delay equation:

d3

dt3
δi(t) = −α

d2

dt2
δi(t) − ksδi(t − τi)

−(kv + λks)
d

dt
δi(t − τi) − λkv

d2

dt2
δi(t − τi)

+ksδi−1(t − τi−1) + kv

d

dt
δi−1(t − τi−1),

(3)

whereks andkv are derived fromk′
s andk′

v by an appropriate re-scaling. For the
sake of simplicity, the corresponding computations are omitted (see Huang and Ren
[1997] and Huang and Ren [1998]).

2.3 Problem formulation

2.3.1 Individual stability: Problem formulation

A basic control requirement for the overall system is the asymptotic stability of the
ith vehicle if the preceding, the(i − 1)th, is at steady-state (i.e. the spacing errors
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verify: δi−1 = δ̇i−1 = 0). In this case, the system is described by:

d3

dt3
δi(t) = −α

d2

dt2
δi(t) − ksδi(t − τi)

−(kv + λks)
d

dt
δi(t − τi) − λkv

d2

dt2
δi(t − τi).

(4)

Taking the Laplace transform, under zero initial conditions, we obtain a third-order
transcendental equation of the formΓi(s, τi) :=

s3 + αs2 + [λkvs2 + (kv + λks)s + ks]e
−τis

= Q(s) + P (s)e−sτ = 0. (5)

Assumption 1 (a) P (0) 6= 0

(b) The polynomialsP (s) andQ(s) do not have common zeros

If Assumption 1.(a) is violated, then 0 is a zero ofΓi(s, τi) for anyτi ∈ R+. There-
fore, the system is never asymptotically stable. If assumption 1.(b) is not satisfied,
P (s) andQ(s) have a common factorc(s) 6= constant. Simplifying byc(s) we get
a system described by (5) which satisfies assumption 1.(b).

The individual vehicle stability is guaranteed if and only if Γ has all its roots in
the left half complex plane. This depends on the delay magnitudeτi.

Then the problem of stability can be formulated as a researchof parameters
α, λ, ks andkv such that this condition is ensured.

2.3.2 Avoiding slinky effect: Problem formulation

The second part of the multi-objective problem previously defined consist in con-
trolling the slinky effect. The goal is to find sufficient conditions to guarantee that
we avoid such a phenomenon. If we consider the system (3) and take Laplace trans-
formation, we getG(s) = δi(s)/δi−1(s) =

(ks + skv)e−τi−1s

(ks + (kv + λks)s + λkvs2)e−τis + αs2 + s3
. (6)

We have noslinky-type effectif:

|G(s)| = | δi(jw)

δi−1(jw)
| < 1 (7)

for anyw > 0 (see Ioannou and Chien [1993], Shiekholslam and Desoer [1993],
Swaroopet al. [1994]). Then the problem turns out in finding the set of parameters
(ks, kv) and the delaysτi such that the stability of the system (4) is guaranteed and
the condition (7) is satisfied (to avoid slinky-effect).



Vehicle following control systems with delays 5

3 MAIN RESULTS

3.1 Delay stability margin

Before proceeding further, we consider the case without delay. Analyzing the
asymptotic stability of the closed-loop system free of delay turns out to check when
the polynomialΓi(s, 0), with τi = 0, is Hurwitz. Sinceα, ks, kv > 0, the third-
order polynomial:

s3 + (α + λkv)s2 + (kv + λks)s + ks = 0 (8)

is Hurwitz if and only if:

(α + λkv)(kv + λks) > ks, (9)

which is equivalent to

λk2
v + (α + λ2ks)kv + (αλ − 1)ks > 0. (10)

Note that a sufficient condition for (10) is:

kv >
1 − αλ

λ2
.

Denote now byΩ the set of crossing frequencies, that is the set of realsω > 0,
such that±jω is a solution of the characteristic equation (5). We have thefollowing:

Proposition 1 Consider the characteristic equation (5) associated to thesystem
(4). Then:

(a) the crossing frequency setΩ is not empty, and

(b) the system is asymptotically stable for all delaysτi ∈ (0, τ⋆) whereτ⋆ is
defined by:

τ
⋆ =

1

w
arccos

“

α(ks − λkvw2)w2 + (kv + λks)w
4

(ks − λkvw2)2 + (kv + λks)2w2

”

, (11)

wherew is the unique element ofΩ.

The condition(a) above simply says that the corresponding system cannot be
delay-independent asymptotically stable, and the condition (b) above gives an ex-
plicit expression of the delay marginτ⋆. In order to have a self-contained paper, a
proof of the Proposition above is included in the Appendix. For a different proof,
see, for instance, Sipahi [2005].
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3.2 Stability analysis in controller parameter space (kv, ks)

In the sequel, we study the behavior of the system for a fixed delay valueτ . More
precisely, for a givenτ = τ∗ we search the crossing frequenciesω and the corre-
spondingcrossing pointsin the parameter space(kv, ks) defined by the control law
such thatQ(jω, kv, ks, τ

∗) + P (jω, kv, ks, τ
∗)e−jωτ∗

= 0.
According to the continuity of zeros with respect to the delay parameters, the

number of roots in the right-half plane (RHP) can change onlywhen some zeros
appear and cross the imaginary axis. Thus, it is natural to consider thefrequency
crossing setΩ consisting of all real positiveω such that there exist at least a pair
(kv, ks) for whichH(jω, kv, ks, τ

∗) :=

Q(jω) + P (jω)e−jωτ = 0. (12)

Remark 1 Using the conjugate of a complex number we get

H(jω, kv, ks, τ) = 0 ⇔ H(−jω, kv, ks, τ) = 0.

Therefore, it is natural to consider only positive frequencies, that isΩ ⊂ (0,∞).

Considering that the setΩ and the parametersα, λ are known we can easily
derive all the crossing points in the parameter space(kv, ks).

Proposition 2 For a givenτ > 0 and ω ∈ Ω the corresponding crossing point
(kv, ks) is given by:

kv =
ω2(1 − αλ) cos ωτ + ω(α + λω2) sin ωτ

1 + λ2ω2
(13)

ks =
ω2(λω2 + α) cos ωτ + ω3(αλ − 1) sin ωτ

1 + λ2ω2
(14)

Proof. Using the decomposition of the equation (12) into real and imaginary part,
straightforward computation lead us to

kv + λks = ω(ω cosωτ + α sin ωτ), (15)

ks − λkvω2 = ω2(α cosωτ − ω sinωτ) (16)

and further we can derive the result stated above.

To illustrate our purpose, let us consider the case whereα = 5, λ = 1 andτ = 0.5,
then for eachω ∈ Ω the corresponding crossing points(kv, ks) are represented in
the following figure.
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Figure 2: Crossing points

Remark 2 For all ω ∈ Ω we haveP (jω) 6= 0. Indeed, it is easy to see that if
ω ∈ Ω, then there exists at least one pair(kv, ks) such thatH(jω, k, T, τ) = 0.
Therefore, assuming thatP (jω) = 0 we get alsoQ(jω) = 0 which contradicts
assumption 1.(b).

Since we are interested in finding the crossing points(kv, ks) such thatkv and
ks arefinite the frequency crossing setΩ is characterized by the following:

Proposition 3 The frequency crossing setΩ consists of a finite number of intervals
of finite length.

Proof. It is obvious from the equations (13) and (14) that the controller parameters
kv andks approach infinity whenω → ∞. Thus, in order to have finite values
for kv andks we have to impose an upper limit for the variation ofω. On the other
hand, consideringΩ ⊂ (0, M ], it is clear that the inequalitieskv > 0 andks > 0 are
simultaneously satisfied forω into a finite number of intervals included in(0, M ].

Let us suppose thatΩ =

N
⋃

ℓ=1

Ωℓ. Then (13) and (14) define a continuous curve.

Using the notations introduced in the previous paragraph and the technique devel-
oped in Guet al. [2005a] and Morărescuet al. [2007], we can easily derive the
crossing direction corresponding to this curve.

More exactly, let us denoteTℓ the curve defined above and consider the follow-
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ing decompositions into real and imaginary parts:

R0 + jI0 =
j

s

∂H(s, kv, ks, τ)

∂s

∣

∣

∣

∣

s=jω

R1 + jI1 =
1

s

∂H(s, kv, ks, τ)

∂kv

∣

∣

∣

∣

s=jω

,

R2 + jI2 =
1

s

∂H(s, kv, ks, τ)

∂ks

∣

∣

∣

∣

s=jω

.

Then, sinceH(s, kv, ks, τ) is an analytic function ofs, kv andks, the implicit func-
tion theorem indicates that the tangent ofTℓ can be expressed as







dkv

dω
dks

dω






=

1

R1I2 − R2I1

(

R1I0 − R0I1

R0I2 − R2I0

)

, (17)

provided that
R1I2 − R2I1 6= 0. (18)

It follows thatTℓ is smooth everywhere except possibly at the points where either
(18) is not satisfied, or when

dkv

dω
=

dks

dω
= 0. (19)

From the above discussions, we can conclude with the following:

Proposition 4 The curveTℓ is smooth everywhere except possibly at the point cor-
responding tos = jω such thats = jω is a multiple solution of (12).

Proof. If (19) is satisfied then staightforward computations show us thatR0 = I0 =
0. In other wordss = jω is a multiple solution of (12).

On the other hand,

R1I2 − R2I1 = −ω(1 + λ2ω2) < 0, ∀ω > 0.

The next paragraph focuses on the characterization of the crossing direction
corresponding to each of the curves defined by (13) and (14) (see, for instance,
Morărescu [2006] or Morărescu and Niculescu [2007] for similar results for differ-
ent problems):

We will call the direction of the curve that corresponds to increasingω thepos-
itive direction. We will also call the region on the left hand side as we head inthe
positive direction of the curvethe region on the left.

Proposition 5 Assumeω ∈ Ωℓ, kv, ks satisfy (13) and (14) respectively, andω is a
simple solution of (12) andH(jω′, kv, ks, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (kv, ks)
is not an intersection point of two curves or different sections of a single curve).

Then a pair of solutions of (12) cross the imaginary axis to the right, through
s = ±jω if R1I2−R2I1 > 0. The crossing is to the left if the inequality is reversed.
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Remark 3 In the proof of Proposition 4 we have shown thatR1I2−R2I1 is always
negative. Thus, a system described by (12) may have more thanone stability region
in controller parameter space(kv, ks) if one of the following two items are satisfied:

• it has one or more crossing curves with some turning points (the direction of
Tℓ in controller parameter space changes).

• it has at least two different crossing curves with opposite direction in (kv, ks)
- space.

3.3 Avoiding slinky effects

Now, we treat the second part of the multi-objective problemunder consideration.
This correspond to the characterization of the conditions guaranteeing that we avoid
slinky-effects. We consider the system (3). If we take Laplace transformation, then
we obtain :

G(s) =
δi(s)

δi−1(s)

=
(ks + skv)e−τi−1s

(ks + (kv + λks)s + λkvs2)e−τis + αs2 + s3
.

(20)

There is no slinky effect if :

|G(jw)| < 1 (21)

for anyw > 0.
This condition can be rewritten as:

A(w, τi)(w) = w2B(w, τi) ≥ 0 (22)

with
B(w, τi)(w) = w4 − 2λkvsin(wτi)w

3+
(λ2k2

v + α2 + 2(αλkv − kv − λks)cos(wτi))w
2+

2(ks − α(kv + λks))sin(wτi)w+
λ2k2

s − 2αkscos(wτi)

(23)

which should be satisfied for allw ∈ IR.
The objective is to define conditions on the parameters of thecontroller, in order to
satisfy this constraint.

Consider first the caseτi = 0. Then, we have:

B(w, 0) = w4 +
[

(λkv + α)2 − 2(kv + λks)
]

w2

+ λ2k2
s − 2αks

(24)

A necessary condition for the positivity ofB(w, 0) is
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λ2k2
s − 2αks > 0, (25)

which implies that:

ks ∈ (
2α

λ2
, +∞) (26)

Under this condition, the positivity ofB(w, 0) is guaranteed if :

[

(λkv + α)2 − 2(kv + λks)
]2 ≤ 4(λ2k2

s − 2αks). (27)

which leads to:

−2ksλ

√

1 − 2α

λ2ks

≤ (λkv + α)2 − 2(kv + λks)

≤ 2ksλ

√

1 − 2α

λ2ks

(28)

In order to complete this analysis, we want to characterize the set of parameterskv

guaranteeing the previous inequality under the constraint(26).
If we consider first the right part of (28), which is equivalent to :

λ2k2
v + 2(λα − 1)kv + α2 − 2λks(1 +

√

1 − 2α

λ2ks

) ≤ 0

we can remark that if

ks > max{2α

λ2
,
2αλ − 1

2λ3
} (29)

then there exists at least one positive valuekv, such that the right part of (28) is
satisfied. Moreoverkv should satisfy :

max{0,
1 − αλ −

√
∆1

λ2
} ≤ kv ≤ 1 − αλ +

√
∆1

λ2
. (30)

where

∆1 = 1 − 2αλ + 2λ3ks

(

1 +

√

1 − 2α

λ2ks

)

.

The left inequality in (28) can be rewritten as :

λ2k2
v + 2(λα − 1)kv + α2 − 2λks(1 −

√

1 − 2α

λ2ks

) ≥ 0

This leads to the following condition onkv :

kv∈(−∞,
1 − αλ −

√
∆2

λ2
] ∪ [

1 − αλ +
√

∆2

λ2
,+∞). (31)
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where

∆2 = 1 − 2αλ + 2λ3ks

(

1 −
√

1 − 2α

λ2ks

)

is assumed to be positive. If∆2 < 0, then the left part of (28) will be satisfied for
all positivekv.

Finally, using the conditions (30) and (31) function of the sign of ∆2, it follows that
kv must be chosen in the intersection of the intervals defined by(30) and (31).

Now we analyze the sign ofB(w, τi) when τi ≥ 0. We consider again the
expression given in (22) ofB(w, τi).
For the terms involvingcos(wτi), we have:

−2αkscos(wτi) ≥ −2αks

and
2(αλkv − kv − λks)cos(wτi) ≥ −2|αλkv − kv − λks|.

Concerning the terms involvingsin(wτi), sincesin(wτi) ≤ wτi for w > 0 then:

−2λkvsin(wτi)w
3 ≥ −2λkvτiw

4 ≥ −2λkvτ
⋆w4

and

2(ks − α(kv + λks))sin(wτi)w
≥ −2|ks − α(kv + λks)|τiw

2

≥ −2|ks − α(kv + λks)|τ⋆w2.

Therefore,

B(w, τi) ≥ (1 − 2λkvτ
⋆)w4 + [λ2k2

v + α2

−2|αλkv − kv − λks| −2τ⋆|ks − α(kv + λks)|]w2

+λ2k2
s − 2αks

≥ (1 − 2λkvτ⋆)w4 + [(λkv − α)2 − 2kv − 2λks

−2τ⋆ks −2τ⋆α(kv + λks)]w
2 + λ2k2

s − 2αks≥0.

Let us set :

C(w, τ⋆) = (1 − 2λkvτ⋆)w4 + [(λkv − α)2 − 2kv

−2λks − 2τ⋆ks − 2τ⋆α(kv + λks)]w
2+λ2k2

s−2αks

We suppose that :
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1 − 2λkvτ⋆ > 0. (32)

Then the positivity ofC(w, τ⋆) is ensured if (26) is satisfied and if we have:

[(λkv − α)2 − 2kv − 2λks − 2τ⋆ks

−2τ⋆α(kv + λks)]
2≤ 4(1 − 2λkvτ

⋆)(λ2k2
s − 2αks).

(33)

This leads to the condition:

−2ksλ

√

(1 − 2α

λ2ks

)(1 − 2λkvτ
⋆) ≤

(λkv − α)2 − 2kv − 2λks−2τ⋆(ks+α(kv + λks))

≤ 2ksλ

√

(1 − 2α

λ2ks

)(1 − 2λkvτ
⋆)

(34)

Now, we search to define the set of parameterskv which satisfy these inequali-
ties.

If we consider the right part of (34), which can be rewritten as :

λ2k2
v − 2(1 + αλ + ατ⋆)kv + α2 −2τ⋆(ks + αλks)

−2λks

(

1 +

√

(1 − 2α

λ2ks

)(1 − 2λkvτ
⋆)

)

≤ 0,

(35)

with kv under the square root.

Since1 − 2λkvτ
⋆ ≤ 1 and1 − 2α

λ2ks

≤ 1 then

λ2k2
v − 2(1 + αλ + ατ⋆)kv + α2 −2τ⋆(ks + αλks)

−2λks

(

1 +

√

(1 − 2α

λ2ks

)(1 − 2λkvτ
⋆)

)

≤ λ2k2
v−2(1 + αλ + ατ⋆)kv+α2−2τ⋆(ks + αλks)

−2λks

(

1 + (1 − 2λkvτ
⋆)(1 − 2α

λ2ks

)
)

(36)

Thus, if we can findkv such that:

λ2k2
v − 2(1 + αλ + 5ατ⋆ − 2τ⋆λ2ks)kv

+α2 − 2τ⋆(1 + αλ)ks − 4λks +
4α

λ
≤ 0

(37)
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then the right part of (34), would be satisfied.

A necessary condition to guarantee this previous conditionis to have :

∆1,τ⋆ =
(

1 + αλ + 5ατ⋆ − 2τ⋆λ2ks

)2

−λ2

(

α2 − 2τ⋆(1 + αλ)ks − 4λks +
4α

λ

)

≥ 0

(38)

and then under this condition, we choosekv as follows :

max{0,
a1 −

√

∆1,τ⋆

λ2
} ≤ kv ≤ a1 +

√

∆1,τ⋆

λ2
. (39)

wherea1 = 1 + αλ + 5ατ⋆ − 2τ⋆λ2ks.

We can remark that (38) can be rewritten as :

4τ⋆2

λ4k2
s + 2λ2

(

2λ − τ⋆(1 + 10ατ⋆ + αλ)
)

ks

+(1 + 5ατ⋆)2 + 2αλ[5ατ⋆ − 1] ≥ 0

Note that this last inequality leads to the following condition onks :

ks ∈
(

−∞, ξ1]
⋃

[ξ2, +∞
)

(40)

where

ξ1=
λ2

(

2λ − τ⋆(1 + 10ατ⋆ + αλ)
)

−
√

∆1,τ⋆

4τ⋆2λ4

and

ξ2=
λ2

(

2λ − τ⋆(1 + 10ατ⋆ + αλ)
)

+
√

∆1,τ⋆

4τ⋆2λ4
.

∆1,τ⋆=λ4
(

2λ − τ⋆(1 + 10ατ⋆ + αλ)
)2− 4τ⋆2

λ4[(1 + 5ατ⋆)2 + 2αλ(5ατ⋆ − 1)]

which is supposed to be positive. If it is not the case, then the condition (38) is
verified for allks ≥ 0.

We consider now the left part of (34), which can be rewritten as :
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0≤λ2k2
v −2(1 + αλ + ατ⋆)kv+α2−2τ⋆(ks + αλks)

−2λks

(

1 −
√

(1 − 2α

λ2ks

)(1 − 2λkvτ
⋆)

)

.

(41)

Proceeding as above, we have :

λ2k2
v − 2(1 + αλ + ατ⋆)kv + α2 − 2τ⋆(ks + αλks)

−2λks

(

1 − (1 − 2λkvτ⋆)(1 − 2α

λ2ks

)
)

≤λ2k2
v −2(1 + αλ + ατ⋆)kv + α2−2τ⋆(ks + αλks)

−2λks

(

1 −
√

(1 − 2α

λ2ks

)(1 − 2λkvτ⋆)
)

(42)

If there existskv such that:

0 ≤ λ2k2
v − 2(1 + αλ + ατ⋆

+2τ⋆λ2ks(1 − 2α

λ2ks

))kv

+α2 − 2τ⋆(ks + αλks) − 2λks

(

1 − (1 − 2α

λ2ks

)
)

(43)

then the left part of (34), will be verified.

This inequality can be simplified as :

0 ≤ λ2k2
v − 2(1 + αλ − 3ατ⋆ + 2τ⋆λ2ks)kv

+α2 − 2τ⋆(1 + αλ)ks −
4α

λ

(44)

This is satisfied for allkv such that :

kv ∈
(

−∞,
1 + αλ − 3ατ⋆ + 2τ⋆λ2ks −

√

∆2,τ⋆

λ2
]

⋃

[
1 + αλ − 3ατ⋆ + 2τ⋆λ2ks +

√

∆2,τ⋆

λ2
, +∞

)

.

(45)

where

∆2,τ⋆ =
(

1 + αλ − 3ατ⋆ + 2τ⋆λ2ks

)2

−λ2

(

α2 − 2τ⋆(1 + αλ)ks −
4α

λ

)

(46)
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is supposed to be positive.
If this quantity is negative, then the inequality (43) and byconsequence (41), would
be satisfied for allkv ≥ 0.

The positivity of∆2,τ⋆ can be rewritten as :

4τ⋆2

λ4k2
s + 6λ2τ⋆[1 + α − 2ατ⋆]ks

+(1 − 3ατ⋆)2 + 6αλ(1 − ατ⋆) ≥ 0

which leads to the condition onks given by :

ks ∈
(

−∞,
3λ2τ⋆(2ατ⋆ − 1 − α) −

√

∆2,τ⋆

4λ4τ⋆2
]

⋃

[
3λ2τ⋆(2ατ⋆ − 1 − α) +

√

∆2,τ⋆

4λ4τ⋆2
, +∞

)

.

(47)

if ∆2,τ⋆ defined by :

∆2,τ⋆ = 9λ4τ⋆2

[1 + α − 2ατ⋆]2

−4λ4τ⋆2

[(1 − 3ατ⋆)2 + 6αλ(1 − ατ⋆)]

(48)

is positive.

It is clear that if∆2,τ⋆ is negative, then the positivity of∆2,τ⋆ would be satisfied
for all ks ≥ 0.

Now the hypothesis of negativity of∆2,τ⋆ , which would imply that the left part of
(34) is satisfied for allkv positive, turns out to write that :

4τ⋆2

λ4k2
s + 6λ2τ⋆[1 + α − 2ατ⋆]ks

+(1 − 3ατ⋆)2 + 6αλ(1 − ατ⋆) ≤ 0

which is satisfied for

max{0,
3λ2τ⋆(2ατ⋆ − 1 − α) −

√

∆2,τ⋆

4λ4τ⋆2
} ≤ ks

≤
3λ2τ⋆(2ατ⋆ − 1 − α) +

√

∆2,τ⋆

4λ4τ⋆2
.

(49)

where∆2,τ⋆ is assumed to be positive.

In conclusion, the determination of the parameterskv andks guaranteeing that
(34) is satisfied, can be summarized for the right part of (34), by the choice ofkv
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in the interval defined by (39) under the necessary conditionthat∆1,τ⋆ is positive.
And for the left part of (34), we can choose anykv > 0 or kv in the interval defined
by (45), according to the sign of∆2,τ⋆ .
We can note that∆1,τ⋆ and∆2,τ⋆ are function ofks. Their sign are conditioned by
the sign of∆1,τ⋆ and∆2,τ⋆ .

In the following section, we illustrate our results with some examples.

4 Simulation results

We consider a platoon of 4 following vehicles. We suppose that initially these ve-
hicles travel at the the steady-state velocity ofv0 = 20m/s. The following figure
correspond to the velocity and acceleration profile of the lead vehicle.
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Figure 3: Velocity profile of the lead vehicle
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Figure 4: Acceleration profile of the lead vehicle
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We assume that the safety distance is characterized byλ = 1, andHi = 2m.
with the parametersα = 5. We choose the controller parametersks = 19 and
kv = 0.12. Then by Proposition 1, we obtain theoptimal delay marginequal to
τ∗ = 0.215. The system (4) is then asymptotically stable for all delaysτ < 0.215.

We arrive to the same conclusion by using the Matlab package DDE-BIFTOOL
(bifurcation analysis of delay differential equations), (see Engelborghset al.[2001],
Engelborghset al.[2002]) to represent the rightmost roots of the characteristic equa-
tion. Indeed, if we choose the limit value of the delayτ = 0.215 then we can ob-
serve that rightmost roots of the characteristic equation are on the imaginary axis.
When we choose a delay larger, the system is unstable since there exists roots in the
right half plane.
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Figure 5: Rightmost roots of the characteristic equation for τ = 0.215
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Figure 6: Rightmost roots of the characteristic equation for τ = 0.25
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Now, if we consider the second part of the multi-objective problem, we can
remark that the conditions to avoid slinky-effect We can also note that in order to
have no slinky effects we just have to restrict this bound toτ = 0.0504.
Then, if we choose a delayτ = 0.2, we can observe the phenomenon of slinky
effect. This is what we can observe in the following figures.
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Figure 7: Control responses of 4 following vehicles with time delay 0.2 s

If we choose a delayτ = 0.05, then we can remark that there is no slinky effect.
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Thus, in order to guarantee the individual stability of vehicles of the platoon
and to avoid the slinky effect phenomenon, it suffices to choose the delayτ ≤
min(0.215, 0.0504) = 0.0504.

5 CONCLUSIONS

In this paper, we have considered the problem of vehicle following control system.
For a given controller structure, we have developed conditions guaranteeing the
individual stability of each vehicle of the platoon, and thederived conditions depend
on the size of the delay. Moreover, we considered the problemof slinky-effect
phenomenon, and we proposed sufficient conditions to avoid it. We have given
an explicit characterization of some sets of controller parameters which solve the
problem.
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A Proof of Proposition 1

(a) Straightforward. Assume by contradiction that the delay-independent stability
holds. As discussed in Niculescu [2001], a necessary condition for delay-independent
stability is the Hurwitz stability ofQ, and this is not the case.

(b) Since the system free of delay is asymptotically stable,the conclusion of (a)
leads to the existence of a delay marginτ⋆, such that the system is asymptotically
stable for all delaysτ ∈ [0, τ⋆). Furthermore atτ = τ⋆, the characteristic equation
(5) has at least one roots = jw on the imaginary axis, withw ∈ Ω (crossing
frequency). Since

P (jw)

Q(jw)
= −e−jwτ = − cos(wτ) + j sin(wτ) (50)

this implies that:

cos(wτ) = −ℜ
(P (jw)

Q(jw)

)

.

We compute the right hand side of this equation with:

P (jw)

Q(jw)
= −α(ks − λkvw2)w2 + (kv + λks)w

4

(ks − λkvw2)2 + (kv + λks)2w2

− j(ks − λkvw2)w3 − jα(kv + λks)w
3

(ks − λkvw2)2 + (kv + λks)2w2

(51)

Therefore,

τ⋆ =
1

w
arccos

(α(ks − λkvw2)w2 + (kv + λks)w
4

(ks − λkvw2)2 + (kv + λks)2w2

)

, (52)

wherew is acrossing frequency.
In the sequel, we explicitly determinate the expression of the crossing frequen-

cies by solving the equation:

w6 + (α2 − λ2k2
v)w4 − (k2

v + λ2k2
s)w2 − k2

s = 0. (53)

For this equation inw2, we have one real solution (and two complex roots) or three
real roots. We have to analyze their sign to consider only thepositive candidates.

If we denote byri, (i = 1 . . . 3), the roots of the equation, we know that they
are solutions of:

x3 − Sx2 + Π2x − Π3 = 0,

whereS =

3
∑

i=1

ri, Π2 =
∏

i6=j∈{1...3}

rirj , Π3 =
∏

i∈{1...3}

ri .

SinceΠ3 = k2
s > 0, if we have only one real root (the others are complex

and conjugate), this root is positive and if we have three real roots, we have one
positive root and two real roots with the same sign. In the latter case, we only
take into account only the case where the three real roots arepositive. Moreover,
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with Π2 = −(k2
v + λ2k2

s) < 0, we can remark that we cannot have three positive
real roots. Finally, we can have only one positive real root (square of the crossing
frequency). Now we apply the method of Cardan to define the form of this crossing
frequency. We can establish that if:

(

α4 + λ2
(

λ2k4
v + 3k2

s − 2α2k2
v

)

+ 3k2
v

)3

<
1

4

(

(α2 − λ2k2
v)[2(α2 − λ2k2

v) + 9(λ2k2
s + k2

v)] − 27k2
s

)2

,

then the crossing frequency is of the form:

wf =

√

(−w1

54
)

1

3 + (−w2

54
)

1

3 − α2 − λ2k2
v

3
, (54)

where

w1 = γ1 +
√

ζ1 and w2 = γ1 −
√

ζ1, (55)

with
γ1=

(

(α2 − λ2k2
v)[2(α2 − λ2k2

v)2 + 9(λ2k2
s + k2

v)] − 27k2
s

)

,

and
ζ1 = γ2

1 − 4
(

(α2 − λ2k2
v)2 + 3(λ2k2

s + k2
v)

)3

If
(

α4 + λ2
(

λ2k4
v + 3k2

s − 2α2k2
v

)

+ 3k2
v

)3

>
1

4

(

(α2 − λ2k2
v)[2(α2 − λ2k2

v) + 9(λ2k2
s + k2

v)] − 27k2
s

)2

,

then it is of the form :

wf =

√

(− w̃1

54
)

1

3 + (− w̃2

54
)

1

3 − α2 − λ2k2
v

3
, (56)

where

w̃1 = γ1 + j
√

−ζ1 and w̃2 = γ1 − j
√

−ζ1 (57)


