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Abstract

This thesis focuses on the problem of stability and robust stability of a
class of linear systems with distributed delays. Our work is motivated by the
increasing number of models from biology to communication over network
and traffic flow, models that can be included in the general class which is the
subject of our study. We develop two complementary approaches, geometric
and algebraic, respectively. Such approaches allow deriving the stability re-
gions in the parameter space defined by the pair (mean delay, gap), where
the gap is mainly a propagation delay. In other words, we obtain necessary
and sufficient conditions for stability of the systems belonging to considered
class.

Throughout the thesis various applications are presented. First, we point
out some qualitative properties concerning the stability of some models aris-
ing in biology and in communication over networks. Next, we develop a
method to study a recent model of traffic flow dynamic that include a mem-
ory effect. Illustrative numerical examples complete the presentation.

Résumé

Dans cette thèse, on considère la problématique de la stabilité et de la sta-
bilité robuste d’une classe de systèmes linéaires/ à retards distribués. Notre
travail est motivé par le nombre croissant de modéles en allant de la biolo-
gie vers les réseaux de communication et de transport, modèles qui peuvent
être inclus dans la classe générale considerée dans la thèse. Nous développons
deux approches complèmentaires, géométriques et algébrique. Ces approches
nous permettent de dériver les régions de stabilité dans l’espace de paramètres
défini par (délai moyen, retard de propagation). En d’autres termes, nous
obtenons des conditions nécessaires et suffisantes pour la stabilité des systèmes
appartenant à la classe considérée.

Dans la thèse, diverses applications sont présentées. D’abord, nous précisons
quelques propriétés qualitatives au sujet de la stabilité de quelques modèles
en biologie et en communication dans des réseaux. Ensuite, nous développons
une méthode afin d’étudier un modèle récent de la dynamique du réseau de
transport qui inclus un effet de mémoire. Des exemples numériques illustrat-
ifs complètent la présentation.
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Prefaţă

Această teză tratează problema stabilităţii şi a robusteţii stabilităţii pen-
tru o clasă de sisteme dinamice cu ı̂ntârzieri distribuite. Studiul nostru
este motivat de numărul tot mai mare de modele (provenite din biologie,
comunicaţii ı̂n reţea, reţele de transport, etc) ce pot fi incluse in clasa conside-
rată ı̂n teză. Pentru a studia stabilitatea sistemelor din clasa considerată dez-
voltăm două abordări (una bazată pe niste interpretări geometrice şi cealaltă
pe o analiză matriceală) care ne permit să obţinem regiunile de stabilitate ı̂n
spaţiul definit de perechea (̂ıntârziere medie, ı̂ntârziere de propagare). Cu
alte cuvinte, exprimăm condiţii necesare şi suficiente pentru stabilitatea sis-
temelor ce aparţin clasei considerate.

Pe parcursul tezei prezentăm diverse aplicaţii ı̂n diferite domenii de cerce-
tare. Mai ı̂ntâi punem ı̂n evidenţă diferite aspecte calitative ce privesc sta-
bilitatea unor modele provenite din biologie şi comunicaţii ı̂n reţea. Apoi,
dezvoltăm o metoda pentru studiul unui model de dinamică ı̂n reţele de trans-
port, recent apărut. O mulţime de exemple numerice ilustrează diferitele
proprietăţi obţinute pe parcursul tezei.
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Thesis Synthesis (in French)

Dans cette partie, nous faisons une courte présentation de la thèse, dans
laquelle seront synthétisés les principaux rsultats. L’analyse développée dans
ce mémoire est motivée par l’intérêt accru pour les systèmes dynamiques à
retards distribués rencontrés dans des applications à commencer par les dy-
namiques de populations en biologie et jusqu’aux réseaux de communication.

0.1 Introduction

L’analyse de la stabilité des équations différentielles à retards a commencé
dans les années 50, et l’une des premières approches est présentée par
Krasovskii [77], qui généralise la deuxième méthode de Lyapunov. Ensuite,
des nombreux auteurs ont développé différentes méthodes et ont posé différents
problèmes concernant l’analyse de la stabilité des équations différentielles
avec un argument retardé. En ce qui concerne les travaux de recherche
dans le domaine fréquence, des résultats fondamentaux ont été obtenus par
Pontryagin [124]. Chebotarev a publié également quelques travaux concer-
nant l’approche Routh-Hurwitz pour les quasi-polynômes (par exemple [27]).

A partir des années 90, des nombreux critères dans le domaine de fréquence
ont été proposés, critères prenant en considération des aspects numériques
(calcul des bornes ou des marges des retards), mais aussi la robustesse de la
stabilité. Malgré le très grand nombre des travaux qui traitent les systmes
dynamiques avec argument retardé, nous mentionnons ici seulement quelques
monographies [56, 126, 75, 59, 107, 54] qui, ǹotre avis, permettent d’avoir un
tour d’horizon des principaux concepts, méthodes et idées apparues jusqu’à
présent. Parmi ces monographies on distingue [56] par la qualité et la pro-
fondeur des idées présentées. Nous précisons que ce monographie contient
une multitude d’idées intéressantes qui n’ont pas encore été suffisamment
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exploitées dans la littérature.

Même si la littérature concernant les stabilité des systèmes dynamiques
avec argument retardé est vaste, il existe seulement deux approches princi-
pales :

• l’étude dans le domaine fréquence (systèmes linéaires) - Sans aucune
perte de généralité, on considère: les tests analytiques qui étendent
la méthode de Hurwitz aux systèmes dynamiques avec retards, les
généralisations de méthodes de location des racines (D - décomposition
et T - décomposition), les tests de stabilité basés sur l’intégration sur
un contour et finalement, les procédures basées sur l’étude du spectre
de l’opérateur associé au système linéaire considéré.

• l’étude dans le domaine temps (systèmes linéaires ou non linéaires) - les
généralisations de la deuxième méthode de Lyapunov et les méthodes
basées sur le principe de la comparaison, peuvent être mentionnés ici.
Même si le principe de comparaison a été initialement développé dans
le domaine temps, des idées similaires peuvent être appliquées aussi
dans le domaine fréquence.

Dans cette thèse, nous développons des méthodes dans le domaine fréquence
pour l’analyse de la stabilité d’une classe de systèmes dynamiques linéaires
incluant des retards distribués. Les résultats décrits ici sont la suite de cer-
taines études présentées dans des publications de l’auteur écritess en collabo-
ration avec K. Gu, W. Michiels et S.-I. Niculescu [99, 100, 101, 102]. Le
choix de la classe de systèmes dynamiques linéaires étudiés est motivé par
les modèles existants en sciences appliquées (biologie [35, 119, 24], technolo-
gie [153, 130, 143], etc.). Le principal objectif de cette thèse est de décrire
des méthodes intuitives et faciles à mettre en {oeuvre pour l’obtention des
zones de stabilité de systèmes dynamiques linéaires (avec retards distribués)
qui appartiennent à la classe étudiée.

0.2 Les préliminaires

Le but de ce paragraphe est de présenter des concepts et des notions de
base, nécessaires dans le développement de nos résultats. Plus précisément,
nous présentons brièvement les résultats classiques de la théorie des équations
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différentielles fonctionnelles concernant l’analyse de la stabilité. Les résultats
proposés sont détaillés dans des monographies comme, par exemple, [15, 59,
107] ou bien [54].

Par la suite, nous notons C([a, b],Rn) l’espace Banach des fonctions con-
tinues définies sur l’intervalle [a, b] avec des valeurs dans Rn munie avec la
topologie de la convergence uniforme. Si [a, b] = [−τ, 0] , alors la notation
sera simplifiée de la manière suivante C = C([−τ, 0],Rn). Pour la norme
d’un élément φ ∈ C nous utiliserons la notation ‖ φ ‖= sup

−τ≤θ≤0
|φ(θ)|. Si

σ ∈ R, A > 0, x ∈ C([−σ − τ, σ + A],Rn) et t ∈ [σ, σ + A] on définit la
fonction continue xt ∈ C, xt(θ) = x(t + θ).

Définition 1 Pour chaque f : R × C 7→ Rn, on rappelle les notions sui-
vantes:

• la forme générale d’une équation différentielle fonctionnelle de type re-
tardée (RFDE) est

ẋ(t) = f(t, xt) (1)

où ẋ est la dérivée à droite de la fonction x.

• Une fonction x est nommée solution de l’équation antérieure sur
l’intervalle [σ − τ, σ + A] s’il existe σ ∈ R et A > 0 ainsi que x ∈
C([−σ−τ, σ+A],Rn), (t, xt) ∈ R×C et x(t) satisfait l’équation donnée
pour t ∈ [σ, σ + A].

• Etant donnés σ ∈ R, φ ∈ C on dit que x(σ, φ, f) est une solution
de l’équation du point 1 avec la valeur initiale φ en σ (ou une solution
à travers (σ, φ)) s’il existe A > 0 ainsi que x(σ, φ, f) est une solution
de l’équation sur l’intervalle [σ − τ, σ + A] et xσ(σ, φ, f) = φ.

L’existence et l’unicité des solutions pour RFDE sont données par le théorème
suivant:

Théorème 1 Soit Ω un ensemble ouvert en R×C, f : Ω 7→ Rn une fonction
continue, et f(t, φ) Lipchitzienne en variable φ sur chaque ensemble compact
inclus dans Ω. Si (σ, φ) ∈ Ω, alors il existe une unique solution à travers
(σ, φ) pour toute équations de type RFDE.
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Nous remarquons que la propriété de la fonction f d’être Lipchitzienne est
nécessaire seulement pour l’unicité, l’existence est garantie aussi sans cette
condition.

Définition 2 Soit f(t, 0) = 0, ∀t ∈ R. On dit que la solution x = 0 de
l’équation (1) est:

• stable si pour tout σ ∈ R, ε > 0 il existe δ = δ(ε, σ) ainsi que φ ∈ B(0, δ)
implique xt(σ, φ) ∈ B(0, ε) pour t ≥ σ.

• uniforme stable si c’est stable et δ est indépendant de σ.

• asymptotique stable si c’est stable et s’il existe b0 = b0(σ) > 0 ainsi que
φ ∈ B(0, b0) implique x(σ, φ)(t) −→

t→∞
0

• uniforme asymptotique stable si c’est uniforme stable et il existe b0 > 0
ainsi que pour tout η > 0, il existe t0(η) ainsi que φ ∈ B(0, b0) implique
xt(σ, φ) ∈ B(0, η) pour t ≥ σ + t0(η) et pour tout σ ∈ R.

• exponentiel stable s’il existe B > 0 et α > 0 ainsi que pour toutes les
conditions initiale φ ∈ C, ‖ φ ‖< v, la solution satisfait l’inégalité:

‖ x(σ, φ)(t) ‖≤ Be−α(t−σ) ‖ φ ‖ .

Si y(t) est une solution d’une RFDE de la forme ẋ(t) = f(t, xt), alors on dit
que y est stable si la solution z = 0 de l’équation

ż(t) = f(t, zt + yt)− f(t, yt)

est stable. Les autres concepts se définissent par similarité. On rappelle que,
pour les systèmes linéaires tous les types de stabilité définis antérieurement
sont équivalents [75]. Les systèmes traités dans cette thèse sont linéaires,
donc l’équivalence antérieure peut être utilisée. Plus précisément, suite à la
présentation des différents modèles qui apparaissent en biologie, communi-
cations en réseaux et réseaux de transport, on déduit la nécessité de l’étude
de classe de systèmes dynamiques décrite par l’équation caractéristique:

D(s, T, τ) = P (s)(1 + sT )n + Q(s)e−sτ = 0, (2)

où P et Q sont des polynômes qui satisfont les propriétés suivantes: degP ≥
degQ, P (0) + Q(0) 6= 0 et P,Q n’ont pas des facteurs communs.
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0.3 L’approche géométrique

Le but principal de cette partie, présentée dans les chapitres 3 et 4 de
cette thèse, est d’obtenir les régions de stabilité des systèmes dynamiques
de la classe considérée. Notre étude commence à partir des quelques in-
terprétations géométriques des équations caractéristiques pour les systèmes
dynamiques avec un ou deux retards discrets (ou ponctuels). Après la présen-
tation des quelque uns de ces résultats dans les premières sections du chapitre
3, nous développons dans la dernière section des algorithmes qui peuvent être
utilisés pour le traitement des différents cas particuliers et dégénérés. L’un
des cas particuliers de systèmes avec deux retards discrets est relatif à la
méthode de contrôle prédictif proposé par Smith [121]. De même, certains
cas dégénérés mis en évidence (mais non-traités) dans [55] sont discutés.

La principale densité de probabilité utilisée dans cette thèse est donnée
par la distribution gamma. Le choix de cette distribution n’est pas au hasard,
parce que le comportement stochastique de plusieurs modèles est décrit dans
la littérature en utilisant une telle densité. On constate également que cer-
tains systèmes particuliers simples, qui peuvent être inclus dans la classe
considérée dans cette thèse, ont été déjà étudiés dans le passé [20]. A la
différence de [20] où sont présentés seulement des conditions suffisantes pour
la stabilité des systèmes scalaires de la forme:

ẋ(t) = −αx(t)− β

∫ ∞

0

x(t− τ)g(τ)dτ,

la méthode que nous avons dveloppé dans cette thèse permet l’obtention
des conditions nécessaires et suffisantes pour la stabilité des systèmes d’une
classe plus générale décrite par l’équation caractéristique (2).

Dans le chapitre 4 nous mettons en évidence une interprétation géométrique
de l’équation caractéristique qui décrit la classe des systèmes dynamiques
avec des retards distribués. Cette interprétation géométrique nous permet
d’obtenir l’ensemble Ω des fréquences correspondantes aux points de pas-
sage des solutions de l’équation caractéristique du sémi plan droit du plan
complexe vers celui de gauche ou vice-versa.

Proposition 1 Pour toutes ω > 0, l’équivalence suivante est satisfaite:

ω ∈ Ω ⇔ 0 < |P (jω)| ≤ |Q(jω)|.
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De plus, les valeurs T, τ correspondant à la fréquence ω peuvent être calculées
en utilisant les formules:

T =
1

ω

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
2/n

− 1

)1/2

,

τ = τm =
1

ω
(∠Q(jω)− ∠P (jω)− n arctan(ωT )

+π + 2mπ),m = 0,±1,±2, . . .

Les couples (T, τ) définis ci-dessus génèrent les courbes qui séparent les zones
avec un nombre constant de racines instables (courbes de stabilité). La
méthode qui nous permet de déterminer la direction dans laquelle passent les
racines l’axe imaginaire lorsqu’on traverse une courbe de stabilité est basée
sur le théorème des fonctions implicites.

En utilisant les notations du chapitre 4 la direction de passage peut être
caractérisée ainsi:

Proposition 2 Soit ω ∈ Ω et (T, τ) le couple correspondant à ω sur la courbe
de stabilité. On suppose que jω est une solution simple de l’équation (2) et
D(jω′, T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (T, τ) n’est pas un point d’intersection
à deux courbes de stabilité différentes ou a deux sections différentes de la
même courbe). Ainsi, un couple de solutions appartenant à l’équation (2)
traverse l’axe imaginaire vers le demi-plan droit, par s = ±jω, si R2I1 −
R1I2 > 0. Le passage est vers le demi-plan gauche si l’inégalité est inversée.

Le chapitre 4 se termine avec des études de robustesse de la stabilité par
rapport aux paramètres et par rapport au retard. De même, on a mis en
évidence et on a analysé certains cas dégénérés. Tous les résultats et les
conclusions sont accompagnés de quelques exemples illustratifs.

0.4 L’approche algébrique

Cette partie est composée des chapitres 5 et 6. La méthode algébrique
obtenue dans le chapitre 5 peut être vue comme une approche complémentaire
de la procédure présentée dans le chapitre 4. En utilisant une technique basée
sur l’analyse matricielle, on divise le plan complexe en bandes verticales où le
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système sans retard de propagation (”gap” en Anglais) a une nombre cons-
tant de racines instables. Plus précisément, en utilisant les notations du
chapitre 5, on obtient le résultat suivant:

Proposition 3 Soit 0 < λ1 < λ2 < . . . λh, les valeurs propres réelles et
positives du faisceau matriciel Σ(λ) = (λU + V ). Alors, le système décrit
par l’équation caractéristique (2) ne peut pas être stable pour T = λi, i =
1, 2, . . . h. De plus, si pour T = T ∗ ∈ (λi, λi+1), le système a r racines
instables (0 ≤ r ≤ n + np), alors le système conserve r racines instables
pour toutes les valeurs T ∈ (λi, λi+1). Le même résultat reste valable pour
les intervalles (0, λ1) et (λh,∞).

Puis, nous avons développé une méthode permettant de trouver le nom-
bre de passages de l’axe imaginaire lorsque la valeur du retard de propaga-
tion (”gap”) τ augmente. Par conséquent, cette méthode nous permet de
récupérer complètement les régions de stabilité du système.

Le chapitre 6 étend la méthode algébrique, obtenue dans le chapitre 5, à
des classes de systèmes plus générales. Dans le premier paragraphe, on adapte
la technique pour l’analyse d’un système avec des retards commensurables
(on dit que deux retards sont commensurables si leur rapport est un nombre
rationel) provenant des réseaux de transport. Puis, nous considérons une
classe de systèmes plus générale qui inclut le modèle du premier paragraphe.
Pour analyser cette classe, nous adaptons, d’une part, la méthode de Walton-
Marshal [159] de réduction du nombre de retards proportionné et, d’autre
part, l’algorithme présenté dans le chapitre 5.

La dernière partie de la thèse inclut des conclusions et des perspectives.
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Thesis Synthesis (in Romanian)

În această parte facem o scurtă prezentare a tezei, ı̂n care sintetizăm prin-
cipalele rezultate. Analiza dezvoltată ı̂n această lucrare este modivată de
numărul tot mai mare de modele provenite din biologie şi comunicaţii prin
reţele, care sunt descrise de sisteme dinamice cu ı̂ntârzieri distribuite.

0.5 Introducere

Analiza stabilităţii ecuaţiilor diferenţiale cu ı̂ntârzieri a ı̂nceput ı̂n anii 50,
iar una din primele abordări este prezentată de Krasovskii [77], care gene-
ralizează metoda a doua a lui Lyapunov. Apoi, mulţi autori au dezvoltat
diferite metode şi au pus diferite probleme cu privire la analiza stabilităţii
ecuaţiilor diferenţiale cu argument ı̂ntârziat. Cu privire la studiul ı̂n dome-
niul frecvenţă, rezultate fundamentale au fost obţinute de Pontryagin [124].
Chebotarev a publicat de asemenea câteva lucrări dedicate problemelor Routh-
Hurwitz pentru quasipolinoame (de exemplu [27]).

Începând cu anii 90 au apărut multe criterii ı̂n domeniul frecvenţă, care
iau ı̂n consideraţie aspecte computaţionale şi de robusteţe a stabilităţii. Oricum,
există un număr imens de lucrări ce tratează systemele dinamice cu argument
ı̂ntârziat si̧ pentru a avea o bună perspectivă asupra domeniului menţionăm
aici doar câteva monografii [56, 126, 75, 59, 107, 54] care conţin principalele
concepte şi metode apărute până ı̂n prezent. Dintre aceste monografii se dis-
tinge [56] prin calitatea ideilor prezentate. Mentionăm că această monografie
conţine o mulţime de idei interesante care nu au fost incă suficient exploatate
ı̂n literatură.

Deşi literatura cu privire la stabilitatea sistemelor dinamice cu argument

xv



ı̂ntârziat este vastă, există doar două abordări principale:

• Studiul ı̂n domeniul frecvenţă - aici sunt incluse: testele analitice care
extind metoda lui Hurwitz la systeme dinamice cu ı̂ntârzieri, gene-
ralizări a metodelor de locaţie a rădăcinilor (D-descompunere şi T -
descompunere), teste de stabilitate bazate pe integrarea pe contur, şi
proceduri bazate pe studiul spectrului operatorului asociat sistemului
liniar considerat.

• Studiul ı̂n domeniul timp - generalizări ale metodei a doua a lui
Lyapunov şi metode bazate pe principiul comparaţiei, pot fi menţionate
aici. Deşi principiul comparaţiei a fost dezvoltat iniţial ı̂n domeniul
timp, idei similare pot fi găsite şi ı̂n domeniul frecvenţă.

În această lucrare dezvoltăm metode ı̂n domeniul frecvenţă, pentru analiza
stabilităţii unei clase de sisteme dinamice liniare cu ı̂ntârzieri distribuite.
Rezultatele descrise aici sunt urmarea unor studii prezentate ı̂n unele lucrări
ale autorului scrise ı̂n colaborare cu Gu, Michiels şi Niculescu [99, 100, 101,
102]. Alegerea clasei de sisteme dinamice liniare studiate este motivată de
modele existente ı̂n ştiinţele aplicate (biologie [35, 119, 24], inginerie [153,
130, 143], etc). Principalul obiectiv al tezei este să descrie metode intuitive
şi uşor de implementat pentru obţinerea zonelor de stabilitate ale sistemelor
dinamice liniare (cu ı̂ntârzieri distribuite) ce aparţin clasei studiate.

0.6 Preliminarii

Scopul acestei sectiuni este prezentarea conceptelor şi noţiunilor de bază,
necesare ı̂n dezvoltarea rezultatelor noastre. Mai precis, vom prezenta pe
scurt rezultatele clasice ale teoriei ecuaţiilor diferenţiale funcţionale ce privesc
analiza stabilităţii. Rezultatele propuse sunt detaliate ı̂n monografii ca [15,
59, 107] ori [54].
În continuare vom nota cu C([a, b],Rn) spaţiul Banach al funcţiilor continue
definite pe intervalul [a, b] cu valori ı̂n Rn dotat cu topologia convergenţei
uniforme. Dacă [a, b] = [−τ, 0] atunci notaţia va fi simplificată după cum
urmează C = C([−τ, 0],Rn). Pentru norma unui element φ ∈ C vom folosi
notaţia ‖ φ ‖= sup

−τ≤θ≤0
|φ(θ)|. Dacă σ ∈ R, A > 0, x ∈ C([−σ−τ, σ+A],Rn),

şi t ∈ [σ, σ + A] definim funcţia continuă xt ∈ C, xt(θ) = x(t + θ).
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Definiţia 1 Pentru orice f : R× C 7→ Rn, reamintim următoarele noţiuni:

• Forma generală a unei ecuaţii diferenţiale funcţionale de tip retardat
(RFDE) este

ẋ(t) = f(t, xt) (3)

unde ẋ este derivata la dreapta a funcţiei x.

• O funcţie x este numită soluţie a ecuaţiei anterioare pe intervalul [σ−
τ, σ + A] daca există σ ∈ R şi A > 0 astfel ı̂ncât x ∈ C([−σ − τ, σ +
A],Rn), (t, xt) ∈ R×C şi x(t) satisface ecuaţia dată pentru t ∈ [σ, σ +
A].

• Fiind date σ ∈ R, φ ∈ C spunem că x(σ, φ, f) este o soluţie a ecuatiei
de la punctul 1 cu valoarea iniţială φ ı̂n σ (sau o soluţie prin (σ, φ))
dacă există A > 0 astfel ı̂ncât x(σ, φ, f) este o soluţie a ecuaţiei pe
intervalul [σ − τ, σ + A] şi xσ(σ, φ, f) = φ.

Existenţa şi unicitatea soluţiilor pentru RFDE sunt date de următoarea
Teoremă.

Teorema 1 Fie Ω o mulţime deschisă ı̂n R × C, f : Ω 7→ Rn o funcţie
continuă, şi f(t, φ) Lipschitziană ı̂n variabila φ pe orice mulţime compactă
inclusă ı̂n Ω. Dacă (σ, φ) ∈ Ω, atunci există o unică soluţie prin (σ, φ) pentru
orice ecuaţie de tip RFDE.

Remarcăm ca proprietatea funcţiei f de a fi Lipschitz este necesară numai
pentru unicitate, existenţa este garantată şi fără această condiţie .

Definiţia 2 Fie f(t, 0) = 0, ∀t ∈ R. Spunem că soluţia x = 0 a ecuaţiei (3)
este:

• stabilă dacă pentru orice σ ∈ R, ε > 0 există δ = δ(ε, σ) astfel ı̂ncât
φ ∈ B(0, δ) implică xt(σ, φ) ∈ B(0, ε) for t ≥ σ.

• uniform stabilă dacă este stabilă şi δ este independent de σ.

• asimptotic stabilă dacă este stabilă şi există b0 = b0(σ) > 0 astfel ı̂ncât
φ ∈ B(0, b0) implică x(σ, φ)(t) −→

t→∞
0

• uniform asimptotic stabilă dacă este uniform stabilă şi există b0 > 0
astfel ı̂ncât pentru orice η > 0, există t0(η) astfel ı̂ncât φ ∈ B(0, b0)
implică xt(σ, φ) ∈ B(0, η) pentru t ≥ σ + t0(η) şi orice σ ∈ R.
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• exponenţial stabilă dacă există B > 0 şi α > 0 astfel ı̂ncât pentru orice
condiţie iniţială φ ∈ C, ‖ φ ‖< v, soluţia satisface inegalitatea;

‖ x(σ, φ)(t) ‖≤ Be−α(t−σ) ‖ φ ‖ .

Dacă y(t) este o soluţie a unei RFDE de forma ẋ(t) = f(t, xt) atunci spunem
că y este stabilă dacă soluţia z = 0 of the equation

ż(t) = f(t, zt + yt)− f(t, yt)

este stabilă. Celelalte concepte se definesc ı̂n mod similar. Reamintim
că, pentru sisteme liniare toate tipurile de stabilitate definite anterior sunt
echivalente [75]. Sistemele tratate ı̂n această teză sunt liniare deci echivalenţa
anterioară poate fi utilizată. Mai precis, ı̂n urma prezentării diferitelor mode-
le care apar ı̂n biologie, comunicaţii ı̂n reţea şi reţele de transport, deducem
necesitatea studiului clasei de sisteme dinamice descrisă de ecuatia caracter-
istică

D(s, T, τ) = P (s)(1 + sT )n + Q(s)e−sτ = 0, (4)

unde P şi Q sunt polinoame ce satisfac următoarele proprietăţi: gradP ≥
gradQ, P (0) + Q(0) 6= 0 şi P, Q nu au factori comuni.

0.7 Abordarea geometrică

Scopul principal al acestei părţi, prezentată ı̂n capitolele 3 şi 4 ale tezei,
este de a obţine regiunile de stabilitate ale sistemelor dinamice din clasa
considerată. Studiul nostru porneşte de la nişte interpretări geometrice ale
ecuaţiilor caracteristice pentru sisteme dinamice cu una sau două ı̂ntârzieri
discrete. După prezentarea câtorva din aceste rezultate ı̂n primele două
secţiuni ale Capitolului 3, dezvoltăm ı̂n ultima secţiune algoritmi ce pot fi
utilizaţi pentru tratarea diferitelor cazuri particulare şi degenerate. Unul din
cazurile particulare de sisteme cu două ı̂ntârzieri discrete se referă la metoda
de control predictiv a lui Smith [121]. De asemenea sunt discutate unele din
cazurile degenerate puse ı̂n evidenţă dar netratate ı̂n [55].

Principala densitate de probabilitate folosită pe parcursul acestei teze este
dată de distribuţia gamma. Alegerea acestei distribuţii nu este ı̂ntâmplătoare,
intrucât comportamentul stocastic al multor modele este descris ı̂n literatură
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folosind densitatea gamma. Remarcăm că unele sisteme particulare simple ,
ce pot fi incluse ı̂n clasa considerată ı̂n această teză, au fost deja studiate [20].
Spre deosebire de [20], unde sunt prezentate doar condiţii suficiente pentru
stabilitatea sistemelor scalare de forma

ẋ(t) = −αx(t)− β

∫ ∞

0

x(t− τ)g(τ)dτ,

metoda dezvoltată ı̂n teză permite obţinerea condiţiilor necesare şi suficiente
pentru stabilitatea sistemelor din clasa mult mai generală descrisă de ecuaţia
caracteristică (4).

În Capitolul 4 punem ı̂n evidenţă o interpretare geometrică a ecuatiei ca-
racteristice ce descrie clasa de sisteme dinamice cu ı̂ntârzieri distribuite con-
siderată. Această interpretare geometrică ne permite să obţinem mulţimea
Ω a frecvenţelor corespunzătoare punctelor de trecere a soluţiilor ecuaţiei
caracteristice din semiplanul drept al planului complex ı̂n cel stâng sau in-
vers.

Propoziţia 1 Oricare ar fi ω > 0, următoarea echivalenţă este satisfăcută:

ω ∈ Ω ⇔ 0 < |P (jω)| ≤ |Q(jω)|.

Mai mult, valorile T, τ corespunzătoare frecvenţei ω pot fi calculate folosind
formulele:

T =
1

ω

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
2/n

− 1

)1/2

,

τ = τm =
1

ω
(∠Q(jω)− ∠P (jω)− n arctan(ωT )

+π + 2mπ),m = 0,±1,±2, . . .

Perechile (T, τ) definite mai sus generează curbele ce separă zonele cu nr
constant de rădăcini instabile (curbe de stabilitate). Metoda care ne permite
să determinăm direcţia ı̂n care trec rădăcinile axa imaginară atunci când tra-
versăm o curbă de stabilitate, se bazează pe teorema funcţiilor implicite.

Folosind notaţiile din Capitolul 4 direcţia de traversare poate fi caracteri-
zată astfel:
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Propoziţia 2 Fie ω ∈ Ω şi (T, τ) perechea corespunzătoare lui ω pe curba
de stabilitate. Presupunem că jω este o soluţie simplă a ecuaţiei (4) şi
D(jω′, T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (T, τ) nu este punct de intersecţie
a două curbe de stabilitate diferite sau a două secţiuni diferite ale aceleiaşi
curbe). Atunci, o pereche de soluţii a ecuaţiei (4) traversează axa imaginară
către semiplanul drept, prin s = ±jω, dacă R2I1 − R1I2 > 0. Traversarea
este către semiplanul stâng dacă inegalitatea este inversată.

Capitolul 4 se ı̂ncheie cu nişte studii de robusteţe a stabilităţii ı̂n raport cu
parametrii şi ı̂n raport cu ı̂ntârzierea. De asemenea, sunt puse ı̂n evidenţă şi
analizate nişte cazuri degenerate. Toate rezultatele şi concluziile sunt ı̂nsoţite
de exemple ilustrative.

0.8 Abordarea algebrică

Această parte este formată din capitolele 5 si 6. Metoda algebrică obţinută
ı̂n Capitolul 5 poate fi văzută ca o abordare complementară a procedurii
prezentate ı̂n Capitolul 4. Folosind o tehnică bazată pe o analiză matricială,
partiţionăm planul complex in benzi verticale unde sistemul fără ”gap” are
un număr constant de rădăcini instabile. Mai precis, utilizând notaţiile din
Capitolul 5 obţinem următorul rezultat:

Propoziţia 3 Fie 0 < λ1 < λ2 < . . . λh, cu h ≤ n + np valorile proprii reale
şi pozitive ale fasciculului matriceal Σ(λ) = (λU +V ). Atunci sitemul descris
de ecuaţia caracteristică (4) nu poate fi stabil pentru T = λi, i = 1, 2, . . . h.
Mai mult, dacă pentru T = T ∗ ∈ (λi, λi+1) sistemul are r rădăcini instabile
(0 ≤ r ≤ n + np), atunci sistemul păstrează r rădăcini instabile pentru orice
valoare T ∈ (λi, λi+1). Acelaşi rezultat rămâne valabil pentru intervalele
(0, λ1) şi (λh,∞).

Apoi, dezvoltăm o metodă pentru a afla numărul de traversări ale axei ima-
ginare când valoarea ”gap”-ului τ creşte. Prin urmare, metoda ne permite
să recuperăm zonele de stabilitate ale sistemului.

Capitolul 6 extinde metoda algebrică, obţinută ı̂n Capitolul 5, la clase
de sisteme mai generale. În prima secţiune adaptăm tehnica pentru ana-
liza unui sistem cu ı̂ntârzieri comensurate (spunem că două ı̂ntârzieri sunt
comensurate dacă raportul lor este un număr raţional) provenit din reţele de
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transport. Apoi, considerăm o clasă de sisteme mult mai generală care in-
clude modelul din prima secţiune. Pentru analiza acestei clase adaptăm atât
metoda Walton-Marshal [159] de reducere a numărului de ı̂ntârzieri comen-
surate cât şi algoritmul prezentat ı̂n Capitolul 5.

Ultima parte a tezei conţine concluzii şi perspective.
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0.7 Abordarea geometrică . . . . . . . . . . . . . . . . . . . . . . xviii
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Chapter 1

Introduction

1.1 Delay models

There are many dynamical processes described by equations including infor-
mation from the past. When the future of a system depends on the past and
present ”states” (in the usual sense), we say that we deal with a time-delay
dynamical system (called also hereditary or with memory, past actions, dead
time, or time-lag). It is well known that the delays are natural components in
many dynamical phenomena in physics [13], population dynamics [79, 89],
epidemiology [140], communication [139, 161], economy [92] and engineer-
ing [153].

For example, in economic systems, some delay appears naturally between
decisions and effects generated by some needed analysis time interval. In
population dynamics, delays describe approximately maturation processes.
In epidemiological and ecological models the time delay appears as a con-
sequence of the simplification of a more complicated model or is introduced
to characterize the result of a bad comprehension of the corresponding evo-
lution. The communication over network is always accompanied by some
discrete delays due to the physical distance between the users, and some dis-
tributed delays due to the algorithm that manages the network. Finally, the
traffic flow dynamics include various discrete and distributed delays caused
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by mechanical processes or by human driver reactions.

The evolutions of all processes presented above lead us to the systems
modelled by delay differential equations with a selective memory (discrete,
point or pointwise delays) or not (distributed delays - all the values inside
a time interval with finite bounds or not). We notice here also the fact
that high-order dynamics can be approximated by delays (in some norm
sense)[60]. A similar remark concerns the approximation of partial differen-
tial equations (PDE) by delay differential equations (DDE)[57, 127].

The effect of delay on the system’s evolution can be very important and
in such cases it can not be neglected. In the problem of communication over
network the omission of the delay leads to congestions and loss of information.
The disregard of delays in the model of anesthesia may cause the dead of
the patient. Generally, excluding the delay from models that a priori are
inherited with some gaps, we may produce damages (bad behaviors) or, in
the most happy situation, obtain wrong results.

1.2 Stability analysis and methodologies

The stability analysis of delay differential equations started in the 40’s and
one of the first approach is represented by the work of Krasovskii, who gener-
alized the second method of Lyapunov [77]. Next, many authors developed
various methods and posed various problems related to stability analysis of
delay differential equation. Regarding the frequency-domain study, Pontrya-
gin [124] obtained some fundamental results and Chebotarev published some
papers (see, for instance, [27]) devoted to the Routh-Hurwitz problems of
quasi-polynomials. Starting with the 90’s appeared many frequency-domain
criteria taking in account computational considerations and robustness. Even
ill-possedness with respect to time delays of stabilized systems was consid-
ered [39, 40]. In control, Smith [145] proposed an appropriate method to
construct a controller for a special class of delay systems, if the time delay
value is perfectly known. Nevertheless, there exists a bandwidth ”sensitiv-
ity” which accompanies the delay in feedback systems as is proved in [45].
Furthermore, there exists control problems with a lack of robustness to small
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delay [9] and other where the increasing of delay may improve the closed-
loop response [138]. Anyway, the literature on time delay systems is vast
and to have a good perspective of this domain we mention here just two
monographs [75, 107] that contain a collection of concepts and methods. In
the last ten years new impulses in research of stability and stabilization of
time delay systems have been given by the work of Dambrine [37], Niculescu
[106] and Michiels [96].

Since the research (and a literature) on the stability of linear delay dif-
ferential equations is extensive there are also a lot of methods to study it.
Without any loss of generality (as it is pointed out in [96]) there are only
two main approaches:

1 The frequency-domain approach. This includes analytical tests that ex-
tend Hurwitz method to delay differential equations, generalizations
of root locus method (D-decomposition and τ -decomposition method),
and stability tests based on the contour integration. At this point, we
would like to mention the eigenvalue based approach. Methods based on
finite spectrum assignment and generalizations of the pole placement
procedure are the main components of this approach.

2 The time-domain approach. Generalizations of Lyapunov’s second method
and methods based on a comparison principle, can be mentioned here.
Although, comparison principles were initially derived in time-domain,
similar ideas can be found in frequency-domain.

The time-domain stabilization approach is based on Krasovskii’s and Razu-
mikhin’s theorems, where practical stability conditions are usually expressed
by the solvability of algebraic Ricatti equations (ARE) or the feasibility of
linear matrix inequalities (LMIs). For linear systems such constructions are
sometimes accompanied by conservatism characterized by a large gap be-
tween sufficient and complete necessary and sufficient conditions.

For a guided tour of the eigenvalue based approach, see for instance
Michiels thesis [96]. In this thesis the author describe new approaches for
stabilization and robust stabilization of linear systems. The problem of sta-
bilizability of nonlinear DDE cascades is also considered.
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1.3 Further remarks and interpretations

The methodologies presented above consider the modelling of time delay
system as functional differential equations. But, into a mathematical frame-
work, such a system may be described in several ways. For example, we can
deal with differential equations on abstract [17] or functional spaces [59], or
over rings of operators [73] or more generally, with operators over infinite-
dimensional spaces [34]. Although these approaches are general and give in-
teresting characterizations of some structural properties (stabilizability and
observability), the corresponding methods are not always easy to apply to
specific (stability) analysis problems.

In this thesis we develop some methods, in frequency-domain, for the
stability analysis of a class of systems with distributed delays. The results
derived here follows the studies presented in some of the author’s papers co-
written with Gu, Niculescu and Michiels (see, for instance, [99, 100, 101, 102]
in the list of references). Our approaches concern a general class of linear
dynamical systems including distributed delays. The stability analysis of this
class of systems is motivated by a lot of models existing in applied sciences
(biology, engineering, etc). Throughout the thesis we illustrate our results
using a biological model introduced by Cushing [35] and improved by Nis-
bet and Gurney [119]. However, in order to emphasize various properties
we use sometimes more complicated models describing traffic flow dynamics
or models encountered in communication over network. We try to exploit
always new and realistic models. The main interest of this work is to give
intuitive and easy to implement methods, that allow to derive the stability
regions of the linear dynamical systems belonging to a general class.

The idea to use some geometric interpretations in stability analysis of
the dynamical systems is not new. In fact, a lot of research in the existing
literature focused on deriving the stability chart of dynamical systems using
D-decomposition (decomposition in the parameter space of the coefficients)
or T -decomposition (decomposition in the time-delay parameter space), but
many of these papers concern only specific first-order systems (see, for in-
stance, [31, 24, 22]). To the best of the author’s knowledge the first work
based on the geometric interpretation for a general class of linear dynamical
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systems (with two discrete delays) is due to Gu et al [55].

The algebraic approach developed in the third part of this thesis shows
that the delay can be used to stabilize some unstable systems. This obser-
vation is very useful in some application (like, for example, the problem of
communication over network) where we can artificially introduce delays in
the system. Furthermore, a recent model of traffic flow dynamic [143] moti-
vates us to extend this method for a class of systems where the coefficients
of the characteristic quasi-polynomial depend on the mean-delay. A stability
switch criteria for a dynamical system with one discrete delay that leads to a
characteristic quasi-polynomial with coefficients depending on delay, can be
found in [19].
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Chapter 2

Preliminaries

In the sequel, we recall in the first section some useful notions, and fundamen-
tal results and concepts. Very briefly, we present the notions of solutions,
stability and some criteria to check the stability in the frequency-domain
case. The second section of this chapter presents various models encountered
in the literature, models that motivate our study. Although the models come
from completely different areas we obtain the same class of mathematical sys-
tems that covers all the examples considered. The last section is dedicated
to describe the content of this thesis.

2.1 Basic concepts

The aim of this section is to introduce the basic concepts and notions needed
in developing our results. Precisely, we shall briefly present the classical
results in the theory of functional differential equations including stability
analysis. The proposed results can be found in more details in [15, 59, 107]
or [54]. In the sequel, we discuss only the retarded case. Classification
of time-delay systems, and the difference between the classes can be found
in [15] (see also [54]).
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2.1.1 Linear differential difference equations

Our notation is standard. R = (−∞,∞) denotes the set of real numbers
and Rn is the set of n-dimensional vector space. It is well known that all
solutions of the scalar differential equation

ẋ(t) = ax(t), a constant (2.1)

are given by c · exp(at), where c is an arbitrary constant. The same result
holds in the case when a is replaced with an n × n matrix A, and x is an
n-vector, of course, with c an n-vector. We remember that, each column

of exp(At) has the form
n∑

j=1

pj(t) exp λjt, where each pj(t) is an n-vector

polynomial in t and each λj is an eigenvalue of the matrix A; that is, each
λj satisfies the characteristic equation

det(λI − A) = 0 (2.2)

The coefficients of the polynomials pj are determined from the generalized
eigenvectors of the eigenvalue λj.

Next, for a nonhomogeneous equation

ẋ(t) = Ax(t) + f(t), x(0) = c (2.3)

where f : R 7→ Rn is a given continuous function, using the variation of
constants method we obtain the solution

x(t) = c · eAt +

∫ t

0

eA(t−θ)f(θ)dθ. (2.4)

Scalar case

Using the technique introduced for equation (2.1) we can study more ”com-
plicated” equations. As briefly presented in the introduction, the dynamics
of many models are given by a retarded differential difference equations or
delay differential equations. To get familiar with some important ideas of
time delay systems, we shall analyze a simple time-delay system given by

ẋ(t) = ax(t) + bx(t− τ) + f(t) (2.5)

where a, b and τ are constants, τ > 0 is the time delay. In order to solve
the equation from the time instant t = 0 we must solve first, the initial-value
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problem. To compute ẋ(0) we clearly need x(0) and x(−τ). In a similar
way, in order to compute ẋ(ξ), ξ ∈ [0, τ) to advance the solution further, we
need x(ξ) and x(ξ − τ). Therefore, a moment of reflection indicates that in
order to have a solution uniquely defined, x(t) must be specified on the entire
interval [−τ, 0]. In fact the following statements hold.

Theorem 1 If φ is a given continuous function on [−τ, 0], then there exists a
unique function x((φ, f)) defined on [−τ,∞) that coincides with φ on [−τ, 0]
and satisfies (2.5) for t ≥ 0. Of course, at t = 0, the derivatives in (2.5)
represents the right-hand derivative.

In fact, once the initial condition x(t) = φ(t), t ∈ [−τ, 0] is given, we can
treat (2.5) as an ordinary differential equation to obtain

x(t) = eAtφ(0) +

∫ t

0

eA(t−θ)[Bx(θ − τ) + f(θ)]dθ. (2.6)

Once x(t) is obtained for t ∈ [0, τ ], we can calculate x(t) for t ∈ [τ, 2τ ]. Such
a process is known as the method of steps [56].
If f is only locally integrable on R, then the theorem still holds. In this case,
by a solution we mean a function that satisfies (2.5) almost everywhere.

Theorem 2 If x(φ, f) is the solution of (2.5) defined by Theorem 1, then
the following assertions are valid:

i) The solution x(φ, f)(t) has a continuous first derivative for all t > 0 and
has a continuous derivative at t = 0 if and only if φ(θ) has a derivative
at θ = 0 with

φ̇(0) = Aφ(0) + Bφ(−τ) + f(0). (2.7)

If f has derivatives of all orders, then x(φ, f) becomes smoother with
increasing values of t.

ii) If B 6= 0, then x(φ, f) can be extended as a solution of equation (2.5)
on [−τ − ε,∞), 0 < ε ≤ τ , and (2.5) is satisfied. Extension further to
the left requires more smoothness of φ and f and additional boundary
conditions similar to (2.7)

Due to the smoothing property (i) of Theorem 2 many results from ordinary
differential equations are valid for retarded equations.
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In the following development we will assume that the function f is expo-
nentially bounded

f(t) ≤ Kect, K > 0, c ∈ R
such that the following unilateral Laplace transform exists

F (s) = L[f(t)].

In order to use the Laplace transform to solve the equation (2.5), we need
some exponential bound of x(φ, f).

Theorem 3 Suppose x(φ, f) is the solution of (2.5) defined by Theorem 1.
Then there are positive constants a and b such that

|x(φ, f)(t)| ≤ aebt

(
‖ φ ‖ +

∫ t

0

|f(θ)|dθ
)

, t ≥ 0 (2.8)

where ‖ φ ‖= sup
−τ≤θ≤0

|φ(θ)|.

Taking Laplace transform of (2.5) under initial condition x(t) = φ(t), t ∈
[−τ, 0], we obtain

X(s) =
1

∆(s)

[
φ(0) + B

∫ 0

−τ

e−s(θ+τ)φ(θ)dθ + F (s)

]
(2.9)

where
∆(s) = s− A−Be−sτ (2.10)

is the characteristic quasi-polynomial of the system.

Definition 1 The solution X(t) of ẋ(t) = Ax(t) + Bx(t − τ) with initial

condition X(t) =

{
0, t < 0
1 t = 0

is called the fundamental solution of (2.5).

Proposition 1 The fundamental solution of (2.5) is given by

X(t) = L−1[1/∆(s)] (2.11)

Using the convolution theorem, the solution of the nonhomogeneous equation
(2.5) can be expressed in terms of fundamental solution as follows:

x(φ, f)(t) = X(t)φ(0)+B

∫ 0

−τ

X(t−τ−θ)φ(θ)dθ+

∫ t

0

X(t−θ)f(θ)dθ. (2.12)
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The equation (2.12) is known as Cauchy formula or variation-of-constant
formula (see, for instance, Hale’s monograph [59]). This formula implies
the nontrivial result that the exponential behavior of the solutions of the
(2.5) is determined by the characteristic equation as stated by the following
result [54].

Theorem 4 For any α ∈ R there are only a finite number of roots of the
characteristic equation with real parts greater than α. Let α0 = max{Re(s) |
∆(s) = 0} and f ≡ 0. Then, for any α > α0, there is a constant K =
K(α) > 1 such that

|x(φ)(t)| ≤ Keαt ‖ φ ‖, t ≥ 0.

In particular, if α0 < 0, then one can choose α0 < α < 0 to obtain the fact
that all solutions approach zero exponentially as t →∞.

General case

Now, we start to discuss the existence and uniqueness of solutions for general
differential delay equations and then continue with some remarks regarding
the linear autonomous equations.

Throughout this work we deal with equations of the general form

ẋ(t) = f(x(t), x(t− τ)), t ≥ 0 (2.13)

where f : Rn × Rn 7→ Rn is a Lipschitz continuous vector function and the
time delay τ > 0 is a fixed real number.

Definition 2 The solution of (2.13) is defined as a vector-valued functions
x : [−τ,∞) 7→ Rn satisfying (2.13) for positive time.

In order to have a unique solution for (2.13) we need to solve the initial value
problem. Similar to the scalar case, we easily get that the minimal amount
of information of initial data is given by a continuous function on the interval
[−τ, 0].

In fact, the method of steps allows defining globally a unique solution
x( · ; φ) if x(t) = φ(t), ∀t ∈ [−τ, 0] where φ is a continuous function. Fur-
thermore, we can deduce that the solutions of (2.13) are defined only on
[−τ,∞). Backward continuation is possible with additional smoothness of
the initial function. However, the backward continuation is not necessarily
unique [156].
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Since our further developments concern mainly linear differential delays
equations, we shall linearize the general form and present some analysis of
the linear systems.

Definition 3 A steady state of (2.13) is a solution x(t) = x̄, where x̄ is a
solution of the algebraic equation f(x̄, x̄) = 0.

The behavior of solutions of (2.13) near a steady state x̄, is approximated by
the behavior of solutions of the linearization around x̄. Linearizing around a
steady state x̄ one obtains a linear delay equation

ẋ(t) = Ax(t) + Bx(t− τ), t ≥ 0 (2.14)

with A =
∂f

∂x1

f(x̄, x̄) and B =
∂f

∂x2

f(x̄, x̄).

Using again Laplace transform for (2.14) with initial data x(t) = φ(t), t ∈
[−τ, 0] we obtain

∆(s)L(x) = φ(0) + B

∫ τ

0

e−stφ(t− τ)dt (2.15)

where ∆(s) denotes the characteristic matrix of (2.14) and is given by

∆(s) = sI − A−Be−sτ . (2.16)

Following the same algorithm as in the scalar case, we want to obtain x using
the inverse Laplace transform, the Cauchy theorem, and a residue calculus.
The characteristic equation associated with (2.14) is given by

det ∆(s) = det[sI − A−Be−sτ ] = 0. (2.17)

Since the characteristic equation is transcendental, it has infinitely many
zeros. The basic results concerning the behavior of the roots of (2.14) can
be resumed as follows.

Lemma 1 The roots of the transcendental equation (2.17) have the following
properties:

1) There exists a real γ0 such that the right half plane {s ∈ C | Re(s) > γ0}
does not include any roots of (2.17).

2) For any real numbers γ− < γ+, the number of roots of (2.17) in a given
strip {s ∈ C | γ− < Re(s) < γ+} is finite.
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3) The roots of (2.17) in the left half plane necessarily satisfy

|Im(s)| ≤ Ce−Re(s), (2.18)

where C is a constant determined by A and B.

The asymptotic behavior of the solutions of (2.14) as t tends to infinity is
completely ”controlled” by the behaviors of the roots of the characteristic
equation (2.17).

Theorem 5 Consider x a solution of (2.14) corresponding to an initial func-
tion φ. For any γ ∈ R such that (2.17) has no roots on the line Re(s) = γ,
we have the following asymptotic expansion of the solution

x(t) =
m∑

i=1

pi(t)e
λit + o(eγt), for t →∞ (2.19)

where λ1, . . . λm are the finitely many roots of (2.17) with real part exceeding
γ and where p1(t), . . . , pm(t) are polynomials in t.

Proof. We give here just some ideas, more details can be found in [41].
The proof is based on the representation of the solution x using Laplace
transform. Using Lemma 1 and (2.15) we get

x(t) =
1

2πj

∫ γ0+∞

γ0−∞
est∆(s)−1[φ(0) + B

∫ τ

0

e−stφ(t− τ)dt]ds. (2.20)

Next idea is to shift the line of integration to the left, while keeping track of
the residues corresponding to the singularities of ∆(s)−1 that we pass.

Corollary 1 All solutions of (2.14) converge to zero exponentially as t →∞
if and only if (2.17) has no solutions in the right half plane {s | Re(s) ≥ 0}.

2.1.2 Functional differential equations

The class of functional differential equations generalizes the differential dif-
ference equations discussed in the previous section. The basic theory of ex-
istence and uniqueness of the solutions will be briefly presented in this para-
graph. The fundamental concepts regarding stability of time-delay systems,
are also presented. The standard texts on delay differential and functional
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differential equations are those by Bellman and Cooke [15], by El’sgol’ts and
Norkin [43] and by Hale [59]. Our results (developed in the next chapters)
concern the functional differential equations of retarded type. Therefore,
we present only the concepts related to this type of functional differential
equations.

Let C([a, b],Rn) be the Banach space of continuous functions mapping the
interval [a, b] into Rn with the topology of uniform convergence. If [a, b] =
[−τ, 0] the corresponding notation is simplified to C = C([−τ, 0],Rn) and
the norm of an element φ ∈ C will be denoted by ‖ φ ‖= sup

−τ≤θ≤0
|φ(θ)|. For

σ ∈ R, A > 0 and any continuous functions x ∈ C([−σ − τ, σ + A],Rn), and
t ∈ [σ, σ + A] we define a continuous function xt ∈ C by xt(θ) = x(t + θ).

Definition 4 For any f : R× C 7→ Rn, we consider the following notions:

• The general form of a functional differential equation of retarded (RFDE)
type is

ẋ(t) = f(t, xt) (2.21)

where ẋ denotes the right-hand derivative of x.

• A function x is said to be a solution of (2.21) on [σ− τ, σ + A] if there
exists σ ∈ R and A > 0 such that x ∈ C([−σ − τ, σ + A],Rn), (t, xt) ∈
R× C and x(t) satisfies (2.21) for t ∈ [σ, σ + A].

• For a given σ ∈ R, φ ∈ C we say x(σ, φ, f) is a solution of (2.21)
with initial value φ at σ or simply a solution through (σ, φ) if there ex-
ists an A > 0 such that x(σ, φ, f) is a solution of (2.21) on [σ−τ, σ+A]
and xσ(σ, φ, f) = φ.

We note that equation (2.21) is a very general type of equation. To be more
explicit we give some classes of equations that can be expressed by (2.21):

a) Ordinary differential equations (τ = 0)

ẋ(t) = f(x(t));

b) Differential difference equations

ẋ(t) = f(t, x(t), x(t− τ1(t)), . . . , x(t− τp(t)));

with 0 ≤ τk(t) ≤ τ, k = 1, 2, . . . , p
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c) Integro-differential equations

ẋ(t) =

∫ 0

−τ

f(t, θ, x(t + θ))dθ; .

The existence and uniqueness of the solutions of RFDEs are given by the
following Theorem.

Theorem 6 Suppose Ω is an open set in R× C, f : Ω 7→ Rn is continuous,
and f(t, φ) is Lipschitzian in φ in each compact set in Ω. If (σ, φ) ∈ Ω, then
there exists a unique solution of (2.21) through (σ, φ).

We note that the Lipschitzian condition is necessary only for uniqueness, and
without this condition the existence is guaranteed.

In the sequel, we give the definitions of process, dynamical system and
stability.

Definition 5 Suppose X is a Banach space, R+ = [0,∞), u : R×X×R+ 7→
X is a given mapping and define U(σ, t) : X 7→ X for σ ∈ R, t ∈ R+ by
U(σ, t)x = u(σ, x, t). A process on X is a mapping u : R × X × R+ 7→ X
satisfying the following properties:

i) u is continuous

ii) U(σ, t) = I, the identity

iii) U(σ + s, t)U(σ, s) = U(σ, s + t)

A process u is said to be an ω-periodic process if there exists an ω > 0
such that U(σ + ω, t) = U(σ, t) for all σ ∈ R, t ∈ R+. A process is said
to be autonomous process or a (continuous) dynamical system if U(σ, t) is
independent of σ, that is, the family of transformations T (t) = U(0, t), t ≥ 0,
is a C0-semigroup:

i) T (t)x is continuous for (t, x ∈ R+ ×X)

ii) U(σ, t) = I, the identity

iii) T (t + τ) = T (t)T (τ), t, τ ∈ R+

If S : X 7→ X is a continuous map, the family {Sk, k ≥ 0} of iterates of S is
called a discrete dynamical system. In a process, u(σ, x, t) can be considered
as the state of a system at time σ + t if initially the state at time σ was x.
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Definition 6 For a given process u on X and a given σ ∈ R, we say that
a set M ⊂ R ×X is stable at σ if, for any ε > 0, there exists a δ(ε, σ) > 0
such that 1 (σ, x) ∈ B(M, δ(ε, σ)) implies that (σ + t, U(σ, t)x) ∈ B(M, ε) for
t ≥ 0. The set M is said stable if it is stable at σ for all σ ∈ R. The set M
is unstable if it is not stable. The set M is uniformly stable if it is stable and
the number δ in the definition of stability is independent of σ. The set M
is said to be asymptotically stable at σ if it is stable at σ and there exists an
ε0(σ) such that (σ + t, U(σ, t)) → M as t →∞ for (σ, x) ∈ B(M, ε0(σ)). The
set M is said to be uniformly asymptotically stable if it is uniformly stable
and there exists an ε0 > 0 such that for any η > 0, there exists a t0(η, ε0)
having the property that (σ + t, U(σ, t)) ∈ B(M, η) for t ≥ t0(η, ε0 and all x
such that (σ, x) ∈ B(M, ε0).

Any RFDE generates a process in the following way. Consider f : R×C 7→ Rn

completely continuous (f is continuous and for every bounded set B in R×C,
the closure of f(B) is compact) and x(σ, φ) the solution of (2.21) through
(σ, φ). If x is uniquely defined for t ≥ σ − τ , then x(σ, φ)(t) is continuous
in σ, φ, t (see [59]) for σ ∈ R, φ ∈ C and t ≥ σ. Therefore, we get a process
on C defining u(x, φ, τ) = xσ+τ (σ, φ). This process will be called the process
generated by the RFDE(f). The definition of stability of the solution x = 0
for the process generated by the RFDE(f) can be restated as follows.

Definition 7 Suppose f(t, 0) = 0 for all t ∈ R. The solution x = 0 of (2.21)
is said to be

• stable if for any σ ∈ R, ε > 0 there exists a δ = δ(ε, σ) such that
φ ∈ B(0, δ) implies xt(σ, φ) ∈ B(0, ε) for t ≥ σ.

• uniformly stable if it is stable and δ is independent of σ

• asymptotically stable if it is stable and there exists a b0 = b0(σ) > 0
such that φ ∈ B(0, b0) implies x(σ, φ)(t) −→

t→∞
0

• uniformly asymptotically stable if it is uniformly stable and there exists
a b0 > 0 such that for every η > 0, there exists t0(η)such that φ ∈
B(0, b0) implies xt(σ, φ) ∈ B(0, η) for t ≥ σ + t0(η) for every σ ∈ R.

1For any set H ⊆ X and ε > 0 we denote B(H, ε) = {x ∈ X | dist(H, x) < ε}
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• exponentially stable if there exists a B > 0 and an α > 0 such that
for all initial conditions φ ∈ C, ‖ φ ‖< v, the solution satisfies the
inequality;

‖ x(σ, φ)(t) ‖≤ Be−α(t−σ) ‖ φ ‖ .

If y(t) is any solution of (2.21) then y is said to be stable if the solution z = 0
of the equation

ż(t) = f(t, zt + yt)− f(t, yt)

is stable. The other concepts are defined in a similar manner. We recall that,
if the system is linear the uniform asymptotic stability property is equivalent
to the asymptotic stability or to the exponential stability property [75]. The
systems treated in this thesis are linear so the previous equivalence holds.

2.1.3 Some frequency-domain stability tests

The purpose of this paragraph is to review some classical tests and meth-
ods regarding the stability of some particular classes of time delay systems.
Among the RFDE, of particular interest is the case that f is linear and con-
tinuous with respect to xt. This type of systems are called linear systems.
The general form of the linear systems is

ẋ(t) = L(t)xt + h(t), t ≥ σ
xσ = φ

(2.22)

where h ∈ Lloc
1 ([σ,∞),Rn), the space of locally integrable functions, and

L(t) : C 7→ Rn is a linear operator for a given time t. Therefore, there
exists a matrix function F : R × [−τ, 0] 7→ Rn×n of bounded variation and
F (t, 0) = 0 such that

L(t)φ =

∫ 0

−τ

dθ[F (t, θ)]φ(θ).

Therefore, we can always write a linear RFDE as

ẋ(t) =

∫ 0

−τ

dθ[F (t, θ)]x(t + θ) + h(t) (2.23)

If the function F in (2.23) is independent of time t, then the system is linear
time-invariant (LTI) and his general form it can be written as

ẋ(t) =

∫ 0

−τ

d[F (θ)]x(t + θ) + h(t) (2.24)
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The characteristic equation of the previous system is given by

det |∆(s)| = 0, ∆(s) = sI −
∫ 0

−τ

esθdF (θ) (2.25)

The basis of frequency-domain stability analysis consists in the following
important result.

Theorem 7 For any real scalar γ, the number of the solutions of the charac-
teristic equation (2.25) with real parts greater than γ is finite. In particular,
the multiplicity of any solution is finite. Then α0 = max{Re(s) | det |∆(s)| =
0} is well define. For any α > α0, there exists a K > 0 such that the solution
of (2.24) with h(t) = 0 and x0 = φ satisfies

‖ x(t) ‖≤ Keαt ‖ φ ‖ (2.26)

The number α0 is known as the stability exponent for the system. The The-
orem above says that the system is stable if and only if its stability exponent
is strictly negative. Further remarks and comments on the distribution of
zeros of the characteristic equation can be found in [15, 74].
In the sequel we give some methods for determining when the roots of a char-
acteristic equation are in the left half-plane. The classification below follows
the one proposed in [113] and [107]. Some criteria for the location of the
zeros of characteristic function, with detailed proofs, are given in [51].

Analytical tests

In fact, we present here some criteria that generalize the Hurwitz method
to delay systems.

Pontryagin criterion The most general results are due to Pontrya-
gin [124, 125] for the zeros of characteristic equations of the form P (z, ez) = 0
where P (x, y) is a polynomial in x, y. To obtain the results, he extended the
methods used in proving the Routh-Hurwitz criterion for the zeros of a poly-
nomial to be in the left half-plane.

Remark 1 For a linear delay system with a single or with commensurable
delays, the characteristic function associated to the characteristic equation
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in the quasi-polynomial (or exponential polynomial as suggested by Pinney
in [123]) can be written as:

∆(z) = P (z, ez) =

p∑
i=0

q∑

k=0

aikz
iekz (2.27)

Suppose that P (z, ez) given in (2.27) has principal term (i.e. apq 6= 0) and
suppose ∆(iω) is separated in to its real and imaginary parts, ∆(iω) =
F (ω) + jG(ω). Then, the main idea behind the Pontryagin criterion can be
summarized as follows:

1. If all the roots of P are in C− (the left half-plane), then the roots of
F (ω) and G(ω) are real, simple, alternate, and

F ′(ω)G(ω)− F (ω)G′(ω) > 0, ∀ω ∈ R (2.28)

2. Conversely, all the roots of P are in C− if one of the next conditions is
satisfied:

a) All the roots of F (ω) and G(ω) are real, simple, alternate, and the
inequality (2.28) is satisfied for at least one ω ∈ R.

b) All the roots of F (ω) (or G(ω)) are real, simple and for each root
the inequality (2.28) holds.

Some comments on the method applied to scalar system are proposed in [75].
The second-order systems with a single delay are completely treated in [21,
64]. application of this technique for constructing PI controllers for stabiliz-
ing first-order plants with input delay can be found in [141].

Other criteria The Chebotarev criterion can be seen as the ”direct”
generalization of the Routh-Hurwitz criterion to the quasi-polynomials in
commensurate delay case (for the formulation see, for instance Chebotarev
and Mĕiman [27] or Răsvan [126]). In order to use this result, we must
compute a large number of determinants. Therefore, the application of such
a criterion is not very practical.

The Yesupovisch-Svirskii criterion (see [147] for the formulation) works
perfectly for single pointwise delay system. The idea of this method is to
transform the stability analysis to test the sign of some functions with respect
to the real axis. Cooke and van den Driessche [32] (Mathematics) or Walton
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and Marshall [159] (Control) used the similar arguments for characterizing
the behavior of the roots of the characteristic equation

f(s) + g(s)e−sτ = 0.

We note that [159] consider f, g polynomials and [32] focusses on analytic
functions. In [79], Kuang shows that under appropriate conditions the method
can be also applied to neutral systems.

Root locus methods

Various methods to determine the values of the parameters for which
the characteristic equation has at least one root on the imaginary axis, are
presented below. Since the roots of the corresponding characteristic equa-
tion continuously depend on the system’s parameters, we can see the cases
with roots on imaginary axis as the situations for which the system behavior
changes in the sense of increasing or decreasing the number of roots in open
right half-plane.

D-decomposition method Neimark [105] developed a method to de-
compose the parameter space in region with a constant number of unstable
roots. Each region is bounded by a hypersurface which corresponds to the
case when at least one root lies on the imaginary axis. It is clear that the
stability of the system depends on its parameters, i. e. the entries F (t), h(t)
and the delays parameters τi. Thus, each hypersurface can be seen as a
function of τi.

In the single-delay case this method allows detecting the particular ”delay-
independent/delay-dependent” regions. The scalar case can be easily ana-
lyzed [107], but for more general systems the method may become more
difficult to be applied.

τ-decomposition method The main idea here, is to transform the
characteristic quasi-polynomial into the following form:

eτs = D0(s) =
P (s)

Q(s)
,

where P and Q are polynomials. Obviously, this method is applied only for a
system with a single delay. The results are given analyzing the intersection of
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the contour D0(jω) with the unit circle in the complex plane. In particular,
if there is no intersection with the unit circle, it is easy to conclude that the
stability for the case τ = 0 is preserved for all positive values of delay, that
is a delay-independent type result. Further comments are presented in [107].
Some remarks on the numerical algorithms can be found in [63]. Note also
some similarities between the methods in [32, 159] and the method above.

Argument principle methods We briefly discuss here the exten-
sion of some classical methods used in control, as for example Nyquist or
Michailov-Leonhard criteria. Let us consider a linear system with a single
delay and with a corresponding characteristic equation given by:

F (s) = sn +
n∑

k=1

fk(s)s
k, (2.29)

where fk are bounded and F analytical in Re(s) ≥ −α, for some α > 0.
Assume that F has no imaginary roots, that is, it can be written as F (jω) =
u(ω) + jv(ω), with u different from 0. In this conditions Michailov criterion
says that the system is (uniformly) asymptotically stable if and only if the

variation of arg[F (jω)] is
nπ

2
when ω varies from 0 to ∞. This criterion is

difficult to verify in practice. However, if one define

I(ω) =
d

dω
arg[F (jω)]

the Michailov condition can be expressed as
∫ ∞

0

I(ω) =
π

2
. (2.30)

This criterion is known as integral criterion of stability [75]. Note that the
criterion holds for more general distributed delay systems and some simple
example in this direction can be found in [74].

2.2 Motivating examples

In order to motivate our study, we discuss some examples encountered in
biology, network communication models and traffic flow dynamics. In fact
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we emphasize several aspects concerning the origin and effects of delays in
the models that arise in the specified areas. Also we make some remarks
regarding the degree of accuracy of the considered models with respect to
the reality.

2.2.1 Biology models

Systems with delays appear naturally in biology as well as in several branches
of engineering, and economy, to cite only a few. A nice presentation of some
biological models has been proposed by MacDonald [89]. The discussion in
this paragraph will include a lot of remarks pointed out in that book. A
more recent and appealing presentation can be found in [11].

In most applications in life sciences, a delay is introduced when there are
some hidden variables and processes which are not well understood but are
known to include a time-lag [31]. The mathematical properties of the delay
differential equations justify such methodologies. In some cases, (e.g., sim-
plistic ecological models), it seems that delays have been introduced rather
ad hoc and sufficiently justified, as it was remarked in [36]. In biological ex-
amples, discrete delays can occur, but more often, the delays are distributed
(the present state of the system is changing at time t in a stochastic manner
given by an appropriate probability density). Each model is characterized
by several properties of the system and always we must choose carefully the
type of the model according to the behavior of the system. More precisely,
we have the following possibilities:

• a model can be either deterministic or stochastic

• a model can operate in continuous or discrete time

• the variables of the model can be continuous or discrete

• a model can be homogeneous or nonhomogeneous

If the present ”state” of the system allows predicting his future behavior,
then we have a deterministic model. When the present state allows us only
to assign probabilities to various outcomes, the model is of stochastic type.
Obviously, populations are discrete quantities, but in the case of large enough
number of individuals we can treat they like a continuous quantity. Some
populations have a determined active period (for example, they reproduce
only a short time each year), and then, the appropriate model must consider
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discrete one-year steps. The opposite situation consists in populations with
overlapping generations and no distinct breeding season, and in this case it
seems that a continuous time treatment works better. Finally, in the exper-
imental study, for example, we may employ a stirred vessel, or an unstirred
vessel respectively. In the first case, we have the same properties in each
point of the vessel and the model is considered homogeneous. In the second
case, the properties in a particular point are determined by its position in the
vessel. Therefore, the appropriate variable is c(x, y, z, t), the concentration
at a particular point in the vessel and the detailed deterministic model is
expressed using partial differential equations. The easiest way to describe
the model is to suppose that the vessel is stratified. The structured model
requires boundary conditions to be specified as well as initial values, to give
unambiguous predictions. In practice, the model is often simplified and there
exists two methods to do that. The first method assume that, for example,
a variable f(x, y, t) is replaced by an average over space, F (t), thus we get
a homogeneous model. The second method considers the system reduced at
one point or a small set of points. In this case the coordinates of these points
become the dependent variables xi(t).
Now, let discuss about a very important choice for a model, the choice related
to the deterministic or stochastic behavior. More precisely, the solutions at
any time t, for a model that is set up in terms of coupled first order ordinary
differential-equations

dxk(t)

dt
= fk (x1(t), . . . , xn(t)) , (2.31)

is given by the initial (current) values xk(0). However, in order to predict
the future behavior of the system, frequently we need to use some infor-
mation from the past history of at least one variable xk. When there is
a discrete time laps in the action of xk on some other variable, we say to
have a discrete delay. It is possible also a cumulative effect of all the ear-
lier values of xk, and in this case we speak of a distributed delay. In the
first case replacing f(. . . , xk(t), . . .) by f(. . . , xk(t−τ) . . .) we obtain a delay-
differential equations (or a differential-difference equation). In the second
case we must replace f(. . . , xk(t), . . .) by an integral over earlier values of xk,
with a suitable weighting factor. Obviously, in the second case we obtain an
integro-differential equation. The weighting function, which is often called
delay kernel, or delay distribution, may or may not incorporate a cut-off at
a specific earlier time. In the previous section we saw that each of previous
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types of equations can be included in the more general class of functional dif-
ferential equation. Most of the biological models proposed in the literature
belong to the class of retarded equations [15, 89, 52].

Systematic analysis of mathematical models in medicine and biology be-
gan with the epidemiological studies of Ross [131] in the early years of the
20th century. The work was continued in the 20s and 30s, and a great deal
work in population ecology is due to Lotka, Voltera and Kostitzin. Much
of this literature has been assembled by Scudo and Ziegler [135]. The need
for delays was emphasized first by Lotka [140], who discussed the discrete
delays due to the incubation times in the Ross epidemic model, and then
by Voltera [158], who pointed out the implications of cumulative effects of
the presence of a population on the future prospects for growth both of that
population and the population of a predator on it.

In a review of theories of business cycles Tinbergen [152] observed the
distinction between the two kind of delay. In a particular model of industrial
production, for example, the deliveries of a new product at time t, are pro-
portional to investment orders placed earlier time. These investment orders
are placed in order to set up a production run of the new product. So the
model employs a discrete delay. The second kind of delay is a cumulative
dependence on the value of a time-dependent variable. For example, the
total investment tied up in the new product builds up from the time the
investment orders are placed through to the time of delivery and beyond.
Timbergen [152] used the term production profile for the weighting factor in
the cumulative effect, which is analogous to the modern term of delay kernel.

Discrete Delays: from modelling to simulation/validation

The classic early works that first incorporated feedback loops and time de-
lays into biological models were written with few experimental data at hand
and so made the simplest or most convenient assumptions about the form
of the delay distributions. Fixed lags served to represent parasite matura-
tion times in the 1923 malaria epidemic model of Sharpe and Lotka [140]
and also the population self-regulation process in the 1948 logistic model of
Hutchinson [65]. Some population model presented by Gopalsamy [50] has
also two discrete delays that enter in the characteristic equation as their sum.
A model with two discrete delays can be also found in [88]. In [85], is ana-
lyzed a blood cell population model with two delays, but only one enters the
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characteristic equation, although the other affects the relative phase of the
oscillations of the two populations. Mackey and Glass [91] also proposed a
model for chronic granulocytic leukemia and cyclical neutropenia. The time
lag in this model appears explicitly between initiation of cellular production
in the bone marrow and release of mature cells into the blood, and the ob-
served oscillations are linked to increased generation time. Another blood
cell population model with the same two delays in self-interaction and inter-
species interaction terms, is proposed by MacDonald [87]. The role of time
lags in certain dynamical respiratory and hematopoietic diseases was exam-
ined by Mackey and Glass [49]. For example, the irregular breathing pattern
in adults with Cheyne-Stokes respiration appears to originate in disturbances
of the feedback loop between ventilation and arterial carbon dioxide concen-
tration. Ventilation is a sigmoidal function of the concentration, but there
is a time lag between oxygenation of blood in the lungs and stimulation of
chemoreceptors in the brainstem, and so the dynamical model for the process
written by Mackey and Glass reduces to a delay system. This agrees with
clinical observations that, in the case of patients with Cheyne-Stokes res-
piration, the lags in stimulation of the chemoreceptors are often increased.
However, the experimental difficulties in measuring the respiratory control
parameters make difficult detailed numerical comparison of model predic-
tions with experiment.

Distributed Delays: from modelling to simulation/validation

During the 70s, however, authors such as May [93], MacDonald [86] and
Cushing [35] pointed out that in applications to biology the use of distrib-
uted delays often leads to models that are more tractable and also more
realistic than those with discrete delays. Since then, the study of diverse
kinds of distributed delays, typically represented by general probability mea-
sures on the time axis, has played an important role in the development of
theory. In a variety of biological applications, while a delay may have a pre-
cise value for an individual member of a population, whether of animals or
of cells, it must have a statistical distribution of values over the whole pop-
ulation. The preponderance of distributed delays in population models thus
reflects the inclusion of a statistical feature in otherwise deterministic models.
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Insect maturation times
Data on insects maturation times can be incorporated in terms of a delay
kernel, which can be experimentally determined with sufficient precision to
allow a fit with a discrete gap τ and a displaced distribution

h(u) =

{
0, if 0 < u < τ

f(u− τ), if u > τ
(2.32)

where f is a given function (in general the gamma distribution with precised
parameters). The distributions are of the time from lying an egg to the
appearance of the final adult form. Several examples of distributed delays in
insect population data have been studied using the above model. The species
are the blowfly Phoenicia sericata [8], the dragonflies Epitheca cynosura and
Epitheca semiaquea [16] and the damselfly Pyrrhosoma nymphula [81]. For
any individual insect, the time in question has an exact value. Over the whole
population there is a statistical distribution of these times, which the model
interprets in terms of distributed delay. So, in this sense, the deterministic
model incorporates a statistical aspect of the data.

In order to incorporate this kind of maturation data in a model one
needs to start with an age structured mode, which is necessarily formulated
in terms of partial differential equation, and to make sure that this model can
reasonably be replaced by one formulated in terms of functional differential
equation.

Maturation of blood cells
Certain cell populations, such as that of blood cells in the marrow, can be
approximately treated as homogeneous with respect to the space. It is well
known that different types of cells interact by a variety of agents. Some
of these agents can be defined only by their effects. However, a dynamical
model of these populations must either include age structure or allows a delay
for the maturation time of the cells. Fortunately, the average maturation
times for red cells (erythrocytes) and white cells (granulocytes) are fairly
well established at seven days and ten days respectively. So we can assume
that each individual cell has a fairly sharply defined maturation time. Since
the spread in the population is wide and not well specified in form, often it
is used the gamma distribution.

Several models of the blood diseases have been studied in the last 30 years.
Among these models, cyclical neutropenia and myeloid leukemia received a
lot of attention. In the cyclical neutropenia case, the granulocyte populations
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falls every three weeks to a very low level. In most of the well documented
models, notably [120], this trough in granulocyte numbers is accompanied by
a sharp peak in the numbers of another type of white cell, the monocytes.
Another models on the same topic were formulated in [85] and [104].

In the myeloid leukemia case, the oscillation period for granulocyte popu-
lation is less well defined but is around two months. Some models regarding
this disease can be found in [25, 87]. Some remarks on the stability crossing
curves of some delay models related to immune dynamics in leukemia are
discussed in [111]. All the models mentioned here share the following fea-
tures. The delay is introduced so that a model can be formulated in terms of
only two populations (mature granulocytes and mature monocytes), instead
of the populations of a number of immature stages in the life history of these
cells. The knowledge about the immature stages are insufficient to justify a
more elaborate model at present. The necessity of distributed delay is given
by the fact that in our opinion the maturation times of individual cells have
an appreciable spread (see also [89]).

Gamma Distribution
Cushing [35] studied the population dynamics using a model with gamma-
distributed delay. The linearization of this model is written as:

ẋ(t) = −αx(t) + β

∫ t

−∞
g(t− θ)x(θ)dθ, (2.33)

where the integration kernel of the distributed delay is the gamma distribu-
tion

g(ξ) =
an+1

n!
ξne−aξ. (2.34)

A Laplace transform of (2.33), with g(ξ) expression (2.34) yields a parameter-
dependent polynomial characteristic equation

D(s, τ1, n) := (s + α)

(
1 + s

τ1

n + 1

)n+1

− β = 0, (2.35)

where τ1 =
n + 1

a
is the mean delay . Cooke and Grossman [31] discussed the

change of stability of (2.35) when one of the parameters, mean delay value
τ1 or the exponent n, varies while the other is fixed.

33



Nisbet, and Gurney [119] modified the gamma distribution g(ξ) expressed
in (2.34) to the gamma distribution with a gap

ĝ(ξ) =

{
0, ξ < τ2

an+1

n!
(ξ − τ2)

ne−a(ξ−τ2), ξ ≥ τ2,
(2.36)

to more accurately reflect the reality. See [22, 89] for additional discus-
sions. In this case, a simple computation shows that the mean delay is

τ1 = τ2 +
n + 1

a
. The characteristic equation becomes a parameter-dependent

quasipolynomial equation [22, 24]

D̂(s, τ1, τ2, n) := (s + α)

(
1 + s

τ1

n + 1

)n+1

− βe−sτ2 = 0. (2.37)

It is interesting to note that some of the earlier results in [31, 22] on stability
analysis contain some errors as pointed out by Boese [24].

2.2.2 Network congestion

The problem of controlling objects over communication network produced
a new class of dynamical system with specific characteristics: presence of
propagation-delays, traffic congestion, lose of information and related con-
sequences. These constraints are very important in the control of rapid
processes, and the network characteristics can not be neglected.

The communication channel between the controller and the system to be
controlled is often modeled as a transmission line, that is, a physic element
inducing some delays that corresponds to the properties of the channel. This
description becomes more complex when the network includes multiple users.
In this case, the delays also depend on the traffic management. The commu-
nication channel used to control a considered system is strongly affected by
the presence of other information flows in the network.
A network can be characterized by two very important elements:

• local management of the traffic flow (controller/receptor); we take in
consideration the process of transformation of the physical activities in
information which can be transmitted over the network (and viceversa).

• global management of the traffic flow, that is, the algorithm that man-
age the interaction between different information flow such that the
collisions or losses of information (for example) are not possible.
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Since the traffic flow depends on the algorithm and its implementation, the
dimensions, the frequencies and the priorities of the packages can be modified
accordingly to the global management of the network. For example, if the
network capacity is exceeded, the specific algorithms may send a message to
inform the users that the network is saturated. In this case, the users will
adapt their transmission to the present situation.

In the sequel, we discuss some of the existing models existing in the lit-
erature. One of the way to mathematically represent the communication of
binaries data is based on the model of type Shannon-Weaver [139], with an
information corruption of ε probability. More precisely, a ”0” sent with 1− ε
probability means that ”0” will be received and a ”0” sent with ε probability
means that ”1” will be received. Another approach, used in automatic en-
vironment, is based on the idea that the network is a source of delay in the
communication. In this case one supposes the transmission is faithful and
the problem is to give the best model of delay in the corresponding schemes.
Our work focusses on the last approach, thus we consider only some models
where the network induces some delay in communication. Four elementary
models of communication network, where the lag is an essential element, are
presented.

Model 1: Ideal transmission line
Here, one considers that the transmission line is uniform, has no losses of
data, and the frequency parameters are independent (see for instance [95]).
The model can be expressed using the telegraph equation:

C
∂v(t, x)

∂t
= −∂i(t, x)

∂x
∂v(t, x)

∂x
= −L

∂i(t, x)

∂t

where v is the tension, i is the flow, x is the position, d is the total length of
the line and, L and C are the inductance and the characteristic capacity per
length units of the transmission line. Under this circumstances we have a
constant delay τ = d

√
L/C. A complete analysis of this model can be found

in [151].

Model 2: Non-homogeneous transmission line
The external perturbations of the data flow is the main inconvenient of the
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ideal transmission line. Also, the compression or digital coding are ignored
when the network is represented as an ideal transmission line. More complex
models have been developed but they are seldom used since their complex-
ity means also a difficult implementation of the control law. Such a model,
named non-homogeneous transmission line, can be found in [160]. There, it
is pointed out the effect of resonance induced by the variation of some of the
parameters.

Model 3: Systems with variable delay
Suppose that the network induces a delay which is time-varying. The delay
can be characterized, in this case, either by a distribution of probability or
by a Markov chain. The Markov chain approach of this model can be found
in [78]. They use this technique to fix some parameters such that one can
switch between different delay values.

Model 4: Complex models
The communication network can be considered as a system that operates in
different way, accordingly with the instruction given by the global manage-
ment algorithm. Thus, we may consider different models that correspond to
the global state of the network. The analysis of this complex models can
be done using a Markov chain with multiple state (see [117, 118]). Intu-
itively, we can consider that this approach introduces another variable (like
impedance) in the state of the network.

The presence of the network in the control loop rises various specific
problems:

1. the loss of data, generated by the traffic congestion;

2. the compression/decompression of the information;

3. the quantification and coding of the information;

4. the availability of the network at the given moment;

5. the necessity of a router that can manage the performance of the sys-
tem;

6. the stabilization of the systems in presence of some delays.
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In the sequel, we give a brief analysis of some of these problems. We note
that each of these problems are studied in a specific research branch.

Problem 1: The loss of data
The problem of loss of packages is a very important and actual issue, thus
it received a lot of attention [155]. The management of waiting informa-
tion is made by a protocol at the router level. This protocol decides which
packages are rejected in the congestion situation. The control of congestion
was studied both from computer science perspective [94] and the network
stability perspective [62]. We note that for the last approach, a particular
form of rejected packages function was considered. If a package can’t reach
its destination, it can be re-emitted (TCP-Transfer Control Protocol) or can
be lost (UDP-User Data Protocol). In the second case, the stability analysis
of the system controlled over network must take in consideration the loss of
information. In [10] it is used a threshold uncertainty principle to establish
the loss rate for which the loop system still remains stable. Another approach
proposes a controller based on the information from the past (see [82, 83]).
The variety of the methods used to study this problem is completed by [4, 5].
The authors proposed a ”game theory” based approach, (uniqueness of Nash
equilibrium), to obtain the stability of the system under some appropriate
conditions.

Quantification and coding of the information
The quantification and coding problems are connected with the information
theory. These issues appear during the process of conversion of a signal in
data units that can be sent over network. More exactly, the coding problem
is a particular problem of control with a limited information. In the context
of communication network, this problem is discussed in [3]. Some results re-
garding the length of the words of the alphabet and the admissible sampling
rate can be found in [162]. The chaotic effects induced by approximation
when we use words with finite length are pointed out in [154]. The problems
of quantification received a lot of attention in the last period. Thus, we can
identify various domains of research connected with this issue. In control
theory, [23] treated the problem of stabilization using a quantified control,
in order to lead the system towards an invariant model around the equilib-
rium (see also [122]). The synthesis of quantifiers for systems with sampled
data can be found in [67, 69]. A probabilistic approach for the quantified
systems is given in [68]. The problem of variable period of sampling com-
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bined with a variable delay has a solution that uses LMI (Linear Matrix
Inequality)[46, 137]. At last, we mention a method of coder and decoder
synthesis for classical and linear stochastic control, proposed in [150].

Problem 4: Resources allocations, bandwidth availability
Almost all the communication networks have more than one user. In this
case, the users must share the network resources. Therefore, the problems of
resources allocation and band limitations appear naturally. Obviously, the
minimum guaranteed bandwidth determines the quality of the service. A
global controller (at the router level) ensures the management of the network
related to this issue. In discrete mathematics, the resources allocation prob-
lem is solved using a linear programming approach. In a Bluetooth network
(radio communication at short distance for mobile systems), the analysis of
capacity allocation is formulated as a convex optimization problem [146] (a
hybrid law of capacity distribution is proposed). For WLAN (Wireless Local
Area Network) with an access method through a function of hybrid coordina-
tion, the quality of the service, satisfying the IEEE 802.11x norms, is ensured
by the method proposed in [53]. The algorithm proposed takes into account
the delay induced by the queue and uses a control law by proportional state
return. The perturbations were compensated by anticipative actions.

A more general approach considers the control law under communication
constraints. The control is made in a distributed manner in the network and
an information complexity criteria is introduced [149]. The notion of anytime
capacity, in [133, 134], is used to introduce a new parametric quality of the
communication channel, that allows considering the presence of the noise in
the corresponding scheme.

Problem 6: Presence of delays
In communication, data transmission is always accompanied by a non-zero
time interval between the initiation and the delivery time of a message or a
signal. The literature on control of the systems with delays is extensive (see
for instance [42, 54, 129, 110]). Here, we are giving just a brief presentation
of the methods used in this direction. The major works in classical stabil-
ity analysis (using Lyapunov-Krasovskii and Lyapunov-Rasumikhin function)
consider a constant or bounded delay [76, 113]. We mention that, there is also
a stochastic approach for the systems with delay related to communication
network [116].

First works in the literature were devoted to some models with con-
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stant delay. In this case, the delay can be compensated using a Smith
predictor [145] or more generally using a state-predictor with a fixed hori-
zon [90, 80, 7].
More recently, appeared several papers concerning time-varying delay mod-
els (the delay depends on the state). Some results on the time-varying delay
case, when the open-loop system is stable, can be found in [163, 157]. A
more general constructive method for the robust stabilization, based on a
descriptive transformation of the model (descriptor model method), is pro-
posed in [47, 48]. An application of this method in the time-varying delay
case is presented in [136].

Among the problem related to the communication over network, the tele-
operation problem received a lot of attention. In the constant delay case,
some solutions based on energetic approach are developed in [6, 114]. The
time-varying delay case with the same delay on the both directions is con-
sidered in [115] and with different delay on each direction in [84, 18].

The communication over network problem
In this section, we present some considerations on the formulation of the
problem of communication over network. Precisely, signal delays due to data
transmission are considered, which could occur e.g. by large/long bus system
or by the use of the internet (with TCP/IP or UDP as protocols). There
are different ways to overcome this problem. One of the strategies is repre-
sented by a remote control mechanism (control loop runs locally). This is
often used in the engineering education with virtual laboratories. Another
approach is to use the communication delays in the definition of the control
law. Whereas such an approach seems natural, the problem is largely more
complicated since the delays are time-varying, and the time-dependence is
very complicated, and it depends on a lot of network parameters, as we have
seen in the previous paragraphs (network load, available bandwidth). Thus,
the discrete deterministic model used in some works [95, 161, 151] seems to
be unrealistic. Roughly speaking, the delay in the network is the sum of a
constant component and a dynamic (time-varying) component. The constant
term depends on the signal propagation time, which is assumed to be the ab-
solute minimum propagation delay value, occurring during the measurement.
The varying delay occurs due to data collisions and routing problem on the
network and is considered to have a stochastic nature. Therefore, to give
a more realistic mathematical model, we need to find a probability density
that describes the characteristics of the network. Recently, it was pointed
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out that the communication delay can be represented by some stochastic
gamma-distribution [130]. More explicitly, the overall communication delay
in the network is modeled by a gamma-distributed delay with a gap, where
the gap value corresponds to the minimal propagation delay in the network,
which is always strictly positive. The stability problem of the closed-loop
system in [130] reduces to a parameter-dependent characteristic quasipoly-
nomial equation of the following form,

D(s, τ1, τ2, n) := P (s)

(
1 + s

τ1

n + 1

)n+1

+ Q(s)e−sτ2 = 0, (2.38)

where P (s), Q(s) are polynomials. Obviously, the equation (2.37) is a special
case of (2.38).

2.2.3 Traffic flow models

It is well known that the traffic dynamics are inherently time delayed because
of the limited sensing and acting capabilities of drivers against velocity and
position variations. The undesirable effects of a mismanaged traffic flow in
social and economical life, made this problem very interesting and challeng-
ing for many researchers. Regarding to the traffic flow problem there are
two main issues. One of them is to find a model which accurately reflects
the reality and the second is the stability analysis of the model found at the
previous issue.
Time delay in traffic dynamics appears naturally and according to their ori-
gin can be classified in three categories (see, for instance, [142], and the
references therein):

* Physiological time delay - The origin of this part of time delay is the human
operator actions. Obviously there is a delay between the moment when
the operator receives the stimulus and the moment he performs the
action.

* Mechanical time delay - This part of time delay originates from mechanical
characteristic of the vehicles and it is independent from human oper-
ators. This delay express the time between the action of the human
operators and the corresponding response of the vehicle.

* Delay time of vehicle motion - It is the period of time necessary to a vehicle
to change its velocity to the velocity of the preceding vehicle.
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In [12, 13], Bando calls the combination of the first two categories of
delay as delay time of response.
A simplified model, when multiple vehicles preceding each vehicle are followed
by the drivers who are identically under the influence of a single constant
time-delay, can be expressed by

ẋn(t) =
k∑

l=1

αn,l(xn+l(t− τ)− xn(t− τ)) (2.39)

where n is the number of vehicles and k represents how many vehicles ahead
are followed by the drivers. However, instead of assuming a single time de-
lay in the mathematical model, one can suggest a more realistic model with
multiple non-identical time delays for sensing the motion of different vehi-
cles. When we have non-identical time delays for following multiple vehicles,
several encountered models in the literature describe the corresponding dy-
namics of the system under consideration (see [142]).

1. Drivers follow either one or two vehicles ahead of them, by performing
only feedback position:

ẍ(t) =
2∑

k=1

αn,k(xn+k(t− τk)− xn(t− τk));

2. Drivers follow either one or two vehicles ahead of them, by performing
only velocity feedback:

ẍ(t) =
2∑

k=1

αn,k(ẋn+k(t− τk)− ẋn(t− τk));

3. Drivers follow either one or two vehicles ahead of them, by performing
a combination of position and velocity feedback:

ẍ(t) =
2∑

k=1

αn,k(xn+k(t− τk)− xn(t− τk) + ẋn+k(t− τk)− ẋn(t− τk)).

The control of a human driver is different from an automatic controller, which
makes the study of traffic flow dynamics more challenging. For instance,
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humans retain a short-term memory of the past events and this may affect
their control strategy [143]. Therefore, in order to obtain a more realistic
model we can extend the previous models by incorporating a general memory
effect. Without any loss of generality we can consider the following model:

ẋn(t) = αn

∫ ∞

0

f(θ)(xn−1(t− θ)− xn(t− θ))dθ, (2.40)

where f is a distribution of delays, which can represent both dead-time and
the memory of the past. When the choice of the memory model is represented
by a gamma-distribution, and we consider the case of two cars, applying the
Laplace transform we get a characteristic equation with general form given
by (2.38). More explicitly, the characteristic equation of (2.40) is given by

det[sI − (A1 + A2)F (s)] = 0. (2.41)

Obviously, F denotes the Laplace transform of f , therefore, F (s) =
e−sτ

(1 + sT )n
.

In the case of two vehicles on a ring the matrix A1, A2 are given by

A1 =

( −α1 0
0 −α2

)
, A2 =

(
0 α1

α2 0

)
. (2.42)

The characteristic equation becomes

s(1 + sT )n + (α1 + α2)e
−sτ = 0, (2.43)

which is again a particular form of equation (2.38).

2.3 Outline of the thesis

The remaining part of the thesis is structured as follows:

• Chapters 3 and 4 form the second part of the thesis, where we derive
the stability regions using a geometric approach.

• The third part of the thesis includes Chapters 5 and 6. In this part we
develop algebraic procedures for studying the stability of the distrib-
uted delay systems. The approach developed in the third part can be
seen as a complement of the approach developed in the second part.
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• A chapter focusing on the contributions of the thesis and future work
ends the thesis.

2.3.1 Geometric approach

The starting point of the geometric approach consists of some nice interpre-
tations given in the case of linear systems with one and two discrete delays.
After presenting some of these results in the first two sections of Chapter
3, we develop in the last section appropriate algorithms that can be used in
treating various particular and degenerate cases. One of the particular cases
of systems with two discrete delays concerns the Smith Predictor controller.
The problems related to this principle received a lot of attention and there
are a lot of methodologies available. For a guided tour see for instance [121].
However, our new approach is very interesting and appealing because of its
simplicity and the fact that can be easily implemented. Some discussions
regarding the degenerate cases listed in [55] can be also found in Chapter 3.

The main probability distribution considered throughout this thesis is
given by the gamma-distribution with some gap. Is not ad-hoc the decision
to study the stability of gamma-distributed delays. In fact the stochastic
behavior of many models (or components of the model) is described in the
literature using a gamma-distributed kernel. Some sufficient condition for
the stability of a system with distributed delay, given by a general density of
probability, were obtained for a simple scalar case [20]. Anyway the use of
a general probability distribution is more difficult and is not always justified
by practical experiments.

In Chapter 4 we give some geometric interpretations that allow to de-
rive the (zero) crossing (frequencies) set for a class of systems with gamma-
distributed delays. Next, we explain the method to obtain the stability
crossing curves in the time-delay parameter space, and a simple procedure
to derive the corresponding crossing direction. Furthermore, we discuss the
robust stability with respect to the parameters and with respect to delay.
The chapter ends with the analysis concerning some degenerate cases. All
our results and conclusions are accompanied by various illustrative examples.
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2.3.2 Algebraic approach

The algebraic method derived in Chapter 5 can be seen as a complementary
approach of the procedure presented in Chapter 4. Using an appropriate
procedure (based on matrix analysis) we make a partition of the complex
plane in strips where the system without gap has a constant number of un-
stable roots. Next, we find the crossing set, crossing direction and stability
regions. Chapter 6 focuses on extending the methodology to more general
classes of systems. In the first section we analyze a model of traffic flow
dynamic including memory effect. For this particular type of systems with
distributed delay and commensurate discrete delays we are able to adapt the
standard procedure described in Chapter 5. In the second section, we con-
sider a general class of linear system including the models in the Chapter 5
and the model presented in the first section of Chapter 6. To analyze this
class we adapt and combine reducing procedure (the Walton-Marshall [159])
and the algebraic algorithm presented before. Illustrative examples complete
the presentation.

2.3.3 On the methodology

We were concerned in developing simple and appealing methods for stability
analysis of a general class of linear dynamical system including delays (dis-
tributed or not). Nevertheless, our algorithms are computationally oriented,
and some specific Matlab routines expressing the corresponding procedures,
are included in Appendix B.

For the sake of clarity, some basic and classical mathematical results used
throughout the thesis, can be found in Appendix A.
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Part II

Geometric approach
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Chapter 3

Geometric ideas

In this chapter we introduce some simple and intuitive ideas related to our
subject. First, we discuss a dynamical system with one discrete delay in
a geometric setting. Next, we present a method based on some geometric
interpretation related to dynamical systems with two delays. Finally, we
make the first step in our research adapting the previous results to some
degenerate cases.

3.1 Geometry of simple cases: linear systems

with one discrete delays

The stability problem for linear system with one discrete delay is by now
solved and very well understood. Here, we present just some results and
interpretations which open our geometric survey. Consider first the charac-
teristic equation with one discrete delay given by:

D(s, τ) = p0(s) + p1(s)e
−sτ = 0, τ > 0 (3.1)

where p0, p1 : C 7→ C are two polynomial functions satisfying the following
assumption.

Assumption 1 a) deg(p0) > deg(p1)

b) p0(0) + p1(0) 6= 0
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c) p0(s) and p1(s) have no common roots.

Note that these assumptions make sense with respect to our development
and will be discussed in the more general case in the next chapter. However,
the assumption a) means that the discussion concern the retarded case, the
assumption b) ensure that ”0” is not a root of the system for any τ , and c) is
introduced in order to simplify the expression (it is clear that if c) is violated
then the polynomials p0, p1 have some common factors).

The roots s of (3.1) move continuously (with respect to τ) in the complex
plane. Therefore, the number of roots in the right half plane can change
when τ varies, only if a root passes trough the imaginary axis (in other
words, the roots can not jump from left to right, or from right to left without
crossing jR. In the sequel we denote Ω the set of all frequencies ω such that
D(jω, τ) = 0 has at least one solution τ > 0. We note that the symmetry
of (3.1) allows us considering in Ω only the positive values of ω. The set
Ω, called crossing set of the system, can be easily found using the fact that
|ejωτ | = 1 for any ω ∈ R. More exactly, we derive that Ω is the set of all
ω > 0 satisfying the following relation:

|p0(jω)| = |p1(jω)|. (3.2)

Since (3.2) can be written as a polynomial equation in ω2, the crossing set
Ω consists of a finite number of positive real number. Obviously, for a given
ω ∈ Ω, the delay values corresponding to the crossing are given by:

τ = τk(ω) =
∠p1(jω)− ∠p0(jω) + (2k + 1)π

ω
. (3.3)

If p0(jω) 6= 0,∀ω ∈ R+ the crossing set is given by the intersections of

−a(jω) = −p1(jω)

p0(jω)
with the unit circle in the complex plane. We note that

the ratio curve −a(jω) starts from

(
−p1(0)

p0(0)
, 0

)
and ends in (0, 0) when ω

sweeps the real positive axis from 0 to ∞. Therefore, if

∣∣∣∣−
p1(0)

p0(0)

∣∣∣∣ > 1 we

have at least one crossing frequency ω. Obviously, when

∣∣∣∣−
p1(0)

p0(0)

∣∣∣∣ < 1 the

crossing set can be empty or not. When the crossing set is empty the system
is delay-independent (stable or unstable). We use the previous geometric
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interpretation to derive the crossing set for some particular choices of a(s).
We present just three cases in order to illustrate the delay-independent, the
switch and switch-reversal case (see the figures 3.1 and 3.2).

Re

Im

0.6

p0(s) = s + 5
p1(s) = 3

(0.85, −0.35) Re

Im

p0(s) = s
3 + s

2 + 3
p1(s) = s

2 + 4s + 4

1.33

Figure 3.1: Up: No crossing occurs; Down: The crossing set contains one point
and the corresponding crossing direction is towards instability.

The same result can be obtained by using various control-based idea and
techniques. One of the most used result that can be included in this class is
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Re

Im

−0.625

( −0.919, 0.347)

(0.734, 0.701)

p0(s) = s
2 + s + 8

p1(s) = 5

Figure 3.2: The crossing set contains two points, first crossing corresponds to a
switch to instability and the second to a reversal one.

due to Tsypkin and consists of a simple frequency-sweeping test for delay-
independent closed-loop stability. For a system with a single discrete input
delay

H0(s) =
p1(s)

p0(s)
e−sτ ,

the result can be formulate as follows:

Proposition 2 (Tsypskin) If p0(s) is a stable polynomial, then the closed-
loop system:

Hb(s) =
p1(s)e

−sτ

p0(s) + p1(s)e−sτ

is delay-independent asymptotically stable if and only if:

|p0(jω)| > |p1(jω)|, ∀ω ∈ R. (3.4)

In other words the Tsypskin’s criterion simply says that a SISO system with
delay in the input and stable in the open-loop, will be stable in closed-loop
for any delay value if an appropriate frequency-sweeping test (3.4) holds.
The result is quite intuitive and its proof is based on Rouche’s theorem (see
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r y
p1(s)

p0(s)
e−sτ

Figure 3.3: The closed-loop of H0(s).

Appendix A for Rouche’s theorem). More precisely, we have to analyze the
solutions of the characteristic equation

p0(s) + p1(s)e
−sτ = 0. (3.5)

Since p0 is Hurwitz, it follows that p0(s) 6= 0, ∀s ∈ C+. Therefore, we can
define the analytic function

a : C+ 7→ C, a(s) =
p1(s)

p0(s)
e−sτ ,

and using maximum modulus principle we get

sup
s∈C+

∣∣∣∣
p1(s)

p0(s)
e−sτ

∣∣∣∣ = sup
ω∈R

∣∣∣∣
p1(jω)

p0(jω)
e−jωτ

∣∣∣∣ < 1.

That means p0(s) + p1(s)e
−sτ = 0 has no solutions in the right-half plane.

For a general form of a(s), the direction of crossing for a given frequency ω

can be studied by computing the sign of
ds

dτ

∣∣∣∣
s=jω

.

Proposition 3 Under the assumption of a simple root on the imaginary axis

if sgn Re
ds

dτ

∣∣∣∣
s=jω

> 0 then the crossing is from stability to instability and the

crossing is from instability to stability if the inequality is reversed.
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Proof. Straightforward computations show us that:

sgn Re
ds

dτ

∣∣∣∣
s=jω

= sgn Im
a′(jω)

a(jω)
(3.6)

Remark 2 The previous proposition characterizes the crossing direction when
s = jω is a simple root of D(s, τ) = 0. When s = jω has the multiplicity
larger than 1 we can use a method based on perturbation theory [29].

The following theorem characterizes the behavior of the roots for a given
multiple root s = jω∗.

Theorem 8 Let jω∗ be a repeated zero of D(s, τ ∗) with multiplicity m. Then
for any τ sufficiently close to τ ∗ but τ > τ ∗, the zeros corresponding to jω∗

can be expanded in a Puiseaux series

jω∗ + m!

∣∣∣∣∣
−jω∗a(jω∗)∑m

k=0 Ck
m (τ ∗)m−k a(k)(jω∗)

∣∣∣∣∣

1
m

ej
(2h+1)π+θ

m (τ − τ ∗)
1
m + . . . (3.7)

h = 0, 1, . . . , m− 1

where θ ∈ [0, 2π] is the phase angle of

−jω∗a(jω∗)∑m
k=0 Ck

m (τ ∗)m−k a(k)(jω∗)
.

Hence, for τ sufficiently close to τ ∗ but τ > τ ∗, the number of critical zeros
entering in the right half plane (or vice versa) can be determined by the
condition

cos

(
(2h + 1)π + θ

m

)
> 0 (< 0), h = 0, 1, . . . , m− 1.

We note that, for m = 1 the Theorem 8 leads us to the Proposition 3.

3.2 Linear systems with two discrete delays

As mentioned in the introduction, the stability of a general linear systems
with delays is completely determined by the zeros of its characteristic qua-
sipolynomial. Therefore, in order to analyze the general linear system with
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two delays
2∑

l=0

n∑

k=0

plk
dx(t− τl)

dtk
, τ0 = 0, plk ∈ R (3.8)

we can start by considering the following quasipolynomial:

D(s, τ1, τ2) = p0(s) + p1(s)e
−sτ1 + p2(s)e

−sτ2 , (3.9)

where pl(s) =
n∑

k=0

plks
k.

There are two methods to study the change of stability systems when τ1 and
τ2 vary. Both of these algorithms lead us to the stability crossing curves of
the system. One of them use a technique based on the Rekasius transfor-
mation [128] and is presented in [144] and the other, propose a geometric
interpretation that allows finding the crossing set, i.e. the set of all the fre-
quencies corresponding to all the points in the stability crossing curves. The
second approach, presented in [55], is the starting point of the work presented
in this part.

The assumptions made in the single discrete delay case can be formulated
in the two discrete delays case as follows:

Assumption 2 a) deg(p0) > max{deg(p1), deg(p2)} (retarded case)

b) p0(0)+ p1(0)+ p2(0) 6= 0 (”0” is not a solution of D for any pair (τ1, τ2))

c) p0(s), p1(s) and p2(s) have no common roots (in order to simplify the
expression).

We note that under the assumption

d) lim
s→∞

(∣∣∣∣
p1(s)

p0(s)

∣∣∣∣ +

∣∣∣∣
p1(s)

p0(s)

∣∣∣∣
)

< 1

the analysis can be extended to the neutral case [55].

Remark 3 . If the system is of retarded type then the assumption (d) is
automatically satisfied since its left hand is zero. For neutral systems, let

ck = lim
s→∞

pk(s)

p0(s)
, k = 1, 2. Then, it is well known that the stability of D is

possible only if the difference equation

x(t) + c1x(t− τ1)− c2x(t− τ2) = 0 (3.10)

is exponentially stable. Assumption (d) guarantees the stability of (3.10).
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Considering that p0 has no roots on the imaginary axis, the stability analysis
of the characteristic equation D(s) = 0 can be reduced to the analysis of the
following equation:

a(s, τ1, τ2) = 1 + a1(s)e
−sτ1 + a2(s)e

−sτ2 = 0, ak(s) =
pk(s)

p0(s)
, k = 1, 2.

(3.11)
Then, the form equation (3.11), allows rewriting the condition on the crossing
existence as a geometric problem in a triangle. More precisely, for s = jω,
(3.11) it is considered as the sum of three vectors in the complex plane,
with the magnitudes 1, |a1(jω)| and |a2(jω)|. Furthermore, if we adjust the
values of τ1 and τ2, we may arbitrarily adjust the directions of the vectors
represented by the second and third terms. In other words, the equation
(3.11) means that if we put the previous three vectors head to tail, they form
a triangle. From geometric point of view: a triangle can be formed by three

O A

B

Re

Im

θ1θ2

a1(jω)e−jωτ1

a2(jω)e−jωτ2

Figure 3.4: Triangle formed by 1, a1(jω)e−jωτ1 and a2(jω)e−jωτ2

line segments with arbitrary orientation if and only if the length of any one
side not exceed the sum of the other two sides. Thus, we can characterize the
crossing set Ω (i.e. the set of all frequencies ω > 0 such that D(jω, τ1, τ2 = 0)
has at least one solution (τ1, τ2) ∈ R2

+) by the following three inequalities:

|a1(jω)|+ |a2(jω)| ≥ 1 (3.12)

−1 ≤ |a1(jω)|+ |a2(jω)| ≤ 1. (3.13)
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As (τ1, τ2) continuously varies in R2
+ the number of zeros of D(s) in right half

plane can change only if a zero appears on (and cross) the imaginary axis.
Therefore, the stability crossing curves can be defined as the set T of all
pairs (τ1, τ2) such that D(s, τ1, τ2) = 0 has at least one solution on imaginary
axis. Precisely, for ω ∈ Ω the set T is defined by D(jω, τ1, τ2) = 0 using
the implicit function theorem (see the Appendix A for a precise statement).
However, easy computations show us that for any ω ∈ Ω the corresponding
pairs (τ1, τ2) ∈ T are defined by:

τ1 = τu±
1 (ω) =

∠a1(jω) + (2u− 1)π + θ1

ω
≥ 0, (3.14)

u = u±0 , u±0 + 1, u±0 + 2, . . .

τ2 = τ v±
2 (ω) =

∠a2(jω) + (2u− 1)π + θ2

ω
≥ 0, (3.15)

v = v±0 , v±0 + 1, v±0 + 2, . . .

where θ1, θ2 ∈ [0, π] are the internal angles of the triangle in Fig.3.4 and can
be calculated by the law of cosine as

θ1 = cos−1

(
1 + |a1(jω)|2 − |a2(jω)|2

2|a1(jω)|
)

θ2 = cos−1

(
1 + |a2(jω)|2 − |a1(jω)|2

2|a2(jω)|
)

and u±0 , v±0 are the smallest possible integers such that the corresponding τ1

and τ2 are nonnegative. Using the implicit function theorem we can study the
smoothness of the crossing curves and the corresponding crossing direction.
More details about these properties will be given in the following section.

It is also interesting to remark that some degenerate cases of the system
characterized by the equation (3.11) were pointed out in [55]:

1. p0(jω) = 0, |p1(jω)| = |p2(jω)| 6= 0;

2. p1(jω) = 0, |p0(jω)| = |p2(jω)| 6= 0;

3. p2(jω) = 0, |p0(jω)| = |p1(jω)| 6= 0;

4. D(jω, τ1, τ2) = 0, D′(jω, τ1, τ2) = 0 (multiple solutions case);
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5. |a1(jω)|+ |a2(jω)| = 1,
d

dω
(|a1(jω)|+ |a2(jω)|) = 0

6. |a1(jω)| − |a2(jω)| = 1,
d

dω
(|a1(jω)| − |a2(jω)|) = 0

A rigorous stability analysis of these degenerate cases doesn’t exist in the lit-
erature. Further remarks regarding these cases will be given in the following
section.

3.3 Particular, and singular cases

This section is devoted to stability analysis of some particular and degenerate
cases of system included in the class of linear systems with two discrete delays
studied in the previous section.

3.3.1 Smith Predictor principle and related results

An immediate particular case of system with two delays is encountered in
Smith predictor controller. More precisely, we are interested in investigat-
ing the effects of delay values on the stability regions of the system whose
dynamics are described by the following characteristic equation:

P (s) + Q(s)e−sτ1 −Q(s)e−s(τ1+δ) = 0. (3.16)

Let G be the set of all pairs (x, y) ∈ R2
+ such that x < y. It is obvious that

replacing τ2 = τ1 + δ and taking (τ1, τ2) ∈ G we can consider the following
equivalent equation:

D(s, τ1, τ2) = P (s) + Q(s)e−sτ1 −Q(s)e−sτ2 = 0. (3.17)

More explicitly, we study the change of number of zeros of (3.17) on C+ as
the delays (τ1, τ2) vary on G. In this case the assumption 1 can be expressed
as follows:

The polynomials P , and Q satisfy the following conditions:

Assumption 3 The polynomials P , and Q satisfy the following conditions:

(i) deg(Q) ≤ deg(P );
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(ii) P (0) 6= 0;

(iii) P (s) and Q(s) do not have common zeros;

(iv) P and Q are such that:

lim
s→∞

∣∣∣∣
Q(s)

P (s)

∣∣∣∣ <
1

2
. (3.18)

Remark 4 . The assumption 3 above rewrites the conditions from the reg-
ular case (proposed in the previous section) to the singular case under con-
sideration.

Next, we present how we find the crossing points in this particular case.
In order to do that, we remember our definition and we adapt them to the
new conditions. Let T denote the set of all points of (τ1, τ2) ∈ G such that
D(s) has at least one zero on the imaginary axis. Any (τ1, τ2) ∈ T is known
as a crossing point. The set T , which is the collection of all crossing points, is
known as the stability crossing curves. Let Tω denote the set of all (τ1, τ2) ∈ G
such that D(s) has at least one zero for s = jω. Let Ω the set of all ω for
which there exists a pair (τ1, τ2) such that D(jω, τ1, τ2) = 0. We will refer to
Ω as the crossing set. Obviously

T = {Tω|ω ∈ Ω}. (3.19)

Next, for the clarity of the presentation we will split our discussion in
two parts. First we will consider only the case which satisfy the following
nondegeneracy condition,

Assumption 4
P (jω) ·Q(jω) 6= 0 for all ω ∈ Ω (3.20)

and then we will discuss what happens in other cases.
In the sequel we consider

h(s) =
Q(s)

P (s)
(3.21)

and
H(s) = 1 + h(s)e−sτ1 − h(s)e−sτ2 . (3.22)
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For given τ1 and τ2, as long as assumption 4 is satisfied, D(s) and H(s)
share all the zeros in a neighborhood of the imaginary axis. Therefore, we
may obtain all the crossing points and direction of crossing using H(s) = 0
instead of D(s) = 0. We may also consider the three terms in H(s) as
three vectors in the complex plane, with the magnitudes 1, |h(s)| and |h(s)|
respectively. So when we adjust the values of τ1 and τ2 in fact we adjust
the directions of the vectors represented by the second and the third terms.
Equation (3.22) means that if we put the first two vectors had to tail then
we get the third vector. In other words they form an isosceles triangle. This
allows us giving the following condition.

Proposition 4 For some (τ1, τ2) ∈ G, H(s) has an imaginary zero s =
jω, ω 6= 0 if and only if

|h(jω)| ≥ 1

2
. (3.23)

Proof : The relation (3.23) is obvious from the geometric point of view: a
triangle can be formed by three line segments with arbitrary orientation if
and only if the length of any one side does not exceed the sum of the other two
sides. In the case of an isosceles triangle the condition becomes: the sum of
the equal sides exceed the other side. Notice also that ∠[h(s)e−jωτl ], l = 1, 2
can assume any value by adjusting τl, l = 1, 2. ¥

O A

B

Re

Im

q

Figure 3.5: Triangle formed by 1, h(s)e−sτ1 and h(s)e−sτ2
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Due to the symmetry and assumption 3 we only need to consider positive
ω. So Ω is the set of all ω > 0 which satisfy (3.23). Also, for a given ω ∈ Ω
we may find all the pairs (τ1, τ2) satisfying H(jω) = 0 as follows:

τ1 = τu±
1 (ω) =

∠h(jω) + (2u− 1)π ± q

ω
, (3.24)

u = u±0 , u±0 + 1, u±0 + 2, ...

τ2 = τ v±
2 (ω) =

∠h(jω) + 2vπ ∓ q

ω
, (3.25)

v = v±0 , v±0 + 1, v±0 + 2, ...

where q ∈ [0, π] is internal angle of triangle in Figure 3.5 which can be
calculated by the cosine law as

q(jω) = cos−1

(
1

2|h(ω)|
)

(3.26)

and u+
0 , u−0 are the smallest integers (may be dependent on ω) such that the

corresponding values τ
u+
0 +

1 , τ
u−0 −
1 are nonnegative, and v+

0 and v−0 are integers

dependent on u such that τ
v+
0 +

2 ≥ τu+
1 , τ

v−0 −
2 > τu−

1 are satisfied. The position
in Figure 3.5 corresponds to (τu+

1 , τ v+
2 ) and the mirror image about the real

axis corresponds to (τu−
1 , τ v−

2 ). If we define T +
ω,u,v and T −

ω,u,v as the singletons
(τu+

1 (ω), τ v+
2 (ω)) and (τu−

1 (ω), τ v−
2 (ω)) respectively, then we can characterize

Tω as follows:

Tω =


 ⋃

u≥u+
0 ,v≥v+

0

T +
ω,u,v


 ⋃


 ⋃

u≥u−0 ,v≥v−0

T −
ω,u,v


 (3.27)

Proposition 5 The crossing set Ω consists of a finite number of intervals
of finite length including the cases which may violate assumption 4.

Proof : First, one can observe easily that the number of points in Ω violating
(3.20) is finite. So, we only need to show that the set of all points satisfying
(3.23) consists of a finite number of intervals of finite length. This can be
proved like the first statement of proposition 3. In what follows we will
denote these intervals as Ω1, Ω2, ..., ΩN and without any loss of generality we
may suppose that the intervals are ordered such that for any ω1 ∈ Ωk1 , ω2 ∈
Ωk2 , k1 < k2 we have ω1 < ω2. ¥
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Remark 5 . If (3.23) is satisfied for ω = 0 and sufficiently small positive
value of ω then we will take 0 the left end of Ω1. Considering ωr

1 the right
end of Ω1, according to assumption 2 we get Ω1 = (0, ωr

1], so 0 /∈ Ω.

We will not restrict ∠h(jω) to be within the 2π range but make it a
continuous function of ω within each Ωk. Thus, for each fixed u, v and k,
(3.24) and (3.25) are continuous curves denoted as T k+

u,v respectively T k−
u,v .

We should keep in mind that, for some u, v and k, part or entire curve T k+
u,v

(respectively T k−
u,v ) may be outside of the range G, and therefore, may not be

physically meaningful. The collection of all the points in T corresponding to
Ωk may be expressed as

T k =
∞⋃

u=−∞

∞⋃
v=−∞

[(T k+
u,v ∪ T k−

u,v

) ∩ G]

=
⋃

ω∈Ωk

Tω (3.28)

Obviously

T =
N⋃

k=1

T k (3.29)

Our previous discussions allow us to say that the ends of Ωk must be in one
of the following situation:

Type 1. It satisfies the equation |h(x)| = 1

2
.

Type 2. It equals 0.

If one end of Ωk is of type 1 then q = 0 and T k+
u,v is connected with T k−

u,v at
this end. So, if both ends of Ωk are of type 1 we get T k is a series of closed
curves.
Obviously just the left end of Ω1 can be 0. In this case, as ω → 0, both τ1

and τ2 approach ∞. In fact T 1+
u,v and T 1−

u,v approach ∞ with asymptotes with
slopes of

m±
u,v =

τ v±
2

τu±
1

=
∠h(0) + 2vπ ∓ q(0)

∠h(0) + (2u− 1)π ± q(0
(3.30)

where q(0) is evaluated using (3.26)
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In the sequel we adopt the notations of the previous sections. So, an
interval is of type 1,1 if both his end are of type 1, and Ω1 is of type 2,1 if
his left end is 0. Therefore, the crossing set Ω consists in a finite number
of intervals of type 1,1, and eventually the first interval is of type 2,1. It is
obvious that T k consists in a series of curves belonging to one of the following
categories:

A) A series of closed curves (Ωk is of type 11)

B) A series of open ended curves with both ends approaching ∞ (Ωk is of
type 21)

We continue this section with some illustrative examples regarding the above
discussion and characterization.

Example 1 (type 1,1) Consider a system with

h(s) =
4s + 1

4(s2 + s + 1)
(3.31)

Figure 3.6 (left) plots 2|h(jω)| against ω. The crossing set can be easily
computed using (3.23) and also can be identified from the figure 3.6 (left), it
contains only one interval: Ω1 = [0.39, 2.21]

As an illustration of a series of closed curves we examine T k corresponding
to Ωk of type 1,1. In this case, for a given u and v such that τu±

2 > τu±
1 > 0, we

get T k+
u,v and T k−

u,v are connected on the both ends to form a closed curve. As
u and v vary, we obtain a series of deformed versions of such closed curves sit-
uated above the first bisector. A suggestive image of a series of closed curves
is given in Figure 3.6 (right) which shows T of the system described in (3.31).

Example 2 (type 2,1) Consider a system with

h(s) =
s +

√
2

2s3 + s2 + 8s + 1
(3.32)
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Figure 3.6: The crossing set for the system (3.31) can be identified to the left and
some crossing curves of this system are plotted to the right
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62



Figure 3.7 (left) plots |h(jω)| against ω. The crossing set Ω can be easily
identified from the Figure 3.7, it contains two intervals Ω1 = (0, 0.364] of
type 2,1 and Ω2 = [1.673, 2.198] of type 1,1

In the following, we consider Ωk = [ωl
k, ω

r
k]. Obviously, the interval Ω1 is

open to the left if its left end is 0. To illustrate the case of open ended curves
we consider T 1 corresponding to Ω1 of type 2,1. In this case, Ω1 = (0, ωr

1]
and for a given u and v, T 1+

u,v and T 1−
u,v are connected at ωr

1. The other end of
T 1−

u,v extends to infinity with asymptotes with the slope m−
u,v, and the other

end of T 1+
u,v extends to infinity with asymptotes with the slope m+

u,v. Again,
as u and v vary, we obtain a series of deformed versions of such open ended
curves situated above the first bisector. Evidently, the slope is changing for
different u and v. We can see a series of open ended curves in Figure 3.7
(right).

Next, for a given k we will discuss the smoothness of the curves in T k

and thus T =
N⋃

k=1

T k. In this case, for a given ω ∈ Ωk we have:

R0 = Re

(
j

s

∂D(s, τ1, τ2)

∂s

)

s=jω

(3.33)

=
1

ω
Re

{
[h′(jω)− τ1h(jω)] e−jωτ1 [τ2h(jω)− h′(jω)] e−jωτ2

}
,

I0 = Im

(
j

s

∂D(s, τ1, τ2)

∂s

)

s=jω

(3.34)

=
1

ω
Im

{
[h′(jω)− τ1h(jω)] e−jωτ1 + [τ2h(jω)− h′(jω)] e−jωτ2

}
,

and

Rl = Re

(
1

s

∂D(s, τ1, τ2)

∂τl

)

s=jω

= (−1)l−1Re
(
h(jω)e−jωτl

)
, l = 1, 2 (3.35)

Il = Im

(
1

s

∂D(s, τ1, τ2)

∂τl

)

s=jω

= (−1)l−1Im
(
h(jω)e−jωτl

)
, l = 1, 2. (3.36)

Then, since D(s, τ1, τ2) is an analytic function of s, τ1 and τ2, the implicit
function theorem indicates that the tangent of T k can be expressed as

(
dT

dω
dτ

dω

)
=

1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (3.37)
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provided that

R1I2 −R2I1 6= 0. (3.38)

It follows that Tk is smooth everywhere except possibly at the points where
either (3.38) is not satisfied, or when

dT

dω
=

dτ

dω
= 0. (3.39)

From the above discussions, we can conclude the following proposition.

Proposition 6 The curve T k is smooth everywhere except possibly at the
points corresponding to s = jω a multiple solution of (3.17).

Proof : If (3.39) is satisfied then s = jω is a multiple solution of (3.17).
Condition (3.38) is equivalent with

|h(jω)|2Im
(
ejω(τ2−τ1)

) 6= 0 (3.40)

For all ω ∈ Ω we have |h(jω)| ≥ 1

2
and

ω(τ2 − τ1) = (2v − 2u + 1)π ∓ 2q

Therefore (3.38) is not satisfied if and only if 2q = lπ, l ∈ Z. Obviously

q ∈
(
0,

π

2

)
and (4.21) holds for all ω ∈ Ωk ¥

The same technique and arguments used in the previous section allow us
to arrive at the following proposition.

Proposition 7 Let ω ∈ (ωl
k, ω

r
k) and (τ1, τ2) ∈ T k such that jω is a simple

solution of (3.17) and D(jω′, τ1, τ2) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (τ1, τ2) is
not an intersection point of two curves or different sections of a single curve
of T ). Then a pair of solutions of (3.17) cross the imaginary axis to the
right, through s = ±jω if R2I1 − R1I2 > 0. The crossing is to the left if the
inequality is reversed.
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Neutral system example

The first example considers a system of neutral type treated in [97], but using
a different approach:

P (s) = (k1k2 + 1)s + (a + k1), Q(s) = k1(k2s + 1).

The authors of [97] assume a > 0 and (a + k1)/(k1k2 + 1) > 0, which guar-
antees internal stability of the closed-loop system. The so-called “practi-
cal stability” criterion is given by assumption (3 iv.) which simply states∣∣∣∣

k1k2

1 + k1k2

∣∣∣∣ <
1

2
⇔ −1/3 < k1k2 < 1. For a = 1, k1 = 2, k2 = 1/4 we

get Ω = (0, 2.37], and, in conclusion, Ω consists of one interval of type 21.
Correspondingly, T consists of a series of open ended curves with both ends
approaching infinity, conclusion which is the same to the one in [97].
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Figure 3.8: Left: The crossing set for the above system Right: Some crossing
curves of this system

Smith predictor in virtual environments

The second example refers to Smith predictor in virtual environments and is
presented in [30]. The corresponding system is given by:

P (s) = (s2 + 2s + 2)2, Q(s) = −(2s + 2)2.
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Obviously, the system is of retarded type, so the practical stability conditions
mentioned above are automatically satisfied. The crossing set Ω consists of
one interval of type 21, Ω = (0, 2.9]. This means that the crossing curves
have the shape as presented in figure below. Again, we obtain the same
crossing curves and stability regions.
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Figure 3.9: Left: The crossing set for the above system Right: Some crossing
curves of this system

3.3.2 Degenerate cases of the linear systems with two
discrete delays

In the sequel, we discuss some aspects regarding the stability analysis of the
systems included in the degenerate cases listed in the previous section.

1. If p0 has roots on imaginary axis the crossing curves of the system can
be derived as follows. Consider

Γ = {ω > 0 | p0(jω) = 0, |p1(jω)| = |p2(jω)|}.

The crossing set is obtained as the union of Γ and the set Ω′ of all
frequencies ω satisfying the equations 3.12 and 3.13. Instead of a set
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of discrete points (τ1, τ2) corresponding to ω∗ ∈ Γ we obtain a set of
parallel straight lines of slope 1 given by:

∠p1(jω)− ωτ1 + 2uπ = ∠p2(jω)− ωτ2 + 2vπ + π (3.41)

for u, v integers. Obviously, in order to obtain all the crossing curves of
the system we have to add this set of straight lines to the set of crossing
curves corresponding to Ω′.

Example 3 Consider

p1(s) = s + 2, p2(s) = s− 2, p0 = s2 + 2. (3.42)

In this case Ω consist of two intervals: Ω1 = (0,
√

2) and (
√

2, 3.047].
We mention that 3.047 is an end point of type 3. The end point
corresponding to

√
2 is replaced with a straight line of slope 1 as we

pointed out above. More precisely, some crossing curves corresponding
to ω2 = (

√
2, 3.047] can be seen in figure 3.10.

2 4 6 8 10 12 14

5

10

15

20

25

τ1

τ2

v=3,
u=5

v=3,
u=1

Figure 3.10: Some crossing curves of the system 3.42, corresponding to Ω2

2. If p1 (or p2) has roots on the imaginary axis, the corresponding crossing
points represent bifurcation points. In these points the crossing curves
corresponding to Ω intersect some horizontal (vertical) lines given by:

τ2 =
∠p2(jω

∗)− ∠p0(jω
∗) + (2k + 1)π

ω∗
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(
τ1 =

∠p1(jω
∗)− ∠p0(jω

∗) + (2k + 1)π

ω∗
, respectively

)

Proposition 8 Let jω∗ be a solution of p1 situated on the imaginary
axis. Then, increasing τ2, a pair of solution of (4.35) cross the imagi-

nary axis to the left (right) at ±jω∗ if
d

dω
|a2(jω

∗)| < 0 (> 0). If jω∗

is a solution of p2 situated on the imaginary axis, the crossing direction

is given by
d

dω
|a1(jω

∗)|.

Example 4 Consider the system given by:

p1(s) = 3s + 6, p2(s) = s2 + 2, p0 = s3 − 2s2 + 5s + 2. (3.43)

Then, p2 has two roots s = ±j
√

2 situated on the imaginary axis,
and |p0(j

√
2)| = |p1(j

√
2)| = 54. The crossing set is given by Ω1 =

[1.067,
√

2) of type 11 and Ω2 = (
√

2, 2.236] of type 13. We note that
the end points corresponding to

√
2 are replaced by a vertical line. The

crossing curves of the system can be seen in the figure 3.11.
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Figure 3.11: Some crossing curves of the system 3.43, corresponding to Ω1

3. In the case D(jω, τ1, τ2) = 0, D′(jω, τ1, τ2) = 0, the crossing set is
given by the equations (3.12) and (3.13). In order to derive the cross-
ing direction corresponding to the value jω∗ we can use the following
proposition.
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Proposition 9 Let jω∗ be a repeated zero of D(s, T, τ) with multiplic-
ity m and let τ ∗ one of the corresponding value of the gap. For any τ
sufficiently close to τ ∗ but τ > τ ∗, the characteristic zeros correspond-
ing to jω∗ can be expanded by the Puiseaux series

jω∗ + m!

∣∣∣∣∣∣∣

dD(jω∗,e−jω∗τ )

dτ

∣∣∣
τ=τ∗

dm
D(jω∗,e−jω∗τ∗ )

dsm

∣∣∣
s=jω∗

∣∣∣∣∣∣∣

1
m

ej
(2k+1)π+θ

m (τ − τ ∗)
1
m

+ . . . , k = 0, 1, . . . , m− 1

Hence, for τ sufficiently close to τ ∗ but τ > τ ∗, the number of critical
zeros entering the right-half plane (or vice versa) can be determined by
the condition

cos

(
(2k + 1)π + θ

m

)
> 0 (< 0), k = 0, 1, . . . , m− 1. (3.44)

4. The last two cases listed at the end of section 3.2 concern a specific
behavior of the end points. In these situations the number of equations
exceeds the number of variables (we have 2 equations and one variable
ω). They typically represent bifurcation points. If the system depends
on one parameter in addition to the two delays, then we generically
should expect these degenerate points to appear, and the geometry of
T changes as the parameter passes through these points.

3.4 Concluding remarks

This chapter was devoted to introduce some geometric interpretations related
to linear systems in presence of one or two discrete delays. More precisely,
we presented a geometric method to derive the crossing set, the crossing
curves and the direction of crossing for a class of linear systems with one or
two discrete delays. Next, we presented some results regarding the stability
analysis of particular and degenerate cases. The analysis of degenerate cases
is far to be complete. Illustrative examples are included throughout the
presentation of this chapter.
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Chapter 4

Distributed delays and related
problems

The stability of dynamical systems in the presence of time-delay is a problem
of recurring interest (see, for instance, [59, 79, 54, 107], and the references
therein). The presence of a time delay may induce instabilities, and complex
behaviors. The problem becomes even more difficult when the delays are
distributed. Systems with distributed delays are present in many scientific
disciplines such as physiology, population dynamics, and engineering.

This chapter focuses on the characterization of the stability crossing
curves of the systems

D(s, T, τ) = P (s)(1 + sT )n + Q(s)e−sτ = 0

considered in section §2.3. More explicitly, we compute the crossing set,
which consists of all frequencies corresponding to all points on the stability
crossing curves, and we give their complete classification. Furthermore, the
directions in which the zeros cross the imaginary axis are explicitly derived.
We present also some illustrative examples and we end the chapter with some
particular cases.
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4.1 Introductory remarks

As we can see in the ”Motivating examples” section there are many systems
in different areas that can be treated by using a model with the characteristic
equation given by

P (s)

(
1 + s

τ1

n + 1

)n+1

+ Q(s)e−sτ2 = 0.

To understand how the previous characteristic equation arises from a model
containing a gamma distribution law with a gap, is sufficiently to see the
way the equation (2.37) is derived. A natural question is: why the analysis is
made with respect to τ1 and τ2 instead of a and τ2. To answer, we point out
that we introduced the parameter τ1 in order to simplify the presentation.
On the other hand, the parameter a can be easily derived when τ1 and τ2 are
known.

In this chapter, we will study the stability of the equation (2.38) as the
parameters τ1 and τ2 vary. Specifically, we will describe the stability crossing
curves, i.e., the set of parameters such that there is at least one pair of
characteristic roots on the imaginary axis. Such stability crossing curves
divide the parameter space R2

+ into different regions. Within each such a
region, the number of characteristic roots on the right hand complex plane is
fixed. This naturally describes the regions of parameters where the system
is stable.

It should be noted that there have been numerous works in the literature
to describe the stability regions in the parameter space, known as stability
charts [147, 148]. These descriptions are typically valid for one specific sys-
tem excepting that the parameters are allowed to vary. In a recent paper, Gu,
et al [55] gave a characterization of the stability crossing curves for systems
with two discrete delays as the parameters. One significant difference of [55]
as compared to the stability charts is the fact that such a characterization
applies to any systems within the class, i.e., any system with two delays. The
current chapter follows the line of [55] since our conclusion is valid for any
system of the form (2.38).
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4.2 Basic ideas, and assumptions

As mentioned in the previous paragraph, our main interest is to analyze
the effects of the gap, and mean delay values on the stability regions of the
general characteristic equation (2.38). Consider now the following system,
whose dynamics are described by the following characteristic equation:

D(s, T, τ) = P (s)(1 + sT )n + Q(s)e−sτ = 0, (4.1)

where the two parameters T and τ are nonnegative. We will try to describe
the stability crossing curves, which is the set of (T, τ) such that the equation
(4.1) has solutions on the imaginary axis. We will denote the stability cross-
ing curves as T . As the parameters (T, τ) cross the stability crossing curves,
some characteristic roots cross the imaginary axis. Therefore, the number
of roots on the right half complex plane are different on the two sides of the
crossing curves, from which, we may describe the parameter regions of (T, τ)
in R2

+ for the system to be stable.
Another related useful concept is the crossing set Ω, which is defined as

the collection of all ω > 0 such that there exists a parameter pair (T, τ) such
that D(jω, T, τ) = 0. In other words, as the parameters T and τ vary, the
characteristic roots may cross the imaginary axis at jω if and only if ω ∈ Ω.

We will restrict our discussions on the systems that satisfy the following
assumptions.

Assumption 5 i) deg(Q) < deg(P );

ii) P (0) + Q(0) 6= 0;

iii) P (s) and Q(s) do not have common zeros;

iv) If P (s) = p, Q(s) = q, where p and q are constant real, then |p| 6= |q|;
v) P (0) 6= 0, |P (0)| 6= |Q(0)|;
vi) P ′(jω) 6= 0 whenever P (jω) = 0.

Remark 6 Assumption (i) to (iii) above rewrites the corresponding assump-
tion from the previous chapter. Assumptions (iv) to (vi) are made to exclude
some rare singular cases in order to simplify presentation.
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Notice that we have restricted any element ω of the crossing set Ω to
satisfy ω > 0. Indeed, the discussion of ω < 0 is redundant in view of the
fact that D(−jω, T, τ) is the complex conjugate of D(jω, T, τ), and therefore,
D(−jω, T, τ) = 0 if and only if D(jω, T, τ) = 0. Also, ω = 0 is never an
element of Ω in view of assumption (ii).

4.3 Geometric characterization and classifi-

cation

4.3.1 Crossing set and stability crossing curves

In [58], the authors introduced the notion of hyperbolicity for linear delay
system. More explicitly, the characteristic equation (4.1) is said to be hyper-
bolic at some point (T0, τ0) if no root of the characteristic equation lies on
the imaginary axis for T = T0, and τ = τ0.

Using the assumption 5, and the hyperbolicity notion introduced above,
we have the following simple result:

Proposition 10 The system (4.1) is hyperbolic for all (T, τ) ∈ R+ × R+ if
and only if:

|P (jω)| > |Q(jω)| , ∀ω ∈ R∗+. (4.2)

Proof: ”⇐” It is clear that:

| (1 + jωT )nP (jω)) |≥| P (jω) |,

for all pairs (ω, T ) ∈ R× R+. Next, using (4.2), it follows:

| (1 + jωT )nP (jω)) |>| Q(jω) |,

for all (ω, T ) ∈ R × R+. In conclusion, the modulus equation associated to
(4.1) cannot have any solution jω, with ω ∈ R∗, for all (T, τ) ∈ R+ × R+,
fact which is equivalent to say that the corresponding characteristic equation
has no roots on the imaginary axis, excepting eventually the origin.

Let us consider the case at the origin now. Using a simple continuity
argument, (4.2) leads to the inequality |P (0)| ≥ |Q(0)|, and thus the only
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case that one needs to consider is |P (0)| = |Q(0)|, case which is excluded by
Assumption V. In conclusion the hyperbolicity property follows.

”⇒” The argument can be simply done by contradiction, and it is omit-
ted. The proof is completed. ¥

Remark 7 The proposition above gives a simple frequency-sweeping charac-
terization of the so-called delay-independent hyperbolicity property. Further
discussions on this topics can be found in [107]. In the case when the system
free of delays is asymptotically stable, then the result above gives a very sim-
ple condition of delay-independent stability (see also [54], and the references
therein).

Proposition 11 Given any ω > 0, ω ∈ Ω if and only if it satisfies

0 < |P (jω)| ≤ |Q(jω)|, (4.3)

and all the corresponding T, τ can be calculated by

T =
1

ω

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
2/n

− 1

)1/2

, (4.4)

τ = τm =
1

ω
(∠Q(jω)− ∠P (jω)− n arctan(ωT )

+π + m2π), (4.5)

m = 0,±1,±2, ....

Proof. For necessity of (4.3), let ω ∈ Ω, and apply modulus to (4.1), we
obtain

|(1 + jωT )n| |P (jω)| = |Q(jω)| . (4.6)

This implies
|P (jω)| ≤ |Q(jω)|,

because
|(1 + jωT )n| ≥ 1.

In addition, |P (jω)| > 0 is also necessary. Otherwise, P (jω) = 0, which
implies Q(jω) = 0 in view of (4.6). But this violates Assumption III.

For sufficiency of (4.3), we only need to recognize that T and τ given by
(4.4) and (4.5) make s = jω a solution of (4.1).
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It is also easy to see by direct solution that T and τ given by (4.4) and
(4.5) are all the solutions.

There are only a finite number of solutions to each of the following two
equations

P (jω) = 0, (4.7)

and

|P (jω)| = |Q(jω)|, (4.8)

because P and Q are both polynomials satisfying Assumptions I to IV. There-
fore, Ω, which is the collection of ω satisfying (4.3), consists of a finite number
of intervals. Denote these intervals as Ω1, Ω2, ..., ΩN . Then

Ω =
N⋃

k=1

Ωk.

Without loss of generality, we may order these intervals from left to right,
i.e., for any ω1 ∈ Ωk1 , ω2 ∈ Ωk2 , k1 < k2, we have ω1 < ω2.

Separation principle

In this paragraph we present an idea that will allow to suggest some simple
geometric approach for the stability analysis by enabling the separation of
parameters.
The characteristic equation (4.1) can be written as:

Φ(s, τ) ·Ψ(s, T ) = −1. (4.9)

where

Φ(s, τ) =
P (s)

Q(s)
esτ (4.10)

and

Ψ(s, T ) =
1

(1 + sT )n
(4.11)

Using the fact that |Ψ(s, T )| < 1 the previous equation means that s can be
a root of Φ(s, τ) · Ψ(s, T ) = −1 if and only if |Φ(s, τ)| > 1. In other words,
we are able to reduce the analysis of (4.1) to the stability analysis of some
interconnection scheme (4.9) of the blocs Φ(s, τ) and Ψ(s, T ).
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Geometric interpretation of the crossing set

In order to give a geometric interpretation that allows deriving the crossing
set Ω, for s = jω, we rewrite (4.1) as

(
−Q(jω)

P (jω)

)1/n

e−jωτ/n = 1 + jωT (4.12)

The equation (4.12) can be interpreted as the intersection between a circle

with radius

∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
1/n

and a vertical line passing trough the point (1, 0), in

the complex plane. Therefore, the characterization of Ω can be easily derived
from the following figure:

1 + jωT

Re

Im

Figure 4.1: The intersection is possible only if the radius
∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣, is larger than

1. The extreme cases for intersection are given by
∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣ = 1 or
∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣ →
∞⇔ P (jω) → 0

We will not restrict ∠Q(jω) and ∠P (jω) to a 2π range. Rather, we allow
them to vary continuously within each interval Ωk. Thus, for each fixed m,
(4.4) and (4.5) represent a continuous curve. We denote such a curve as T k

m.
Therefore, corresponding to a given interval Ωk, we have an infinite number
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of continuous stability crossing curves T k
m, m = 0,±1,±2, .... It should be

noted that, for some m, part or the entire curve may be outside of the range
R2

+, and therefore, may not be physically meaningful. The collection of all
the points in T corresponding to Ωk may be expressed as

T k =
+∞⋃

m=−∞

(
T k

m

⋂
R2

+

)
.

Obviously,

T =
N⋃

k=1

T k.

4.3.2 Classification of stability crossing curves

We use the same notations and terminology as in the previous chapter. Let
the left and right end points of interval Ωk be denoted as ωl

k and ωr
k, respec-

tively. Due to assumptions (iv) and (v), it is not difficult to see that each
end point ωl

k or ωr
k must belong to one, and only one, of the following three

types.

Type 1. It satisfies the equation (4.8).

Type 2. It satisfies the equation (4.7).

Type 3. It equals 0.

Denote an end point as ω0, which may be either a left end or a right end
of an interval Ωk. Then the corresponding points in T m

k may be described as
follows.

If ω0 is of type 1, then T = 0. In other words, T m
k intersects the τ -axis

at ω = ω0.
If ω0 is of type 2, then as ω → ω0, T →∞ and

τ → 1

ω0

(
∠Q(jω0)− lim

ω→ω0

∠P (jω)− nπ

2
+ π + m2π

)
. (4.13)

Obviously,

lim
ω→ω0

∠P (jω) = ∠
[

d

dω
P (jω)

]

ω→ω0

(4.14)
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if ω0 is the left end point ωl
k of Ωk, and

lim
ω→ω0

∠P (jω) = ∠
[

d

dω
P (jω)

]

ω→ω0

+ π (4.15)

if ω0 is the right end point ωr
k of Ωk. In other words, T m

k approaches a
horizontal line.

Obviously, only ωl
1 may be of type 3. Due to the nonsingularity assump-

tions, if ωl
1 = 0, we must have 0 < |P (0)| < |Q(0)|. In this case, as ω → 0,

both T and τ approach ∞. In fact, (T, τ) approaches a straight line with
slope

τ/T → (∠Q(0)− ∠P (0)− n arctan α + π + m2π)

α
, (4.16)

where

α =

(∣∣∣∣
Q(0)

P (0)

∣∣∣∣
2/n

− 1

)1/2

.

We say an interval Ωk is of type lr if its left end is of type l and its right
end is of type r. We may accordingly divide these intervals into the following
6 types.

Type 11. In this case, T m
k starts at a point on the τ -axis, and ends at

another point on the τ -axis.

Type 12. In this case, T m
k starts at a point on the τ -axis, and the other

end approaches ∞ along a horizontal line.

Type 21. This is the reverse of type 12; T m
k starts at ∞ along a horizontal

line, and ends at the τ -axis.

Type 22. In this case, both ends of T m
k approaches horizontal lines.

Type 31. In this case, T m
k begins at ∞ with an asymptote of slope ex-

pressed in (4.16). The other end is at the τ -axis.

Type 32. In this case, T m
k again begins at ∞ with an asymptote of slope

expressed in (4.16). The other end approaches ∞ along a horizontal
line.

In the sequel, we present a number of examples to illustrate some cases
discussed above.
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Example 5 (Type 11) Let n = 1, P (s) = s2 + 3s + 2 and Q(s) =
√

10s.

Figure 4.2 (left) plots
|P (jω)|
|Q(jω)| versus ω. From the plot, it can be seen that

the crossing set Ω contains only one interval Ω = Ω1 = [1, 2] of type 11.
Correspondingly, the stability crossing curves T is shown in Figure 4.2 (right),
which consists of a series of curves with both ends on the τ -axis.
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0.95

1

1.05

1.1
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1.25

ω

|P(jω)|
|Q(jω)|

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6
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10

12

14

16

18

m=0

m=1

m=2

T

τ

Figure 4.2: Left: |P (jω)|
|Q(jω)| versus ω. Right: T m

1 , for m = 0, 1, 2.

Example 6 (Type 31) Consider a system with n = 1,

P (s) = s + 3 and Q(s) = 5 (4.17)

Figure 4.3 (left) plots
|P (jω)|
|Q(jω)| against ω. The crossing set Ω contains one

interval Ω = (0, 4] of type 31. The corresponding crossing curves is shown in
Figure 4.3 (right). It begins at infinity with an asymptote of slope calculated
by (4.16) as

τ/T = 1.6606 + 4.7124m,

and ends on the τ -axis.

Example 7 (Type 12 and 21) Figure 4.4 (left) plots
|P (jω)|
|Q(jω)| against ω

with n = 1,
P (s) = s2 + 2 and Q(s) = s. (4.18)
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Figure 4.3: Left: |P (jω)|
|Q(jω)| versus ω. Right: T m

1 for m = 0, 1, 2, 3, 4.

In this case Ω contains two intervals Ω1 = [1,
√

2) of type 12 and Ω2 = (
√

2, 2]
of type 21. The stability crossing curves consist of two series of curves: the
series corresponding to Ω1 start on the τ -axis and approach infinity along the
horizontal direction; the other series corresponding to Ω2, start at infinity
along the horizontal direction, and end on the τ -axis. Notice also that for the
same m, the asymptotes for k = 1 and k = 2 as ω → √

2 has a difference of
π/
√

2 ≈ 2.22, consistent to (4.13) to (4.15)
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√
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Figure 4.4: Left: |P (jω)|
|Q(jω)| versus ω. Right: T m

k for m = 0, 1, 2 and k = 1, 2.
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Example 8 (Type 22 and 32) Figure 4.5 (left) plots
|P (jω)|
|Q(jω)| against ω

with n = 1,
P (s) = s4 + 3s2 + 2 and Q(s) = s + 4. (4.19)

In this case Ω contains three intervals: Ω1 = (0, 1) of type 32, Ω2 = (1,
√

2)
of type 22Ω3 = (

√
2, 1.91] of type 21. The stability crossing curves consist

of three series of curves. Since type 21 has already been shown in Example
3 above, here we will only show the two series corresponding to Ω2 and Ω1.
The series corresponding to Ω2 of type 22 is shown in Figure 4.5 (right).
We can see that both ends approach infinity along the horizontal direction.
The series corresponding to Ω1 of type 32 is shown in Figure 4.6 (left). The
curves start from infinite in directions that can be calculated by (4.16), and
end at infinity along the horizontal direction.
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Figure 4.5: Left: |P (jω)|
|Q(jω)| versus ω. Right: T m

2 , m = 1, 2, 3.

In Figure 4.6 (right) we identify the stability regions in the corresponding
delay parameters space. The method used to derive the stability regions is
described in details in the next paragraphs.

4.3.3 Tangents and smoothness

For a given k we will discuss the smoothness of the curves in T m
k and thus

T =
⋃N

k=1

⋃+∞
m=−∞

(T m
k

⋂
R2

+

)
. In this part we use an approach based on the
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2 , m = 0, 1, 2. Right: Stability regions for the system 4.19

implicit function theorem. For this purpose we consider T and τ as implicit
functions of s = jω defined by (4.1). For a given m and k, as s = jω moves
along the imaginary axis with ω ∈ Ωk, (T, τ) = (T (ω), τ(ω)) moves along
T m

k . For a given ω ∈ Ωk, let

R0 = Re

(
j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Re {[nTP (jω) + (1 + jωT )P ′(jω)]

· (1 + jωT )n−1 + (Q′(jω)− τQ(jω))e−jωτ
}

,

I0 = Im

(
j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Im {[nTP (jω) + (1 + jωT )P ′(jω)]

· (1 + jωT )n−1 + (Q′(jω)− τQ(jω))e−jωτ
}

,

R1 = Re

(
1

s

∂D(s, T, τ)

∂T

)

s=jω

= Re
(
n(1 + jωT )n−1P (jω)

)
,
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I1 = Im

(
1

s

∂D(s, T, τ)

∂T

)

s=jω

= Im
(
n(1 + jωT )n−1P (jω)

)
,

R2 = Re

(
1

s

∂D(s, T, τ)

∂τ

)

s=jω

= −Re
(
Q(jω)e−jωτ

)
,

I2 = Im

(
1

s

∂D(s, T, τ)

∂τ

)

s=jω

= −Im
(
Q(jω)e−jωτ

)
.

Then, since D(s, T, τ) is an analytic function of s, T and τ , the implicit
function theorem indicates that the tangent of T m

k can be expressed as

(
dT

dω
dτ

dω

)
=

(
R1 R2

I1 I2

)−1 (
R0

I0

)

=
1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (4.20)

provided that

R1I2 −R2I1 6= 0. (4.21)

It follows that Tk is smooth everywhere except possibly at the points where
either

R1I2 −R2I1 = 0, (4.22)

or when
dT

dω
=

dτ

dω
= 0. (4.23)

From the above discussions, we can conclude the following Proposition.

Proposition 12 The curve Tm
k is smooth everywhere except possibly at the

points corresponding to s = jω in either of the following two cases:

1) s = jω is a multiple solution of (4.1);

2) ω is a type 1 end point of Ωk.

Proof. From the above discussion, we only need to show that (4.22) or
(4.61) can be satisfied only in the above two cases.
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If (4.61) is satisfied then, in view of (4.20), R0 = I0 = 0, which implies

∂D

∂s
= 0.

This, together with D = 0, means that s = jω is a multiple solution of (4.1)
in case 1) above.

If Condition (4.22) is satisfied, then

I1

R1

=
I2

R2

,

or

∠
(
n(1 + jωT )n−1P (jω)

)
= ∠

(−Q(jω)e−jωτ
)
.

But (4.1) implies

∠ ((1 + jωT )nP (jω)) = ∠
(−Q(jω)e−jωτ

)
.

Therefore, ∠(1 + jωT ) = 0, which in turn means T = 0. From this, we can
conclude |P (jω)| = |Q(jω)|, and ω is a type 1 end point of Ωk.

4.3.4 Direction of crossing

Next we will discuss the direction in which the solutions of (4.1) cross the
imaginary axis as (T, τ) deviates from the curve T m

k . We will call the di-
rection of the curve that corresponds to increasing ω the positive direction.
We will also call the region on the left hand side as we head in the positive
direction of the curve the region on the left.

To establish the direction of crossing we need to consider T and τ as
functions of s = σ + jω, i.e., functions of two real variables σ and ω, and
partial derivative notation needs to be adopted. Since the tangent of T m

k

along the positive direction is

(
∂T

∂ω
,
∂τ

∂ω

)
, the normal to T m

k pointing to

the left hand side of positive direction is

(
−∂τ

∂ω
,
∂T

∂ω

)
. Corresponding to a

pair of complex conjugate solutions of (4.1) crossing the imaginary axis along

the horizontal direction, (T, τ) moves along the direction

(
∂T

∂σ
,
∂τ

∂σ

)
. So, as

(T, τ) crosses the stability crossing curves from the right hand side to the left
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hand side, a pair of complex conjugate solutions of (4.1) cross the imaginary
axis to the right half plane, if

(
∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

> 0, (4.24)

i.e. the region on the left of T m
k gains two solutions on the right half plane.

If the inequality (4.24) is reversed then the region on the left of T m
k loses two

right half plane solutions. Similar to (4.20) we can express
(

dT

dσ
dτ

dσ

)

s=jω

=
1

R1I2 −R2I1

(
R0R2 + I0I2

−R0R1 − I0I1

)
. (4.25)

Using this we arrive at the following Proposition.

Proposition 13 Let ω ∈ (ωl
k, ω

r
k) and (T, τ) ∈ Tk such that jω is a simple

solution of (4.1) and D(jω′, T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (T, τ) is not an
intersection point of two curves or different sections of a single curve of T ).
Then a pair of solutions of (4.1) cross the imaginary axis to the right, through
s = ±jω if R2I1 − R1I2 > 0. The crossing is to the left if the inequality is
reversed.

Proof.Direct computation shows that
(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

=
(R2

0 + I2
0 )(R2I1 −R1I2)

(R1I2 −R2I1)2

Therefore (4.24) can be written as R2I1 −R1I2 > 0.

4.4 Illustrative Examples

In order to illustrate the cases presented in the previous sections, we shall
consider two examples: the linearized Cushing equation with a gap, and a
second-order example. In the sequel we find the crossing set, we draw the
crossing curves and the stability regions for the system to be considered. To
complete this section we give some robustness stability issues. More precisely,
we will study what happens with a characteristic root of some second-order
system when we modify the polynomial P by a ”small” term.
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4.4.1 Linearized Cushing equation with a gap

In this example, we apply the above method for the Cushing linearized equa-
tion (s + a)(1 + sT )n + be−sτ = 0. First it is easy to remark that the only
interesting case is |a| < |b|. All the other cases do not present any stability
switch since the crossing set Ω is empty.

If |a| < |b| then Ω = (0,
√

b2 − a2 ] and the corresponding pairs (T, τ) are
given by:

T =
1

ω

[(
b2

ω2 + a2

)1/n

− 1

]1/2

, τi =
1

ω

[
arg

( −b

(a + jω)(1 + jωT )n

)
+ 2iπ

]

According with the Proposition 12 we get:

lim
ω→√b2−a2

T = 0, lim
ω→0

T = ∞, lim
ω→0

τi = ∞

and

lim
ω→√b2−a2

τi =
1√

b2 − a2

(
2iπ + arg

−b

a
− arctan

√
b2 − a2

a

)
.

Also the slopes of the corresponding asymptotes are given by

lim
ω→0

τ

T
=

−n arctan

[(
b2

a2

)1/n

− 1

]1/2

+ arg
−b

a
+ 2iπ

[(
b2

a2

)1/n

− 1

]1/2

The following pictures plots τk, k ∈ {0, 1, 2, 3, 4} against T in the case n = 1
and n = 4 for a = 3 and b = 5. We can easily see that τk+1(ω) > τk(ω), ∀k >
i0 and ω ∈ Ω.
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Figure 4.7: τk, k ∈ {0, 1, 2, 3, 4} versus T when n = 1
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Figure 4.8: τk, k ∈ {0, 1, 2, 3, 4} versus T when n = 4

Proposition 14 For the previous system all the crossing directions of the
characteristic roots are towards instability.

Proof We can easily compute

ds

dτ

∣∣∣∣
s=jω

=
jωbe−jωτ

(1 + jωT )n + nT (jω + a)(1 + jωT )n−1 − bτe−jωτ
(4.26)
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and then

sgn Re

(
ds

dτ

)−1
∣∣∣∣∣
s=jω

= sgn

(
ω

a2 + ω2
+

nωT 2

1 + ω2T 2

)
> 0 (4.27)

and the proof is complete. ¥

So, after the first cross the stability is lost and never regained. Therefore,
for all n, we have only one stability region delimited by T 0.

4.4.2 Second-order time-delay linear system with a gap

Consider the following second order system: Q(s) = s and P (s) = s2 + 2.
Using (4.3) we compute the crossing set Ω = Ω1 ∪ Ω2, where Ω1 = [1,

√
2) is

of type 12, and Ω2 = (
√

2, 2] is of type 21. Simple computations show that

T =
1

ω

√(
ω2

(2− ω2)2

)1/n

− 1

and

τm =
1

ω

(
arg

jω

(ω2 − 2)(1 + jωT )n
+ 2mπ

)
.

According to the result of the Proposition 12 we have lim
ω→1

T = 0, lim
ω→2

T = 0,

lim
ω→√2

T = ∞, lim
ω→1

τm = −π

2
+ 2mπ, lim

ω→2
τm =

π

4
+ mπ and

lim
ω→√2+0

τm =
[2k − (n− 1)/2]π√

2

lim
ω→√2−0

τk =
[2k − (n + 1)/2]π√

2

In the sequel, RHP will denote the right half of the complex plane.
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Figure 4.9: τm, m ∈ {0, 1, 2, 3} versus T when n = 1
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Proposition 15 For the system presented in this case the crossing direction
of the characteristic equation is towards stability for ω <

√
2 and towards

instability if ω >
√

2. Therefore one can obtain h stability regions, where h
is the first integer with min

ω<
√

2
τh(ω) ≥ max

ω>
√

2
τh+1(ω).

Proof Straight computations show us that
(

ds

dτ

)−1
∣∣∣∣∣
s=jω

= − 2

2− ω2
+

nTj

ω(1 + jωT )
− 1

ω2
+

jτ

ω
(4.28)

⇒ sgn Re

(
ds

dτ

)−1
∣∣∣∣∣
s=jω

= sgn
−2ω4T 2 − ω2 − 2

2− ω2
(4.29)

so, sgn Re

(
ds

dτ

)−1
∣∣∣∣∣
s=jω

< 0 if ω <
√

2 and the inequality is reversed if

ω >
√

2. So, for a fixed T , when τ rise, each crossing of a branch that
corresponds to ω >

√
2 increase the number of zeros in RHP and each crossing

of a branch that corresponds to ω <
√

2 decrease the number of zeros in RHP.
Also we can use the following result:

R2I1 −R1I2 = n(1 + ω2T 2)n−1(2− ω2)2Im(1− jωT )

= −nωT (1 + ω2T 2)n−1(2− ω2)2 < 0

Using proposition 13, the previous inequality says that the left hand side of
all crossing curves has two fewer solution than the right hand side of the
same curve. We illustrate this result in figure 4.9.
The last part of the proposition states that we can have one switch to stabil-
ity if between two instability crossings we have at least one stability crossing.
¥

4.5 Robustness stability issues

4.5.1 Stability radius deviation

We consider now the problem of the computation of the maximum delay
deviation without changing the number of unstable roots of our system. More
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precisely, given the delay T0, τ0, such that the system with the characteristic
quasi-polynomial

D(s, T0, τ0) = P (s)(1 + sT0)
n + Q(s)e−sτ0

is stable or unstable (with a prescribed number of unstable roots), find the
maximum deviation d such that for any T ≥ 0, τ ≥ 0 the system with
characteristic quasi-polynomial

D(s, T, τ) = P (s)(1 + sT )n + Q(s)e−sτ

is stable/unstable as long as

√
(T − T0)2 + (τ − τ0)2 < d

Remark 8 In the case of T0 = τ0 = 0 and system free of delay stable, we
have the problem of finding the minimum delay to destabilize a stable system
without delay. Such a minimum delay value is called also delay margin.

We can reformulate the problem to find the distance between (T0, τ0) and T .
In what follows we will show that there exists a point (T, τ) ∈ T where the
distance is reached. Therefore, we have a minimum problem not an infimum
problem. According to this remark, we will use in the sequel, minimum
instead of infimum and we will prove that our notation makes sense a little
later. Using

T =
N⋃

k=1

Tk,

where

Tk =
+∞⋃

m=−∞

(T m
k ∩ R2

+

)
,

we obtain
d = min{dm

k | m, k integers },
where

dm
k = min

{√
(T − T0)2 + (τ − τ0)2 | (T, τ) ∈ (T m

k ∩ R2
+

)}

Proposition 16 If T m
k is smooth, the distance between (T0, τ0) and T m

k ∩R2
+

is obtained in one of the following points:
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a) The point (T, τ) in the T m
k ∩ R2

+ where the tangent of T m
k is orthogonal

to the vector (T − T0, τ − τ0);

b) The intersection of T m
k with OT axis;

c) The intersection of T m
k with Oτ axis.

We note that there exists only a finite number of points in the previous three
items, so, the use of minimum in definition of dm

k is justified. On the other
hand the points in the last two items are independent of (T0, τ0) and can
be easily found. Therefore, in order to compute dm

k we need to identify the
points in item a). Using the definition of orthogonality and the expression of
the tangent (4.20) we get that the points in item a) must satisfy the following
relations:

f(ω) = (T − T0)(R0I2 −R2I0) + (τ − τ0)(R0I1 −R1I0) = 0, (4.30)

and
T ≥ 0, τ ≥ 0.

We can identify the solutions of (4.30) as the points where the sign of f(ω)
is changing. These points are revealed when ω sweeps the interval Ωk.

From proposition 4 and the characterization of the degenerate points we
can conclude that the degenerate points belong to one of the three cases
mentioned above.

Remark 9 In order to prove that the use of the minimum in the definition of
d is coherent we must show that only a finite number of dm

k is really important
in our computation. Obviously, in our definition we have an infinite number
of dm

k due to an infinite number of integers m. Therefore, we need to show
that one can consider only a finite number of m.

First we define:

∠Qk
min = min

ω∈Ωk

∠Q(jω), ∠Qk
max = max

ω∈Ωk

∠Q(jω)

∠P k
min = min

ω∈Ωk

∠P (jω), ∠P k
max = max

ω∈Ωk

∠P (jω)

Then, a bound of T m
k on Oτ axis can be easily found to be:

τmin =
1

ωr
k

(∠Qk
min − ∠P k

max −
nπ

2
+ (2m + 1)π)

τmax =
1

ωl
k

(∠Qk
max − ∠P k

min + (2m + 1)π)
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Since τmax ≥ τ ≥ 0 we can conclude that there exists some integer m1 such
that for m < m1, T m

k does not have to be considered in searching for d since
it is outside R2

+. Also, if we know already the distance from (T0, τ0) to a
point (T, τ) ∈ T is d0, then d ≤ d0. We search a value m2 such that for T m2

k

we obtain τmin − τ0 ≥ d0 and thus we can eliminate T m
k with m ≥ m2.

Numerical example

To have a better perspective of our results, we present a numerical example.
Our aim here is simply to show how the algorithm works.
Consider again the second-order system with Q(s) = s and P (s) = s2+2. For
T0 = τ0 = 0 the characteristic equation becomes s2 + s + 2 = 0. Clearly, the
last equation has two complex solution in the left half plane, so the system
without delay is stable. We want to find the minimum delay to destabilize
the system. To reach our goal we must compute the points in the three items
introduced in the previous section.
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1
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0

1

Figure 4.11: : T m
k , k ∈ {1, 2},m ∈ {0, 1}

The points in item b) represents the intersection with OT axis. There-
fore, we must solve the equation:

τ = 0 ⇔ π

2
+ arctan(ωT ) + rπ = 0

where r is even for ω <
√

2 and r is odd for ω >
√

2. Straightforward
computation show that the previous equation has no finite solution (τ →
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0 ⇔ T →∞). We can conclude that the points in item b), in this case, are
not relevant for the minimum delay deviation problem.
The points in item c) represents the intersection with Oτ axis.

T = 0 ⇔ ω2

(2− ω2)2
− 1 = 0

⇔ (ω2 − 1)(ω2 − 4) = 0 ⇔ ω ∈ {1, 2}

We can compute very easy

τ(1) =
3π

2
+ 2mπ

and

τ(2) =
π

2
+ 2mπ

So the closest point in item c) is
(
0,

π

2

)
, and the distance from (T0, τ0) is

evidently
π

2
.

To find the point in item a) we have to solve the equation [4.30]. It is obvious
from the figure 4.11 that we need only the point in item a) situated on T 0

2 .
Plotting f against ω (see the figure 4.12)we can identify the point in a) as
the point on Oω axis.
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X: 1.91
Y: −0.01395

Figure 4.12: : f versus ω
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More exactly, we get ω ' 1.91, T ' 0.306 and τ ' 0.545. So the minimal
distance from (0, 0) to a point in a) is approximately 0.625. In conclusion,
the minimum delay to destabilize the system without delay, is approximately
0.625.

4.5.2 Parametric robustness

In this paragraph we consider the system given by P (s) = s2+α2, Q(s) = k
and we are concerned by the behavior of a characteristic root when we add a
small term (2εαs) to P . More exactly, we consider sref = jωref an imaginary
characteristic root and we want to see the condition under which it moves to
the right or to the left half plain. In order to do this we will use an approach
based on Taylor expansion theorem. So, in the sequel, we consider that sref

is a root of

(s2 + α2)(1 + sT )n + ke−sτ = 0. (4.31)

For ε sufficiently small we can consider that a solution of

(s2 + 2εαs + α2)(1 + sT )n + ke−sτ = 0. (4.32)

is sref + εs1,ref . This will lead us at the following relation:

((sref + εs1,ref )
2 + 2εα(sref + εs1,ref ) + α2) [1 + (sref + εs1,ref )T ]n

+ke−(sref+εs1,ref )τ = 0

or equivalently

[s2
ref + α2 + ε(2srefs1,ref + 2αsref ) + ε2(s2

1,ref + 2αs1,ref )](1 +

+srefT + εs1,refT )n = −ke−sref

(
1− εs1,refτ +

ε2s2
1,ref τ2

2
+ ...

)
.

Identifying the free terms and coefficients of ε in the last equation we get
respectively:

(s2
ref + α2)(1 + srefT )n + ke−sref τ = 0, (4.33)

which is evidently true, and

(2srefs1,ref + 2αsref )(1 + srefT )n + ns1,refT (s2
ref + α2)(1 + srefT )n−1

= ke−sref s1,refτ
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Using (4.33), the last equation can pe expressed as follows

(2srefs1,ref + 2αsref )(1 + srefT )n + ns1,refT (s2
ref + α2)(1 + srefT )n−1

= −s1,refτ(s2
ref + α2)(1 + srefT )n ⇔

(2srefs1,ref + 2αsref )(1 + srefT ) + ns1,refT (s2
ref + α2)

= −s1,refτ(s2
ref + α2)(1 + srefT ) ⇔

s1,ref =
2αsref (1 + srefT )

2sref (1 + srefT ) + nT (s2
ref + α2) + τ(s2

ref + α2)(1 + srefT )

We remember here that sref = jωref . Therefore, adding the small term 2εαs
to P , the root will cross to the right half plane (instability) if Re(s1,ref ) > 0
and cross to the left half plane (stability) if the Re(s1,ref ) < 0. So, we are
interested in finding the sign of Re(s1,ref ). It is clear that sgnRe(s1,ref ) =
sgnRe(s1,ref )

−1 and straightforward computation lead to the following:

sgnRe(s1,ref ) = sgn
1

α
· sgn

(
−1 +

nT 2(α2 − ω2
ref )

2 + 2ω2
refT

2

)

= sgnα · sgn(−2− (n + 2)ω2
refT

2 + nT 2α2)

= −sgnα · sgn(2 + (n + 2)ω2
refT

2 − nT 2α2) (4.34)

To conclude this paragraph we summarize the previous computations and
remarks in the next theorem.

Theorem 9 The behavior of an imaginary characteristic root of (4.31) when
we add a small term to P is given by the following statement.

A) If T ≤
√

2

nα2
then sgnRe(s1,ref ) = −sgnα so the root cross towards in-

stability if α < 0 and the root cross towards stability if α > 0.

B) If T >

√
2

nα2
we have two possibilities

* if ωref <

√
nT 2α2 − 2

T
√

n + 2
then sgnRe(s1,ref ) = sgnα
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* if ωref >

√
nT 2α2 − 2

T
√

n + 2
then sgnRe(s1,ref ) = −sgnα

The procedure above can be also used for general systems if we find a method
to express in a simple form the value of s1,ref . More exactly, assuming that
sref = jωref is a root situated on the imaginary axis, we can study its behav-
ior when we modify the polynomial P with a small term. Since the roots of
the characteristic quasipolynomial depends continuously on its coefficients,
a small modification of the coefficients will imply a small modification of the
root (sref + εs1,ref ). Furthermore, the tendency towards stability/instability
is given by the sign of the real part of s1,ref .

Remark 10 In order to compute sgnRe(s1,ref ) we can use either the method
based on Taylor expansion presented above, or the classical method that con-

sist of computing
ds

dτ

4.6 Further remarks, and limit cases

The main interest of this section is twofold: first, to show the coherence of
our result with respect to the existent results, and second, to see that this
method can be used to study the stability of other systems. To be more
exact, first part of this section is devoted to prove that from our results we
can obtain the characterization of a special case of a linear system with two
discrete delays. The second part of the section presents how we can use our
geometric approach to study the stability of the output feedback stabilization
problem by using delays in the corresponding control law.

4.6.1 Two delays versus delay with a gap

The general linear scalar time-delay systems of arbitrary order with two de-
lays was studied by Gu, Niculescu and Chen in [55]. It is obvious that when
n → ∞ we obtain the limit case consisting in a system with two delays. In
the sequel we show that our results give, in this special case of a system with
two delays, the same stability crossing curves like those obtained by Gu et

98



al in [55].

Regarding to the system described by

P (s)e−sτ1 + Q(s)e−sτ2 = 0, (4.35)

under the following appropriate assumptions (which represents nothing else
that the assumption 2 from Chapter 3)

i) P (0) + Q(0) 6= 0;

ii) The polynomials P (s) and Q(s) do not have any common zeros;

Gu et al [55] derived the following results:

* The crossing set Ω consist in a finite number of points. More precisely, Ω
is the set of all ω 6= 0 which are the roots of the equation

|P (jω)| = |Q(jω)|. (4.36)

* Tω consists of the solutions in R2
+ of

arg P (jω)− ωτ1 = arg Q(jω)− ωτ2 + (2l + 1)π (4.37)

where l ∈ Z such that τ1 and τ2 are simultaneously positive. So, Tω

consists of an infinite number of straight lines of slope 1 of equal dis-
tances.

Next, we consider the time-delay system with a gap whose dynamics is
given by the following characteristic equation:

P (s)
(
1− s

τ1

n

)n

+ Q(s)e−sτ2 = 0 (4.38)

We suppose that polynomials P and Q satisfy the assumption (i). In order
to be in the same condition with the case of the system with two delays, we
also presume that |P (0)| > |Q(0)| and P (jω) 6= 0, ∀ω ∈ R.

Remark 11 It is clear that:

• The equation (4.38) is just another form of the equation (4.1);

• When n →∞ in (4.38) we get the equation (4.35).
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Straightforward computations show that in our case of time-delay system
with a gap, the crossing points (τ

(n)
1 , τ

(n)
2 ) corresponding to ω∗ ∈ Ω are given

by

τ
(n)
1 =

n

ω∗

(∣∣∣∣
Q(jω∗)
P (jω∗)

∣∣∣∣
2
n

− 1

) 1
2

, (4.39)

τ
(n)
2 =

1

ω∗

(
arg Q(jω∗)− arg P (jω∗) + n arctan

ω∗τ
(n)
1

n
+ (2l + 1)π

)
,

where l ∈ Z such that τ
(n)
2 > 0. Like we already showed, in the first section of

this chapter, the set Ω consists in a finite number of interval of finite length.
Although Ω doesn’t change when n changes, we will show that if n → ∞
the crossing curves of (4.38) approach the crossing curves of (4.35). In this
sense, we have the following results:

Theorem 10 The following statements are true:

1. The slopes of the tangents to the crossing curves of the system described
by (4.38) are 1;

2. For τ
(n)
1 defined in (4.39) we have

lim
n→∞

max
ω∈Ωk

τ
(n)
1 (ω) = ∞; (4.40)

3. Each crossing curve has only one turning point with respect to τ
(n)
1 .

Proof 1) Let ω∗ be and end of one interval of Ω. The equation of the
tangent in a point ω ∈ Ω is given by:

dτ
(n)
2

dτ
(n)
1

=
I0R1 −R0I1

R0I2 − I0R2

= −Im[(R0 + jI0)(R1 − jI1)]

Im[(R0 + jI0)(R2 − jI2)]
(4.41)

Since

R1 + jI1 = −P (jω)

(
1− jω

τ
(n)
1

n

)n−1

,

R2 + jI2 = P (jω)

(
1− jω

τ
(n)
1

n

)n

,
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and
lim

ω→ω∗
τ

(n)
1 = 0 (4.42)

replacing in (4.41) and passing to the limit we get

lim
ω→ω∗

dτ
(n)
2

dτ
(n)
1

= 1 (4.43)

2) Let τ
(n)
1 (ωMn) be the maximum value of τ

(n)
1 on Ωk. In this case, obviously∣∣∣∣

Q(jωMn)

P (jωMn)

∣∣∣∣ > 1 and τ
(n)
1 (ωMn) 6= 0. Therefore, it is clear that

lim
n→∞

τ
(n)
1 (ωMn) = lim

n→∞
n

ωMn

(∣∣∣∣
Q(jωMn)

P (jωMn)

∣∣∣∣
2
n

− 1

) 1
2

= lim
n→∞

√
2n

ωMn

[
n

2

(∣∣∣∣
Q(jωMn)

P (jωMn)

∣∣∣∣
2
n

− 1

)] 1
2

= lim
n→∞

√
2n

ωMn

[
lim

n→∞
n

2

(∣∣∣∣
Q(jωMn)

P (jωMn)

∣∣∣∣
2
n

− 1

)] 1
2

= ∞ ·
[
ln

∣∣∣∣
Q(jωMn)

P (jωMn)

∣∣∣∣
2
n

] 1
2

= ∞

3) A turning point with respect of τ
(n)
1 is characterized by a vertical tangent.

So, we want to prove that there is only one positive value of τ
(n)
1 which

satisfies the equation I0R2 − R0I2 = 0. We can rewrite the equation as
follows:

Im

(
Q′(jω)

Q(jω)
− P ′(jω)

P (jω)
+

nτ
(n)
1

n− jωτ
(n)
1

)
= 0 ⇔

Im

(
Q′(jω)

Q(jω)
− P ′(jω)

P (jω)

)
+

nω
(
τ

(n)
1

)2

n2 + ω2
(
τ

(n)
1

)2 = 0

So, we get a second order equation in τ
(n)
1 with only one positive solution. ¥
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Remark 12 Summarizing the previous theorem we can conclude that each
crossing curve of (4.38) tends to split in two straight lines of slope 1. Each
of this straight lines passes through an end point of initial curve.

To understand better we illustrate the remark above in the figure 4.13. To
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35

Figure 4.13: Each curve in (T )k tends to split in two straight lines passing through
the ends of the curve

reach our goal we only need to prove that the straight lines presented in the
previous remark are the crossing curves for (4.35). It is clear that τ

(n)
1 varies

between 0 and τ
(n)
1 (ωMn). We already showed that τ

(n)
1 (ωMn) −→

n→∞
∞. So,

when n →∞ we get τ1 ∈ [0,∞) and it rest to prove the next proposition.

Proposition 17 Using the notations introduced above, the following relation
holds:

τ
(n)
2 −→

n→∞
τ2.

Proof. Passing to the limit when n →∞ in the second relation of (4.39) we
get (4.37). Straightforward computations. ¥
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4.6.2 Delayed output feedback

We have included the study of this type of linear system because as we will
see in the sequel we get a characteristic equation, with two parameters that
resembles to (4.1). The existence of a time delay at the actuating input
in a feedback control systems may induce instability or poor performance
for the closed-loop schemes as pointed out by [54, 107] (and the references
therein). In the same time, there exists situations in which the presence of
appropriate delay in the actuating input may also stabilize the unstable delay
free feedback system as suggested by [112] in the oscillator case.

Consider the following class of strictly proper SISO open-loop systems:

P (s)

Q(s)
= cT (sIn − A)−1b (4.44)

where (A, b, cT ) is a state-space representation of the open-loop system, with
the controller law:

u(t) = −ky(t− τ). (4.45)

We are interested to find the pair (k, τ) such that the controller (4.45) stabi-
lize the SISO system (4.44). Such a problem proved its interest in the case of
congestion controllers in high-speed networks [70, 108]. Starting from (4.44)
with the controller law given by (4.45) we find the characteristic equation of
the closed-loop expressed as follows:

Q(s) + kP (s)e−sτ = 0. (4.46)

The aim of section is twofold: first, to understand the underlying stability
mechanism in presence of delays; second, to give a complementary approach
for the characterization of all stabilizing pair, to the algebraic one proposed
by Niculescu et al in [112].

In this case, we are interested in finding the stability regions, in the
k, τ - parameter space, of the system whose dynamics are described by the
following characteristic equation:

D(s, k, τ) = Q(s) + kP (s)e−sτ = 0 (4.47)

with polynomials P and Q satisfying the following assumptions:

Assumption 6 i) deg(Q) ≥ deg(P );
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ii) P (s) and Q(s) do not have common zeros;

iii) P ′(jω) 6= 0 whenever P (jω) = 0.

The first assumption is needed in order to ensure that for a fixed value of
k, the real part of any characteristic roots is bounded to the right. This
assumption implies that k will have some limited domain |k| ≤ kmax since
larger gain values will induce instability for infinitesimal delay values. The
second assumption is already discussed in the previous sections.

Our description will mainly follow the algorithm presented in [55, 99] and
based on some simple geometric interpretation of the characteristic equation
in the parameter space. First at all we present some necessary considerations
proposed by Niculescu et al in [112] using a continuity principle argument
for the dependence of the roots of the characteristic equation with respect to
some real parameter.Introduce now the following Hurwitz matrix associated

to some polynomial A(s) =
na∑
i=0

ais
na−i:

H(A) =




a1 a3 a5 . . . a2na−1

a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4
...

. . .
...

0 0 0 . . . ana



∈ Rna×na , (4.48)

where the coefficients al are assumed to be zero (al = 0), for all l > na.
We consider H(Q), H(P ) ∈ Rn×n where deg(Q) = n > m = deg(P ), the
coefficients ql = 0 for all l > n and the coefficients pl = 0 for all l > m.
We consider also, the set of root of D(s, k, 0) located in the closed right half
plane, denoted by U . With these notations, the following result is a simplified
form of Lemma 2 in [112] which is a slight modification, and generalization
of Theorem 2.1 by Chen [28]:

Lemma 2 Let λ1 < λ2 < ... < λh, with h ≤ n be the real eigenvalues of the
matrix pencil Σ(λ) = λH(P ) + H(Q) inside the interval (−kmax, kmax).

Then, card(U) remains constant as k varies within each interval (λi, λi+1).
The same holds for the intervals (−kmax, λ1) and (λh, kmax).

We also note that the lemma above gives a simple method to compute card(U)
by computing the generalized eigenvalues of the matrix pencil Σ(λ).
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Let T denote the set of all (k, τ) ∈ R× R+ such that (4.47) has at least
one zero on imaginary axis.

Remark 13 If ω is a real number and (k, τ) ∈ R× R+ then

Q(−jω) + kP (−jω)ejωτ = Q(jω) + kP (jω)e−jωτ

Therefore, in the remaining part of this section, we only need to consider
positive ω. Since the gain k is finite, we can assume k within some finite
interval [α, β], which contains all generalized eigenvalues λi of the matrix
pencil Σ(λ).

Proposition 18 Given any ω > 0, ω ∈ Ω if and only if it satisfies:

| P (jω) | > 0, (4.49)

and all the corresponding pairs (k, τ) can be calculated by:

k(ω) = ±
∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣ ; (4.50)

τm(ω) =
1

ω
(∠P (jω)− ∠Q(jω) + (2m + εk + 1)π) (4.51)

m = 0,±1,±2, . . .

where εk =

{
0 if k ≥ 0
−1 if k < 0

.

Proof. For the necessity of (4.49), let ω be a crossing frequency in Ω and
apply modulus to the closed-loop equation:

Q(jω) + kP (jω)e−jωτ = 0. (4.52)

This implies that
|Q(jω)| = |k||P (jω)| (4.53)

is satisfied. It becomes clear that P (jω) > 0 is necessary. Otherwise,
P (jω) = 0, which implies Q(jω) = 0 for all the gains k, which contradicts
the technical assumption 6 (P and Q do not have common zeros).

For the sufficiency of (4.49), we only need to recognize that the pair
(k, τ) given by (4.50)-(4.51) makes s = jω a solution of the corresponding
characteristic equation of the closed-loop system.
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Remark 14 (small gain) Assume now that the open-loop SISO system does
not include oscillatory modes, that is Q(s) has no roots on the imaginary axis.
Some simple algebraic manipulations prove that for all the gains k satisfying
the inequality:

| k | <
1

supω>0

{
|P (jω)|
|Q(jω)|

} , (4.54)

the closed-loop system 4.47) is hyperbolic (see [58, 107] for further details
on such a notion), that is there does not exist any crossing roots on the
imaginary axis for all positive delays τ .

In other words, the closed-loop system is stable (unstable) for all de-
lays value if it is stable (unstable) in the free delays case. Furthermore,
the frequency-sweeping test above (4.54) gives a simple way to exclude some
k-interval from the beginning, since in such a case crossing roots can not
exist.

However, it is important to point out that such a frequency-sweeping test
(4.54) losses all its interest if if the polynomial Q(s) has roots on the imag-
inary axis (the corresponding upper bound becomes 0), that is in the case of
oscillatory systems (such a case will be considered in Section 4: Illustrative
examples).

In these circumstances, we can assume k within some finite interval
[α, β] ⊂ (−kmax, kmax), which contains all generalized eigenvalues λi of the
matrix pencil Σ(λ), but excluding the k-interval given by (4.54) if the SISO
system does not include oscillatory modes. Next, Lemma 1 ensures us that
the choice of the interval [α, β] includes all the remaining possibilities for
the system free of delay. In such a case, define `l := min{| α |, | β |} ≥ 0,
and `u := max{| α |, | β |} < ∞. Then, there are only a finite number of
solutions to each of the following three equations:

| Q(jω) | = `l | P (jω) |, (4.55)

| Q(jω) | = `u | P (jω) |, (4.56)

and

P (jω) = 0, (4.57)
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because P , and Q are polynomials satisfying the Assumptions 6. Therefore,
the crossing set Ω will be defined by all the frequencies ω > 0 satisfying
simultaneously the inequalities:

{
`l | P (jω) |≤| Q(jω) |≤ `u | P (jω) |,
| P (jω) |> 0.

(4.58)

In conclusion, due to the form of (4.58), and from the Assumptions 6, the
corresponding crossing set Ω consists of a finite number of intervals. Denote
these intervals as: Ω1, Ω2, . . ., ΩN . Then:

Ω =
N⋃

k=1

Ωk.

Remark 15 (strictly proper SISO case) In the case of a strictly proper
SISO system kmax = ∞ (that is no any constraints on the gain k), we note
that for k ∈ (β,∞) (or k ∈ (−∞, α)) we can still express Ω as a finite
number of intervals, but one of them has an infinite end.

Remark 16 (Invariance root at the origin) If
Q(0)

P (0)
∈ [α, β], then 0 will

be a characteristic root for all τ if k =
Q(0)

P (0)
, since e−sτ = 1 for s = 0, in-

dependently of the delay value τ . The last remark allows us to eliminate the

value
Q(0)

P (0)
from Ω if it is the case.

Remark 17 (Crossing characterization) The frequency-sweeping test (4.58)
above gives all the frequency intervals for which crossing roots exist for the
corresponding chosen gain interval, but it does not give any information on
the crossing direction.

In other words, such a test does not make any distinction between switches
and reversals. Such a problem will be considered in the next paragraphs (Di-
rection of crossing).

In the sequel, we consider Ωi = [ωl
i, ω

r
i ], for all i = 1, 2, . . . , N . Without

any loss of generality, we can order these intervals from left to right, i.e., for
any ω1 ∈ Ωi1 , ω2 ∈ Ωi2 , i1 < i2, we have ω1 < ω2.

We note that ωl
1 can be 0 and in this case Ω1 is open to the left.
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It is clear that k(ωl
i), k(ωr

i ) ∈ {α, β} for all i = 1...N if ωl
1 6= 0. We

will not restrict ∠Q(jω) and ∠P (jω) to a 2π range. Rather, we allow them
to vary continuously within each interval Ωi. Thus, for each fixed m, (4.50)
and (4.51) give us two continuous almost everywhere curves. We can lose the
continuity of the curve in the points which correspond to the case Q(jω) = 0.
For example, if Q(jω∗) is a real polynomial and its sign is changing at ω∗,
then ∠(Q(jω)) is not continuous in ω∗.

It should be noted that condition (4.50) and k finite, imply P (jω) 6=
0, ∀ω ∈ Ω. We denote the curves defined by (4.50) and (4.51) with T m±

i .
Therefore, corresponding to a given interval Ωi, we have an infinite number
of continuous stability crossing curves T m±

i , m = 0,±1,±2, ....
Finally, it should be noted that, for some m, part or the entire curve

may be outside of the range R × R+, and therefore, may not be physically
meaningful. The collection of all the points in T corresponding to Ωi may
be expressed as

Ti =
+∞⋃

m=−∞

[(T m+
i ∩ (R× R+)

) ∪ (T m−
i ∩ (R× R+)

)]

Obviously,

T =
N⋃

i=1

Ti.

Also it is easy to see that, for each Ωi, we define two curves, one to the right
of the Oτ axis and the other to the left. According to the fixed limits α, β of
the interval where k varies we can eliminate some of these curves. According
to the fixed limits α, β of the interval where k varies we can eliminate some
of these curves. The end points of these curves are classified as follows:

Type 1. It satisfies the equation k(ω) = α.

Type 2. It satisfies the equation k(ω) = β.

Type 3. It equals 0.

Obviously, only ωl
1 can be of type 3. We note that all the crossing curves

are situated in the vertical strip D between the lines k = α and k = β. Now,
let ω∗ be an end point of the interval Ωi. We have already said that each
T m+

i is an continuous almost everywhere curve, so, (k(ω∗), τm(ω∗)) is an end
point of T m±

i , and it can be characterized as follows:
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• If ω∗ is of type 1, then k(ω∗) = α and τ(ω∗) are finite. More precisely,
T m+

i intersects the vertical line k = α, which is the left bound of the
strip D.

• If ω∗ is of type 2 then k(ω∗) = α and τ(ω∗) are finite. Or, we may
say that T m+

i intersects the vertical line k(ω) = β, which is the right
bound of the strip D.

• If ω∗ is of type 2 then τ approaches ∞ and k approaches
Q(0)

P (0)
. In

other words, T m+
i has a vertical asymptote given by k =

Q(0)

P (0)
.

Remark 18 The previous description holds also for T m−
i .

As defined in the previous Chapter we say that an interval Ωk is of type
lr if its left end is of type l and its right end is of type r. We may divide
accordingly these intervals into 6 types.

For a given i, we will discuss the smoothness of the curves in T m±
i and thus

T =
+∞⋃

m=−∞

[(T m+
i ∩ (R× R+)

) ∪ (T m−
i ∩ (R× R+)

)]
. For this purpose, we

consider k and τ as implicit functions of s = jω defined by (4.47). We define
again the corresponding quantities R0, I0, R1, I1, R2 and I2. Then, since
H(s, k, τ) is an analytic function of s, k and τ , using the implicit function
theorem we obtain that the tangent of T m±

i can be expressed as

(
dk

dω
dτ

dω

)
=

1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
, (4.59)

provided that
R1I2 −R2I1 6= 0. (4.60)

It follows that T m±
i is smooth everywhere except possibly at the points where

either (4.60) is not satisfied, or when

dk

dω
=

dτ

dω
= 0. (4.61)

From the above discussions, we can conclude the following Proposition.
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Proposition 19 The curve Tm±
i is smooth everywhere except possibly at the

point corresponding to s = jω in any one of the following cases:

1) s = jω is a multiple solution of (4.47), and

2) ω is a solution of Q(jω) = 0 ⇔ k = 0.

Proof. If (4.61) is satisfied then s = jω is a multiple solution of (4.47).
On the other hand, R1I2 − R2I1 = −kω|P (jω)|2. If P (jω) = 0 we get
Q(jω) = 0 so, assumption 2 is not satisfied. Therefore, (4.60) is violated if
and only if k = 0. Obviously, k = 0 implies that Q(jω) = 0. So, we can
conclude that (4.60) is violated if and only if ω is a solution of Q(jω) = 0.

The direction of crossing is established in a same manner as in the previ-
ous section. More precisely we arrive to the following proposition.

Proposition 20 Let ω ∈ (ωl
i, ω

r
i ) and (k, τ) ∈ Ti such that jω is a simple

solution of (4.47) and H(jω′, k, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (k, τ) is not
an intersection point of two curves or different sections of a single curve of
T ). Then a pair of solutions of (4.47) will cross the imaginary axis to the
right, through s = ±jω if R2I1 − R1I2 > 0. The crossing is to the left if the
inequality is reversed.

Numerical examples

This paragraph is devoted to show the coherence of our study. In this sense,
we consider some classical examples in the literature and we compare our
conclusions with the existing ones. For the clarity of our presentation, we
use some figures for illustration.

Example 9 (Scalar delay system revisited) Consider the system given
by the transfer function

Hy,u(s) =
1

s + a
(4.62)

subject to the control law u(t) = −ky(t− τ) The corresponding characteristic
equation can be written as:

s + a + ke−sτ = 0. (4.63)

For a > 0 it is obvious that either for k = 0 or τ = 0, a + k > 0, we obtain
a stable equation. Using proposition 20 we conclude that all the crossings
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are towards instability. Boese [24] considered k > 0 and he proved that for
k ≤ a we get a delay independent stable system and for k > a we have only
one stability interval [0, τ0), where τ0 is a decreasing function of k.
Using our method for a = 3 we can draw the crossing curves and establish the
stability region as we can see in figure 4.14. In this case, we have card (U) =

2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

2
4

6

k

τ

m=2

m=0

m=1

stability
region

Figure 4.14: T m+
1 , m ∈ {0, 1, 2, } for the system (4.63)

{
0 if k > −3
1 if k ≤ −3

and for k ∈ [−5, 5] the crossing set Ω consists in one interval

(0, 4] of type 31. Therefore, we obtain one stability interval for k > 3, and
this interval is [0, τ0), where τ0 is given by:

τ0 =
1

ω

(
π − arctan

ω

3

)
=

1√
k2 − 9

(
π − arctan

√
k2 − 9

3

)
,

which is nothing else that the formula given by Boese for the upper bound of
the stability interval.
For a = −3 (open-loop system unstable) and k ∈ [−5, 5], once again we
derive Ω = (0, 4] and

card (U) =

{
0 if k > 3
1 if k ≤ 3

.

Since all the crossing direction are towards instability we need to plot only the
first stability crossing curve. As we can see in figure 4.15 the system quickly
become unstable as τ increasing. ¥
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Figure 4.15: T 0+
1 for the system (4.63) with a = −3

Example 10 A linear oscillator model subject to delayed
output. Consider the transfer function

Hy,u(s) =
1

s2 + 2
(4.64)

subject to the control law u(t) = −ky(t−τ). The corresponding characteristic
equation is given by:

s2 + 2 + ke−sτ = 0. (4.65)

For k ∈ (−2, 0) the results regarding stability intervals of the systems can

be found in [109, 112] and they say that for τ ∈
(

0,
π√

2 + |k|

)
the system

is stable (see also [1] for a different stability argument). The number of
stabilizing delay interval is a decreasing function of |k|.

Our computation in this case point out that for k ∈ (−2, 0) the crossing
set Ω consist in one interval (0, 2] of type 32. We note that according to
proposition 2 all the crossing curves are not continuous in the points which
correspond to k = 0.

Obviously, card (U) =

{
1 if k < −2
2 if k > −2

. Proposition 20 says that for k < 0

the region on the right hand side of each crossing curve has two fewer unsta-
ble roots.
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Remark 19 If ω ∈ (0,
√

2) then τ0(ω) = 0 as we can deduce from the com-
putation below:

τ0 =
1

ω
(∠(1)− ∠(2− ω2) + (εk + 1)π) = 0, ∀ω ∈ (0,

√
2) (4.66)

More precisely, looking at the next figure it is clear that we recover the result
proposed in [109, 112]. ¥
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2 unstable roots

2 unstable roots4 unstable roots
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k

τ

m=1

m=3
m=2

m=2
m=1

m=0

m=3

Figure 4.16: τi, m ∈ {0, 1, 2, 3} versus k for the system (4.65)

Example 11 (Crossing curves of type 11 and 22) This example is only
to illustrate that it is possible to have all type of curves enumerated in the clas-
sification section. In the sequel we present a dynamical system with crossing
curves of type 11, 22, 31 and 32.

Consider the transfer function

Hy,u(s) =
1

s3 − 2s2 + 9s− 8
(4.67)

subject to the control law u(t) = −ky(t−τ). The corresponding characteristic
equation is given by:

s3 − 2s2 + 9s− 8 + ke−sτ = 0. (4.68)
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We note that this system can not be stabilized by any static output feedback
free of delay. Straightforward computations show us that

card (U) =





1 if k < −10
3 if k ∈ (−10, 8)
2 if k > 8

.

Taking α = −10 and β = 10, we get Ω = (0, 1] ∪ [2, 3] and T m+
1 is of type

32, T m−
1 is of type 31, T m−

2 is of type 11, T m+
2 is of type 22. We present the

last three curves in the following three pictures. Similar conclusions can be
derived using the method presented in [112]. ¥
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Figure 4.17: T m+
2 , m ∈ {0, 1, 2} for the system (4.68)

Example 12 (Sixth-order unstable system) In this example, we con-
sider a system that can not be stabilized by a static output feedback, but
it can be stabilized by a delayed output feedback. This example is borrowed
from [112].

Consider the system:

Hy,u(s) =
1

s6 + p1s5 + p2s4 + p3s3 + p4s2 + p5s + p6

(4.69)

114



−10 −9.5 −9 −8.5 −8
0

20

40

60

80

100 τ

k

m=0

m=1

m=2

−10 −9.5 −9 −8.5 −8
2

3

4

5

6

7

8

9

10

11

k

τ

m=2

m=1

m=0

Figure 4.18: T m−
i , m ∈ {0, 1, 2}, i ∈ 1, 2 for the system (4.68)

where

p1 = −6.0000000e− 04, p2 = 1.4081634e + 00, p3 = −5.6326533e− 04,
p4 = 4.3481891e− 01, p5 = −8, 6963771e− 05, p6 = 2.6655565e− 02.

Using Lemma 1, we obtain:

card (U) =





3 if k < −0.0707886,
5 if k ∈ (−0.0707886;−0.0266556),
6 if (−0.0266556; 0.0120036),
4 if k > 0.0120036.

.

The stability crossing curves and the first two stability region for k ∈ (0, 0.16)
are plotted in figure 4.20 (see also the graphics of k = k(ω)).

4.7 Concluding remarks

In this chapter, we have explored and presented various problems related
to the crossing stability curves. We have characterized the geometry of the
stability crossing curves in the parameter space for a class of a distributed
delay systems. A robustness analysis (with respect to the parameters; delay
radius) is given. Some limit cases and a coherence study are also presented
in this chapter.

115



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

ω

k

Figure 4.19: The dependence of the gain k as a function of ω for some positive
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Figure 4.20: Stability crossing curves for the system given by (4.69)
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Part III

Algebraic approach
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Chapter 5

Distributed delays analysis:
algebraic methods

This chapter focuses on the stability of the class of linear systems including
gamma-distributed delay with a gap described by (2.38). More precisely, a
complete characterization of stability regions is given in the corresponding
(delay, mean-delay) parameter-space. Optimal delay intervals are explicitly
computed. The stabilizing/destabilizing delay effect will be explicitly out-
lined, and discussed. Several illustrative examples complete the chapter.

5.1 Introductory remarks

This chapter can be seen as the “dual” of [99], presented in the previous
chapter, where the characterization of the crossing curves was given using
some geometric arguments. More precisely, we shall explicitly compute all

the “points”

(
τ,

τ̄

n + 1

)
, for which a change of the number of roots in C+

will take place, and next for each mean-delay value interval, an explicit com-
putation of the corresponding (stability) delay interval can be performed.

The interest of the approach is twofold :

• First, the computation of the corresponding delay intervals can be per-
formed relatively easily, and the corresponding algorithm includes a fi-
nite number of steps. Furthermore, various interesting instability cases
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can be detected, and the underlying ideas can be applied to various
other delay analysis problems;

• Second, the propagation delay (gap τ) can be used as a design para-
meter in the case of controlling objects over communication network.
Such an idea was already exploited in the context of constant com-
munication delays (see, e.g., [108]), and to the best of the authors’
knowledge, there does not exist any extension in the distributed de-
lay case. In other words, the propagation delay can be used to define a
so-called “wait-and-act” strategy similar to the one encountered in syn-
chronization, and also mentioned in the case of delayed output feedback
stabilization problems [107], etc.

The remaining chapter is organized as follows: In Section 2 we briefly
present the problem formulation and some prerequisites necessary to develop
our (frequency-domain) stability analysis. The main results are presented in
Section 3, and illustrative examples are given in Section 4. Some concluding
remarks end the chapter. The facts presented in this chapter can be also
found in [100]. The approach below is inspired by Niculescu et al [112] for
a class of SISO systems with one discrete delay.

5.2 Basic ideas, and prerequisites

The problem addressed in the sequel can be resumed as follows: deriving
necessary, and sufficient conditions in terms of (T, τ) for guaranteeing the
asymptotic stability of (4.1).

In this sense, the following two quantities will play a major role in the
stability study (see also [112] in a different frame):

1) card(U), where U is the set of roots of D(s, T, 0) = 0, situated in the
closed right half plane, and card(·) denotes the cardinality (number of
elements).

2) card(S), where S = {ω > 0 | (1 + ω2T 2)n|P (jω)|2 − |Q(jω)|2 = 0}.
Related with the hyperbolicity notion discussed in the previous chapter

we remember the following result:

120



Proposition 21 The system (4.1) is hyperbolic for all (T, τ) ∈ R+ × R+ if
and only if:

|P (jω)| > |Q(jω)| , ∀ω ∈ R∗, (5.1)

Furthermore, if card(U) = 0 (> 0) for T = 0, the system is delay-independent
stable (unstable).

Remark 20 In the stability case, the frequency-sweeping test (5.1) repre-
sents a slight modification of the Tsypkin criterion (see, for instance, [107,
54]), and it gives a simple condition for which card(S) = 0 for all the pairs
(T, τ).

In the sequel, we shall assume that the condition (5.1) in Proposition 21
does not hold. If Proposition 21 holds, then we have stability (or instability)
for all the pairs (T, τ), etc. In conclusion, the problem of interest is reduced
to analyze the cases when crossing roots exist.

Without any loss of generality, assume now that P (0) 6= 0. If P (0) =
0, we get Q(0) = 0 from (4.1), which is not possible since it contradicts
the Assumption 5(ii). The next step is the characterization of the way the
quantities card(U), and card(S) depend on the parameter T if τ = 0.

5.2.1 Stability analysis for the system without the gap

Introduce now the following Hurwitz matrix associated to some polynomial

A(s) =
na∑
i=0

ais
na−i:

H(A) =




a1 a3 a5 . . . a2na−1

a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4
...

. . .
...

0 0 0 . . . ana



∈ Rna×na , (5.2)

where the coefficients al = 0, for all l > na. Next, it is easy to see

that D(s, T, 0) can be rewritten as1: D(s, T, 0) =
n∑

k=0

Pk(s)T
k, with P0(s) =

1We use the following notation
(

k
n

)
=

n!
k!(n− k)!
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P (s) + Q(s), P1(s) =

(
1
n

)
sP (s), . . ., Pn(s) = snP (s) Next introduce the

matrix pencil: Σ(λ) = λU + V , with U, V given by:

U=




I
. . .

I
H(Pn)


, V =




0 −I · · · 0
...

...
. . .

...
0 0 · · · −I

H(P0) H(P1) · · · H(Pn−1)


,

where the identity, and the zero-blocks matrices have appropriate dimension,
and H(Pk) ∈ R(n+np)×(n+np) represents the corresponding Hurwitz matrix2

associated to the polynomial Pk(s) defined above.

The following result gives the characterization of card(U) as a function
of T , and represents a generalization of some matrix pencil method proposed
by [28] in the context of static output feedback for SISO systems:

Proposition 22 Let 0 < λ1 < λ2 < . . . λh, with h ≤ n + np be the real
eigenvalues of the matrix pencil Σ(λ) = (λU + V ). Then the system (4.1)
cannot be stable for any T = λi, i = 1, 2, . . . h. Furthermore, if there are
r unstable roots (0 ≤ r ≤ n + np) for T = T ∗, T ∗ ∈ (λi, λi+1), then, there
are r unstable roots for any mean-delay value T ∈ (λi, λi+1). In other words,
card(U) remains constant as T varies within each interval (λi, λi+1). The
same holds for the intervals (0, λ1) and (λh,∞).

Proof. First, we need to show that as T varies, there are closed-loop roots
on the imaginary axis if and only if T = λi, i = 1, 2, ..., h. The proof follows
the same step as proposed by Chen in [28], and therefore, will be omitted. ¥

Proposition 22 allows studying the behavior of card(S) as a function of
T . First we have to compute the positive real eigenvalues of Σ, and then the
number of unstable roots inside each interval defined by the corresponding
eigenvalues. The characterization is complete when computing U for inter-
mediate values of T .

2The order of Pk is np + k, for all k = 0, . . . , n, and H(Pk) will be constructed as a
(n + np) × (n + np) matrix by setting the coefficients of high-order terms as zeroes, that
is p` = 0, for all ` > n + k.
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5.2.2 Cardinality of the crossing set

Based on the arguments, assumptions, and remarks above, we have the fol-
lowing result:

Proposition 23 If the card(S) changes at a value T ∗ then there exists a
frequency ω∗ > 0 such that for ω = ω∗ the following relations hold:

F (ω, T ) = (1 + ω2T 2)n|P (jω)|2 − |Q(jω)|2 = 0 (5.3)

and

d

dω

[
1

ω2

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
2/n

− 1

)
− T 2

]
= 0 (5.4)

Proof. For any T , F cannot have a root ω where P (jω) = 0, because this
would imply that also Q(jω) = 0. So that the roots of F coincide with the
roots of

G(ω, T ) =
1

ω2

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣
2/n

− 1

)
− T 2 = 0 (5.5)

A change of card(S) at T = T ∗ implies that G(ω, T ∗) has one root with
multiplicity larger than one at some frequency ω∗, i.e.

G(ω∗, T ∗) =
d

dω
[G(ω∗, T ∗)] = 0.

This leads to (5.3) and (5.4). ¥

Remark 21 The equation
d

dω
[G(ω∗, T ∗)] = 0 has a finite number of roots.

Thus, the quantity card(S) changes for a finite number of values of T .

As in the previous case, the characterization is complete when computing
S for intermediate values of T . We shall see in the next section that S can
be identified with the crossing set.
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5.3 Stability analysis for systems with a sin-

gle discrete delay

For the sake of simplicity, assume that all the roots of F are simple. Notice
that this condition is satisfied for almost all T . Next, we need to explicitly
compute the sensitivity of the roots with respect to the delay parameter τ
when crossing the imaginary axis, that is, in other words, the delay crossing
direction.

5.3.1 Crossing direction

Theorem 11 The characteristic equation has one root jω on the imaginary
axis for some τ0 if and only if ω ∈ S. Furthermore, for ω ∈ S, the set of
corresponding values of τ where card(U) changes is given by

Γω =

{
1

ω

[
arg

Q(jω)

(1 + jωT )nP (jω)
+ 2kπ

]
≥ 0, k ∈ Z

}
. (5.6)

When increasing the delay, the corresponding crossing direction of character-
istic roots is towards instability (stability) when F ′(ω) > 0(< 0).

Proof. ”⇐” Assume that jω is a root of characteristic equation (4.1) then

|1 + jωT |n|P (jω)| = |Q(jω)|
⇒ (1 + ω2T 2)n|P (jω)|2 − |Q(jω)|2 = 0

⇒ ω ∈ S

”⇒” Suppose that F (ω, T ) = 0 ⇒ |1 + jωT |n |P (jω)|
|Q(jω)| = 1. So, there exists

θ ∈ R s.t. (1 + jωT )n P (jω)

Q(jω)
= e−jθ ⇒ ∃τ =

θ

ω
s.t. jω is a root of (4.1).

If jω is a root of (4.1) then easy computations show that Γω is given by
(5.6). In order to establish the corresponding crossing direction we compute
the real part of the derivative of s with respect to τ . So, deriving (4.1) with
respect to τ we get:

ds

dτ
=

sQ(s)e−sτ

(1 + sT )nP ′(s) + nT (1 + sT )n−1P (s) + Q′(s)e−sτ − τQ(s)e−sτ
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and
(

ds

dτ

)−1

=
(1 + sT )nP ′(s)

sQ(s)e−sτ
+

nT (1 + sT )n−1P (s)

sQ(s)e−sτ
+

Q′(s)e−sτ

sQ(s)e−sτ
− τ

s

then

Re

(
ds

dτ

)−1

= Re

(
− P ′(jω)

jωP (jω)
− nT

jω(1 + jωT )
+

Q′(jω)

jωQ(jω)

)
=

=
1

ω
Im

(
−P ′(jω)P (jω)|1 + jωT |2n

|P (jω)|2|1 + jωT |2n
− nT (1− jωT )|P (jω)|2|1 + jωT |2n−2

|1 + jωT |2n

)

+
1

ω
Im

(
Q′(jω)Q(jω)

|Q(jω)|2
)

=
1

ω|Q(jω)|2 Im
(
−P ′(jω)P (jω)|1 + jω2T 2|n

)

+
1

ω|Q(jω)|2 Im
(
nT (1− jωT )|P (jω)|2|1 + jω2T 2|n−1 −Q′(jω)Q(jω)

)
(5.7)

The roots will cross the imaginary axis towards stability (instability) if

sgn

[
Re

(
ds

dτ

)]
< 0 (> 0). Taking Q(jω) = QR(ω) + jQI(ω) and P (jω) =

PR(ω) + jPI(ω), (5.7) leads to:

sgn

[
Re

(
ds

dτ

)]
= − 1

ω|Q(jω)|2 sgn
{
(−P ′

R(ω)PR(ω)− P ′
I(ω)PI(ω)) (1 + ω2T 2)n

−nωT 2(P 2
R(ω) + P 2

I (ω))(1 + ω2T 2)n−1 + Q′
R(ω)QR(ω) + Q′

I(ω)QI(ω)
}

= sgn
{
(P ′

R(ω)PR(ω) + P ′
I(ω)PI(ω)) (1 + ω2T 2)n+

+ nωT 2(P 2
R(ω) + P 2

I (ω))(1 + ω2T 2)n−1 − [Q′
R(ω)QR(ω) + Q′

I(ω)QI(ω)]
}

= sgnF ′(ω, T ) (5.8)

condition which simply says that the sign of F ′ will give the crossing direc-
tion. ¥

The above theorem combined with the continuous dependence of the char-

acteristic roots with respect to the delay, allows to say that Γ =
⋃
ω∈S

Γω makes

a partitions of the τ -delay space (R+) into intervals in which the number of
roots in the open right half plane is constant. Such an argument will be used
in developing our stability region characterization.

125



5.3.2 Small delays

First, assume that the system free of delays is asymptotically stable (τ, T =
0), that is card(U) = 0 with T = 0, and that the frequency-sweeping condi-
tion (5.1) does not hold. Then Theorem 11, combined with the Propositions
22, and 23 give a simple way to compute the first delay-intervals guaranteeing
stability:

Proposition 24 Under the assumption card(U) = 0 for the system free of
delays, the system (4.1) is asymptotically stable for all the pairs (T, τ), with
0 ≤ T < T ∗, where T ∗ is the smallest positive generalized eigenvalue of Σ,
and τ ∈ [0, τ ∗), where τ ∗ is given by:

τ ∗ = min
ω∈S(T )

{Γω(T )} (5.9)

as a function of T , for all T ∈ [0, T ∗).

In other words, Proposition 24 defines the explicit dependence of the
stability boundary in (T, τ) space bounded by the corresponding OT , and
Oτ -axis, and by the curve τ(T ), defined as a function of T , for all T ∈ [0, T ∗).
The case T = 0 gives the standard first delay-interval bound (see, e.g. [107]).
Using the terminology of [54], we derive the corresponding delay margins in
OTτ parameter-space.

5.3.3 Delay-induced stability/instability

Assume now that the system free-of-delays (τ = 0, T = 0) is unstable. We
start by presenting various cases in which the gap, seen as a free-parameter
cannot have a stabilizing effect. The proof ideas follow closer the approach
in Niculescu et al [112]. However, in order to have self-contained results, we
will detail them below. We have the following results:

Proposition 25 If the card(U) is an odd number then the stability of the
system cannot be obtain increasing the time delay τ .

Proof. Assume that the closed-loop system is asymptotically stable for some
delay value τs. Because the number of roots in the right half plane changes
from odd to even when increasing the delay τ from 0 to τs, a characteristic
root at zero must occur for some τ0 ∈ [0, τs]. But D(0, T, τ0) = 0 implies
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H(0, T, τ) = 0, ∀τ ≥ 0 which contradicts the asymptotic stability at τ = τs.
¥

Proposition 26 If card(S) ∈ {0, 1} then the stability of the system cannot
be obtain increasing the time delay τ .

Proof. When card(S) = 0 from Theorem 11 follows that characteristic roots
cannot cross the imaginary axis and the system maintain his nature (insta-
bility persist when varying the delay τ). When card(S) = 1 there is only one
crossing frequency ω∗. Because lim

ω→∞
F (ω) = ∞ and F (ω) 6= 0, ∀ω 6= ω∗, the

sign of its derivative in ω∗ must be ”+”. Therefore we have one crossing and
the crossing direction is towards instability. ¥

The first case, when the delay gap τ may induce stability in the system
by increasing its value appears when card(S) ∈ {2, 3}. More precisely, we
have the following result:

Proposition 27 If card(S) ∈ {2, 3} then the stability of the system can be
obtain increasing the time delay τ , if and only if:
1. card(U) = 2

2. τ− < τ+, where





τ− = min
⋃

ω∈S, F ′(ω)<0

Γω

τ+ = min
⋃

ω∈S, F ′(ω)>0

Γω \ {0}

In this case, for all delay values τ ∈ (τ−, τ+) the system is stable.

Proof.”⇒” First we consider the case where card(S) = 2. If S = {ω1, ω2},with
ω1 > ω2, then F ′(ω1) > 0 and F ′(ω2) < 0. The set of delay values Γω1 , where
the roots cross the imaginary axis to the right, consists of numbers equally

spaced by
2π

ω1

. Crossing towards stability occur for delay values of the set

Γω2 , which are equally spaced by
2π

ω2

>
2π

ω1

. As a consequence, between two

stability crossing, an instability crossing must occur, i.e. the number of un-
stable roots in the closed right half plane cannot be reduced with more than
two by increasing the delay τ . Therefore the stability can be obtain if and
only if card(U) = 2 and the first crossing is towards stability, mathematically
expressed by τ− < τ+.
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If card(S) = 3 and S = {ω1, ω2, ω3}, with ω1 > ω2 > ω3 then F ′(ω1) >
0, F ′(ω2) < 0 and F ′(ω3) > 0. So a careful examination allows us to say
that we can use the same argument as in previous case.

”⇐” The condition τ− < τ+ implies that the first crossing is towards sta-
bility when the delay is increased from zero. Since card(U) = 2, the system
is asymptotically stable for any τ ∈ (τ−, τ+). ¥

Remark 22 One can conclude that in the previous case is sufficiently to in-
vestigate the first crossing in order to check the stabilizability in the delay.
When one determines the stability by numerically computations the Propo-
sition 27 is very useful because we can stop the computations after the first
root crossing.

In the case card(S) = 2, the set of all stabilizing delay values can be
expressed analytically:

Corollary 2 Assume that the following conditions are satisfied

1. card(S) = 2

2. card(U) = 2

3. τ− < τ+

Then all the delay values guaranteing stability are defined by τ ∈ (τ k, τ k), k =
0, 1, ..., km, where

τ k = τ− +
2kπ

ω−
, τ k = τ+ +

2kπ

ω+

and km is the largest integer for which τ k < τ k, which can be explicitly
expressed as

km = max
l∈Z

{
l <

ω−ω+

ω+ − ω−
· τ+ − τ−

2π

}
(5.10)

Based on the results, and the remarks above, we have the following

Proposition 28 Assume that card(S) = 2p or card(S) = 2p+1, with p ≥ 1
and card(U) > 2p. Then there does not exist any gap τ > 0 such that (4.1)
becomes asymptotically stable.
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Proof Let S = {ω1, ω2, ...} with ω1 > ω2 > .... Because lim
ω→∞

F (ω) = ∞ and

the roots of F are simple, the sign of its derivatives in the zeros alternates
and F ′(ω1) > 0.
The Proposition 27 state that for a pair (ω1, ω2) between two stability crossing
an instability crossing must occur. So for n = 1 no more than 2 characteristic
roots can be shifted to the left hand plane. If n > 1 we can use the same
argument for the pairs (ω1, ω2), (ω3, ω4), .... In the case card(S) = 2n we get
that no more than 2n characteristic roots can cross towards stability and
the proof is complete. In the case card(S) = 2n + 1 the previous argument
remains since F ′(ω2n+1) > 0 i.e the first crossing is towards instability. ¥
Define now the following quantities:

n+(τ) =
∑

ω∈S+, F ′(ω)>0

card {Γω ∩ (0, τ ]} , (5.11)

n−(τ) =
∑

ω∈S+, F ′(ω)<0

card {Γω ∩ [0, τ ]} , (5.12)

for some positive τ > 0. Furthermore, introduce the sets Γ+, and Γ−, which
represent a partition of Γ in function of the sign of the derivative F ′ evaluated
at the corresponding crossing frequency, that is:

Γ+ =
⋃

ω∈S+, F ′(ω)>0

Γω \ {0} ,

Γ− =
⋃

ω∈S+, F ′(ω)<0

Γω.

Based on the conditions and the notations above, we conclude with the fol-
lowing result:

Proposition 29 For a given T the system with characteristic equation (4.1)
is asymptotically stable if and only if the following conditions are satisfied:

1. card(U(T )) is a strictly positive even integer and the following inequal-
ity holds: card(U(T )) ≤ card(S(T ))

2. there exists at least one gap value τ ∗ ∈ Γ, such that: n−(τ ∗) = n+(τ ∗)+
card(U(T )).
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Then all gap values τ ∈ (τ ∗, τ ∗+), with τ ∗+ = min{Γ+ ∩ (τ ∗, +∞)} guarantee
the asymptotic stability.

Proof. The condition 1) is clear from Proposition 25 and Proposition 28
and the condition 2) simply characterizes the existence of crossings towards
stability such that there are no more unstable roots for τ = τ ∗ + ε, for
sufficiently small ε > 0. Finally, the definition of the gap interval where we
have stability follows straightforwardly from the previous notation. ¥

The algorithm to find stability pair in the parameter-space (mean
delay,gap)

The stability analysis proposed in this chapter is based on two quantity,
card(U) and card(S), which depend only on the mean delay T . Both quantity
can be efficiently determined as a function of T by numerical computation.
The first quantity is given by the generalized eigenvalues of some matrix
pencil (Proposition 22) and the second one by the roots of a polynomial
(Proposition 23). The main results of the previous sections of this chapter
are displayed in Table 1.

0 1 2 3 4 5 6 7 8 9 card(S)

1 / / / / / / / / / /
2 / / τ− < τ+

3 / / / / / / / / / /
4 / / / /
5 / / / / / / / / /
6 / / / / / /
7 / / / / / / / / / /
8 / / / / / / / /

card(U)

Table 5.1: When we use the gap parameter τ to control the stability of our system,
the necessary and sufficient conditions are given by Proposition 29. In the special
case of card(U) = 2 and card(S) ∈ {2, 3} the condition written in the table is
given by Proposition 27

In the sequel we resume the method to find a stabilizing pair (T, τ) for
the system studied in the previous section.
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A) In order to select the possible mean delay values that satisfy the first
condition of Proposition 29, we need first, the values of card(S) and
card(U). These values can be computed using Proposition 23 and
Proposition 22, respectively.

B) For a given T satisfying the first condition of Proposition 29, one needs
the gap values which satisfy the second condition. In the special case
of card(U) = 2 and card(S) ∈ {2, 3}, it is specified in the table that
we can use the Proposition 27. So, it is sufficient to know if the first
root crossing of the imaginary axis is towards stability as τ increasing
from 0. In the general case, the analysis is more complicated and the
stabilizing interval is defined by the last part of Proposition 29.

5.4 Illustrative examples

In order to illustrate the method proposed above, we consider several ex-
amples. The first example concerns linearized Cushing equation with a gap.
Then we apply this algebraic approach to some second-order time-delay sys-
tem with a gap.

5.4.1 Linearized Cushing equation with a gap

In this example we apply the above method for the Cushing linearized equa-
tion

(s + a)(1 + sT )n + be−sτ = 0, a > 0, b < 0.

First it is easy to remark that (s + a)(1 + sT )n + b has at least one (strictly)
unstable root if and only if a + b ≤ 0 and card(U) = 0 if a + b > 0. Consider
the case n = 1, that is the polynomial F (ω, T ) is given by:

F (ω, T ) = (ω2 + a2)(1 + ω2T 2)− b2

= ω4T 2 + ω2(a2T 2 + 1) + a2 − b2. (5.13)

For a2 − b2 ≥ 0 (a + b 6= 0) we have card(S) = 0, that is no crossing
with respect to the imaginary axis for all T (see Proposition 21), while for
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a2 − b2 < 0 we have card(S) = 1. According to the results of the previous
section, the stability of the Cushing equation can be delay-independent stable
(unstable), function of the sign of a + b for all (T, τ) if card(S) = 0. If the
system is not delay-independent stable (unstable), Proposition 24 will give
the corresponding delay-intervals for which stability is preserved under the
assumption of asymptotic stability for some mean-delay intervals (in T ) given
by Proposition 22, etc.
It is worth to say here that if one root crosses the imaginary axis than it will
cross to the right. So if the system is unstable it remains unstable, and if
the system is stable and card(S) 6= 0 than the system will lose the stability
once for good.

Proposition 30 For the Cushing equation with a gap all the crossing direc-
tions are towards instability.

Proof: Straightforward computation show us that

F ′(ω) = 2ω(1 + ω2T 2)n−1(1 + ω2T 2 + nT 2) > 0,

which simply says that the crossing direction is towards instability. ¥

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

τ+

T

τ

Figure 5.1: In this case all the crossings are towards instability so, τ− does not
exist
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5.4.2 Second-order system example

Consider the following second-order system:

Q(s) = −s, P (s) = s2 + 2 (5.14)

Simple computations prove that P (s)(1+ sT )+Q(s) has two unstable roots.
So that card(U) = 2.
The characteristic equation of the closed-loop system is given by

(s2 + 2)(1 + sT )− se−sτ = 0 (5.15)

and polynomial F (ω, T ) by

F (ω, T ) = (2− ω2)2(1 + ω2T 2)− ω2

= ω6T 2 + ω4(1− 4T 2) + ω2(4T 2 − 5) + 4.

So we need to find how many positive roots has the following equation:

x3T 2 + x2(1− 4T 2) + x(4T 2 − 5) + 4 (5.16)

First it is easy to see that the previous equation has at least one real negative

solution because x1x2x3 = − 4

T 2
< 0 (where x1, x2, x3 are the solutions of the

equation (5.16)). Computing the discriminant and the Hurwitz determinants

of the equation (5.16) we find card(S) =





2 T >
1

2

0 T ≤ 1

2

. According to the

result of the previous section a necessary condition for asymptotic stability
of the closed-loop system is given by

T >
1

2
(5.17)

Furthermore, for T satisfying (5.17) the existence of a stability region in the
delay parameter is determined by the condition τ− < τ+.

Summarizing, we have:

Proposition 31 The system (5.14) is asymptotically stable if and only if

T >
1

2
and in addition τ− < τ+, where:

τ− = min
⋃

ω∈S, F ′(ω)<0

1

ω2T
, τ+ = min

⋃

ω∈S, F ′(ω)>0

1

ω2T
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A stability region is defined by the pair (T, τ), where T >
1

2
, and τ ∈

(τ−(T ), τ+(T )).

As we can see in figure 5.2, there is no stability region for the system 5.14.

20 40 60 80 100

0.5

1

1.5

2

2.5

τ+

τ
−

τ

T

Figure 5.2: Since τ− > τ+, ∀T > 0 the system is never stable

5.5 Concluding remarks

This chapter addressed the stability problem of a class of linear systems in-
cluding distributed delays with a gap. A characterization of stability regions
in the (mean-delay,gap) parameter-space has been proposed. Illustrative ex-
amples complete the presentation.
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Chapter 6

Stability analysis for systems
with commensurate delays

In this chapter, we focus on generalizing the results from the previous chapter
to some class of systems including commensurate delays. Some classical
stability tests for this class of systems can be found in [54, 107]. In this case
the model is described by a system of the general form:

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t− kτ), τ ≥ 0 (6.1)

where A0, Ak ∈ Rn×n. The characteristic equation of such a model is ex-
pressed as:

det

(
sI − A0 −

m∑

k=1

Ake
−skτ

)
. (6.2)

Our aim in this chapter is to study more complicated dynamical behaviors
under the assumptions of delay distributed kernels. The method developed
here is based on the same arguments used in the previous chapter. First,
we discuss the stability of a particular model encountered in the traffic flow
dynamics. Next, we focuss to the stability analysis of the general case.

6.1 Traffic flow dynamics

One model, often used in the literature, consider the case of multiple vehicles
under the influence of a single constant time-delay [26, 61, 132]. This model
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can be written as

ẋk(t) = αk(xk−1(t− τ)− xk(t− τ)), k = 1, . . . , p (6.3)

where p is the number of considered vehicles and x0 = xn. The left hand side
represents the acceleration of the kth vehicle, and the right hand side express
the velocity difference of consecutive vehicles.
Despite the fact that in some situation one can use the previous model with
good results, it is far to be realistic. One of the problem is due to the
controller, since the behavior of the human driver can not be reduced to a
simple controller law. For instance, humans retain a short-term memory of
the past events and this may affect their control strategy [143]. Therefore,
in order to obtain a more realistic model we can extend the previous models
by incorporating a general memory effect. Without any loss of generality we
can consider the following model

ẋk(t) = αk

∫ ∞

0

f(θ)(xk−1(t− θ)− xk(t− θ))dθ, (6.4)

where f is a distribution of delays, which can represent both dead-time and
the memory of the past (such an ideea can be found in Attay et al [143]). In
order to express realistically a stochastic behavior, one can use the gamma-
distribution with a gap. When the choice for the memory model comes from
the gamma distributed history (2.36), applying the Laplace transform we get
a characteristic equation with general form

det[sI − (A1 + A2)F (s)] = 0. (6.5)

where F denotes the Laplace transform of f , therefore, F (s) =
e−sτ

(1 + sT )n
.

Thus, we can rewrite (6.5) as:

D(s, T, τ) = det[s(1 + sT )nI − Ae−sτ ] = 0 (6.6)

where

A =




−α1 0 . . . . . . α1

α2 −α2 0 . . . 0
0 α3 −α3 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . αp −αp




(6.7)
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Remark 23 The matrix A defined by 6.7 has always the eigenvalue ”0”.
This corresponds to the situation in which the relative movement of one ve-
hicle to the others is zero (the vehicles are either staying or moving with the
same velocity). Obviously, this situation presents no practical interest and
will be excluded.

6.1.1 Stability analysis with respect to the gap

In the sequel, consider the crossing set Ω, which is defined as the collec-
tion of all ω > 0 such that there exists a parameter pair (T, τ) such that
D(jω, T, τ) = 0. For a given T we will denote h(s) = s(1 + sT )n and

H : R∗+ 7→ R∗+, H(ω) = |h(jω)|2 = ω2
[
(1 + ω2T 2)n

]
.

Proposition 32 The function H has the following properties:

i) H is continuous and differentiable,

ii) H is monotonic, more precisely H(ω1) > H(ω2) ⇔ ω1 > ω2.

Proof. Since H is a polynomial function, it is clear that it is continuous and
differentiable. The second property can be derived after simple algebraic
manipulation or simply using the fact that the first derivative of H is strictly
positive.

Simple eigenvalue case

In this paragraph, we consider that the real matrix A has only eigenvalues
with multiplicity 1.

Proposition 33 Consider {µk}k=1,p the set of all eigenvalues of the ma-
trix A. For any fixed T the characteristic equation has one root jω on the
imaginary axis for some τ0 if and only if |ω(1 + jωT )n| = |µk|. Further-
more, increasing the gap value τ , all the corresponding crossing directions of
characteristic roots are towards instability.

Proof. Obviously, the first part of the proposition needs no arguments.
Therefore, let ω ∈ Ω, µ an eigenvalue of A and u, v left and right eigenvectors
associated with µ, i.e.

(h(jω)I − Ae−jωτ )v = 0, (6.8)

u∗(h(jω)I − Ae−jωτ ) = 0 (6.9)
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where ∗ denote the transposition operation and u, v are viewed as column vec-
tors. In order to derive the crossing direction we must to compute

sgnRe

(
ds

dτ

)∣∣∣∣
s=jω

. Consider the equation

(h(s)I − Ae−sτ )v = 0.

The derivative with respect to τ is given by:
(

h′(s)
ds

dτ
+ Aτe−sτ ds

dτ
+ sAe−sτ

)
v + (h(s)I − Ae−sτ )

dv

dτ
= 0.

Multiplying with u∗ to the left and replacing s = jω we get

ds

dτ

∣∣∣∣
s=jω

= − u∗jωAve−jωτ

u∗(jωI + Aτe−jωτ )v
.

Furthermore,

Re

(
ds

dτ

)∣∣∣∣
s=jω

= Re

(
ds

dτ

)−1
∣∣∣∣∣
s=jω

= −Re

(
u∗Ivh′(jω)

u∗Ave−jωτjω

)

= −Im

(
h′(jω)

h(jω)

)
(6.10)

On the other hand

H(ω) = |h(jω)|2 = h(jω)h(−jω)

H ′(ω) = j(h′(jω)h(−jω)− h(jω)h′(−jω))

H ′(ω)

H(ω)
= j

h′(jω)

h(jω)
− j

h′(−jω)

h(−jω)
= −Im

(
h′(jω)

h(jω)

)
(6.11)

Therefore, sgnRe

(
ds

dτ

)∣∣∣∣
s=jω

= sgnH ′(ω). Since H ′(ω) > 0 we conclude that

all the crossings are towards instability.

Repeated eigenvalues case

First, let consider the equation:

det (ξ(s; T, τ)I − A) = 0
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This is equivalent with p scalar equations

ξ(s; T, τ)− µk = 0, k = 1, . . . , p (6.12)

with the complex numbers µ1, . . . , µp equal to the eigenvalues of A. Consider
also that the matrix A has a repeated eigenvalue with multiplicity m > 1.
By superimposing solutions of (6.12) for i = 1, . . . , p, the eigenvalues of the
DDE are obtained. Note that a possible discrepancy between the algebraic
and geometric multiplicity of an eigenvalue is determined by properties of ξ
and not by properties of the eigenvalues of A.
Given a solution s of (6.12) we get:

∂s

∂τ
= −∂ξ

∂τ

/
∂ξ

∂s
, (6.13)

∂s

∂T
= − ∂ξ

∂T

/
∂ξ

∂s
. (6.14)

Proposition 34 If the eigenvalues of A are not distinct, then the following
statements hold true:

1. The equation (6.6) has only simple or semi-simple eigenvalues.

2. The corresponding crossing direction is towards instability

Proof. 1) In our case,

ξ(s; T, τ) = s(1 + sT )nesτ ,

and thus,

∂ξ

∂s
(s; T, τ) = (1 + sT )nesτ + sn(1 + sT )n−1esτ + sτ(1 + sT )nesτ .

Furthermore, for s = jω we obtain:

∂ξ

∂s
(jω; T, τ) = (1 + jωT )n−1ejωτ (1 + jωT + jωn + jωτ(1 + jωT ))) .

Since T, n, τ are positive, this expression is nonzero for all ω ≥ 0. Thus, if
there are eigenvalues on the imaginary axis for some parameters, the multi-
plicity of the solution of (6.12) is always one.
2) Using (6.13) and the computations above we easily obtain:

Re

(
∂s

∂τ

)−1
∣∣∣∣∣
s=jω

=
1

ω2
+

nτ

1 + ω2T 2
> 0 (6.15)
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6.1.2 The methodology to derive the stability region

The previous section allows us to resume the stability analysis in the para-
meter space of (T, τ) to the following practical steps:

Step 1: Find the value T such that D(s, T, 0) is stable.

Step 2: Compute the minimum value τ corresponding to the first crossing.

Stability analysis for the system without the gap

In order to determine T such that D(s, T, 0) has no solution in the right
half plane we can use a method based on matrix pencils arguments. This
method was initially proposed in [28] and adapted in [100, 112] to the study
of stability analysis of time-delay systems. It is easy to see that D(s, T, 0)

can be rewritten as: D(s, T, 0) =

np∑

k=0

Qk(s)T
k, with deg Qk(s) = k + p.

Since A is a singular matrix (det(A) = 0), all the polynomials Qk have
s as a common factor. Thus, we can simplify by s and obtain another

expression D1(s, T, 0) =

np∑

k=0

Pk(s)T
k, with deg Pk(s) = p + k − 1 (we de-

noted Pk the previous Qk simplified by s). Consider the matrix pencil:
Σ(λ) = (λU + V ), with U, V constructed as in the previous chapter, where
the identity, and the zero-blocks matrices have appropriate dimension, and
H(Pk) ∈ R((n+1)p−1)×((n+1)p−1) represents the corresponding Hurwitz matrix1

associated to the polynomial Pk(s) defined above.
Consider now U = {s ∈ C+ | D(s, T, 0) = 0}. Using proposition 22 we
are able to characterize the behavior of U with respect to the change of T .
Therefore, we have a standard procedure to accomplish the first step of our
methodology.

Stability regions in the parameter space of (mean delay, gap)

Assume that the system without gap is asymptotically stable (that is
card(U+) = 0) for any T ∈ (0, T ∗). Increasing the gap value τ , all the cor-
responding crossing directions of characteristic roots are towards instability.

1The order of Pk is p + k − 1, for all k = 0, . . . , np, and H(Pk) will be constructed as
a ((n + 1)p− 1)× ((n + 1)p− 1) matrix by setting the coefficients of high-order terms as
zeroes, that is p` = 0, for all ` > p + k − 1.
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More precisely, the system given by (6.6) is asymptotically stable for any
T ∈ (0, T ∗) and τ ∈ (0, τ ∗), where τ ∗ will be determined.
Proposition 33 allows to compute all the values ω ∈ Ω corresponding to
T ∈ (0, T ∗).

Remark 24 Combining Proposition 32 and Proposition 33 we deduce that
for each eigenvalue µ of A the function T → ω(T ) is well defined (there is
only one value ω for each T ).

Therefore, for a fixed value of T the characteristic equation reduces to an
equation with a single variable τ . Using (6.12), some simple algebraic ma-
nipulations lead us to the following result.

Proposition 35 For any ω ∈ Ω the set of corresponding values of τ where
the number of unstable roots changes is given by:

Tω =

{
τ ≥ 0 | τ =

1

ω
[∠(µk)− ∠jω(1 + jωT )n + 2`π], ` ∈ Z

}
. (6.16)

Since for a fixed T ∈ (0, T ∗) we can get a finite number of values ω ∈ Ω,
we can denote them by ω1(T ), . . . , ωp(T ). Furthermore, introduce the set TT

which represents the set of all values τ corresponding to a fixed T , where the
number of unstable roots changes:

TT =

p⋃

k=1

Tωk(T ) (6.17)

Define now the following quantity:

τ ∗(T ) = min{τ ∈ TT} (6.18)

Summarizing, we obtain the following result which characterize the stability
region of the traffic dynamics given by (6.6).

Proposition 36 Assuming that the system free of delays is stable, the as-
ymptotic stability of the system (6.6) is guaranteed by the following necessary
and sufficient conditions:

1. card(U) = 0 that is T ∈ (0, T ∗], where T ∗ is the smallest positive
generalized eigenvalue of Σ.

2. τ ∈ (0, τ ∗(T )) where τ ∗(T ) is defined by (6.18).
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6.2 General case

In order to study the general model we first adapt the Walton-Marshall
method that allows to reduce the number of commensurate delays. Next,
using the appropriated modifications we apply the method presented in the
previous chapter to the reduced model.
We consider in this section a class of systems whose dynamics are expressed
by the following general characteristic equation:

D(s, T, τ) = p0(s)(1 + sT )n +
m∑

k=1

pk(s)e
−skτ = 0. (6.19)

for some appropriate pair (T, τ). We will make the usual supplementary
assumptions : (i) deg(p0) = n0 > deg(pk) = nk, k = 1,m; (ii)

∑m
k=0 pk(0) 6=

0; (iii) pk(s), k = 0,m have no common zeros.

6.2.1 Walton-Marshall reduction method

In the case of multiple commensurate delays, an iterative calculation can
be employed to reduce the number of delays [159, 54]. Consider (6.19) is
expressed in the more general form:

D(s, T, τ) = p0(s, T ) +
m∑

k=0

pk(s)e
−skτ = 0. (6.20)

Each iteration decrease with one the number of commensurate delays. More
precisely, after the first iteration (6.20) is written as

D(1)(s, T, τ) =
m−1∑

k=0

p
(1)
k (s, T )e−skτ = 0 (6.21)

where

p
(1)
k (s, T ) = p0(−s, T )pk(s)− pm(s)pm−k(−s), (6.22)

k = 0, . . . , m− 1.

We note that

degs(p
1
0) = n2

0 > degs(p
1
k) = max{n0 · nk, nm · nn−k}, k = 1,m− 1

Consider Ωk the crossing set of D(k)(s, T, τ) and Ω the crossing set of D(s, T, τ).
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Proposition 37 The crossing set Ωk is a subset of Ωk+1. Furthermore,
Ωk+1 \ Ωk consist in a finite number of real positive numbers ω which are
the roots of the following polynomial:

Gk(ω) = |p(k)
0 (jω, T )|2 − |p(k)

m−k(jω, T )|2

Proof. Since

(
D(k+1)(s, T, τ)

D(k+1)(−s, T, τ)

)
=

(
p
(k)
0 (s, T ) −p

(k)
m−k(s, T )e−s(m−k)τ

−p
(k)
m−k(−s, T )es(m−k)τ p

(k)
0 (−s, T )

)
·

(
D(k)(s, T, τ)

D(k)(−s, T, τ)

)
,

the result is straightforward.
For a fixed T , the previous proposition allows to compute the crossing set

Ω knowing the crossing set Ωk of the reduced equation. We will see (Theorem
15) that this is sufficient to develop our stability analysis method.

Next, we focus on stability analysis of the following reduced equation:

D(s, T, τ) = p0(s, T ) + p1(s, T )e−sτ = 0, (6.23)

pk(s, T ) =

mk∑

l=0

akl(s)T
l, k = 0, 1.

It is obvious that any system of type (6.19) can be reduced to one of the
form (6.23) with deg(p0) > deg(p1) (we consider the degree with respect to
the variable s).

Problem 1 Deriving necessary, and sufficient conditions in terms of (T, τ)
for guaranteeing the asymptotic stability of (6.23).

Next, we introduce the appropriate quantities:

1) card(U), where U is the set of roots of D(s, T, 0) = 0, situated in the
closed right half plane, and card(·) denotes the cardinality (number of
elements).

2) card(S), where S = {ω > 0 | |p0(jω, T )|2 − |p1(jω, T )|2 = 0}.
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Next, it is easy to see that D(s, T, 0) can be rewritten as: D(s, T, 0) =
m∑

k=0

Pk(s)T
k, with Pk(s) = a0k(s) + a1k(s) and m represents the biggest

power of T . Clearly, deg(p0) ≥ deg(Pk), k = 0, 1, . . . , n. We introduce
again the matrix pencil: Σ(λ) = (λU + V ), with U, V constructed such as
the identity, and the zero-blocks matrices have appropriate dimension, and
H(Pk) ∈ Rnp0×np0 represents the corresponding Hurwitz matrix2 associated
to the polynomial Pk(s) defined above.

Proposition 22 holds again, therefore the behavior of card(U) as a function
of T can be done in the same manner as in Chapter 5.

Cardinality of the crossing set

In this paragraph we denote F (ω) = |p0(jω, T )|2 − |p1(jω, T )|2 = 0. Ob-
viously, the expression of the polynomial F contains only even powers of
ω (in other words F is a polynomial in the variable ω2). This means that
F (−ω) = F (ω). Therefore, the number of positive real roots is the half of
the total number of real roots of F . In order to compute the cardinality of
S we use the Routh-Sturm algorithm. The notations used in the sequel are
rather standard and can be found in [14].

Definition 8 Let f(λ) be a real rational function. Consider α, β ∈ R ∪
{±∞} and N+

− = the number of jumps of f(λ) from −∞ to ∞ (and N−
+ =

the number of jumps of f(λ) from ∞ to −∞) as λ moves along the real axis
between α and β (ignoring any discontinuity at these points).
The Cauchy index of a real rational function f(λ) between the limits α and
β is

Iβ
αf(λ) = N+

− −N−
+ (6.24)

An interesting case for our study is obtained when

f(λ) =
g′(λ)

g(λ)
(6.25)

where g(λ) is a real polynomial.

2The order of Pk is smaller (or equal) than np0 , for all k = 0, . . . , n, and H(Pk) will be
constructed as a np0 ×np0 matrix by setting the coefficients of high-order terms as zeroes,
that is p` = 0, for all ` > deg(Pk).
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Theorem 12 The number of distinct real roots of the polynomial g(λ) in the

interval (α, β) equals Iβ
αf(λ) where f(λ) =

g′(λ)

g(λ)
.

The previous theorem reduce the problem of computing the cardinality of S
to the problem of computing the Cauchy index of

F ′(λ)

F (λ)
between −∞ and

∞.
Next, we use Sturm theorem and Routh array to evaluate the index of any

rational function of type
g′(λ)

g(λ)
. More precisely, consider ri,k the elements of

the Routh array and define the sequence

f0(λ), f1(λ), . . . , fk(λ), . . . (6.26)

where
f0(λ) = g(λ), f1(λ) = g′(λ) (6.27)

and

fk(λ) = sk(r2k−1,1λ
n−k + r2k−1,2λ

n−k−1 + . . .), n = deg(g), k ≥ 2 (6.28)

Theorem 13 (Sturm) Consider f0 and f1 two polynomials and α, β ∈ R∪
{±∞}. The following relation holds:

Iβ
α

f1(λ)

f0(λ)
= V (α)− V (β) (6.29)

where V (θ) denotes the number of variations in sign in the sequence (6.26)
for a fixed real value λ = θ (any term fi(θ) = 0 in the sequence is omitted).

Since we are interested to compute I∞−∞
F ′(λ)

F (λ)
, the number of variation in

sign can be computed considering only the dominant term of each fk. More
precisely, we have the following relation:

sgn (fk(±∞)) = ±(−1)n−k · sgn

(
2k−1∏
i=1

ri,1

)
. (6.30)

In the sequel we denote Lk =
2k−1∏
i=1

ri,1. Since the Routh array elements

are continuous functions of T , we get Lk are continuous functions of T .
Furthermore, Lk = 0 reduces to an polynomial equation in T .

145



Theorem 14 If T1 < T2 < . . . < TN is the sequence of all the real posi-
tive roots of all Lk, k = 1, . . . , n, then card(S) is constant in each interval
(Tk, Tk+1).

We conclude that the characterization of card(S) as a function of T is com-
plete when we solve all the polynomials Lk and compute the value of card(S)
for intermediate values of T . We note that for a fixed T we can use again
theorem 13 in order to find card(S).

6.2.2 Stability analysis

Next, we assume that all the roots of F are simple, this condition is satisfied
for almost all T . In the sequel, we explicitly compute the sensitivity of the
roots with respect to the delay parameter τ when crossing the imaginary
axis, that is, in other words, the delay crossing direction.

Theorem 15 The characteristic equation has a root jω on the imaginary
axis for some τ0 if and only if ω ∈ S. Furthermore, for ω ∈ S, the set of
corresponding values of τ where card(U) changes is given by

Tω =

{
1

ω
[arg(p1(jω, T ))− arg(p0(jω, T )) + (2k + 1)π] ≥ 0, k ∈ Z

}

(6.31)
When increasing the delay, the corresponding crossing direction of character-
istic roots is towards instability (stability) when F ′(ω) > 0(< 0).

The above theorem combined with the continuous dependence of the char-

acteristic roots with respect to the delay, allows to say that T =
⋃
ω∈S

Tω makes

a partitions of the τ -delay space (R+) into intervals in which the number of
roots in the open right half plane is constant. Such an argument will be used
in developing our stability region characterization.

Assuming that the system free of delays is asymptotically stable (τ, T =
0), that is card(U) = 0 with T = 0, and that the frequency-sweeping condi-
tion (5.1) does not hold. Then Theorem 15, combined with the Propositions
22, and 14 give a simple way to compute the first delay-intervals guaranteeing
stability:

Proposition 38 Under the assumption card(U) = 0 for the system free of
delays, the system (6.23) is asymptotically stable for all the pairs (T, τ), with

146



0 ≤ T < T ∗, where T ∗ is the smallest positive generalized eigenvalue of Σ,
and τ ∈ [0, τ ∗), where τ ∗ is given by:

τ ∗ = min
ω∈S(T )

{Tω(T )} (6.32)

as a function of T , for all T ∈ [0, T ∗).

In other words, Proposition 38 extend the result and the meaning of
Proposition 24.

Assuming that the system free-of-delays (τ = 0, T = 0) is unstable we can
extend in the same manner all the results obtained for the stability analysis
of the systems with a single discrete delay (section 5.2). We conclude with
the result characterizing the asymptotic stability of (6.23):

Proposition 39 For a given T the system with characteristic equation (6.23)
is asymptotically stable if and only if the following conditions are satisfied:

1. card(U(T )) is a strictly positive even integer and the following inequal-
ity holds: card(U(T )) ≤ card(S(T ))

2. there exists at least one gap value τ ∗ ∈ T , such that: n−(τ ∗) = n+(τ ∗)+
card(U(T )).

Then all gap values τ ∈ (τ ∗, τ ∗+), with τ ∗+ = min{T + ∩ (τ ∗, +∞)} guarantee
the asymptotic stability.

6.3 Numerical example

In order to emphasize the properties pointed out in the previous sections
we consider some models with a small number of cars on a ring. First, we
consider an example with identical behavior of the cars, i.e. αk = α, ∀k
(given both by car and driver). We note that this type of model with α = 2
(and α = 1.5) was also considered in [142]. Next, since the previous model
is clear unrealistic, we consider a model with different behaviors of each car,
i.e. αk depends on k.
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Example 13 (Model with 3 identical cars) In this example we consider
a conceptual model with p = 3 identical cars travelling around a ring. Let us
consider αk = 2, ∀k and n = 1. Therefore, we get the characteristic equation:

det[s(1 + sT )nI − Ae−sτ ] = 0

where A is written as

A =



−2 0 2
2 −2 0
0 2 −2




Using the algorithm presented above we obtain that D(s, T, 0) = 0 has two
unstable roots for T > 1 and 0 unstable roots for T ∈ (0, 1). Since we proved
that all the crossings are towards instability, we need to plot the stability
crossing curves just for T ∈ (0, 1), the first curve bounds the stability region.
The figure 6.1 plots some stability crossing curves corresponding to the non-
zero eigenvalues of the matrix A, which are −3 ± j

√
3. We note that the

curves laying under the OT axis present no physically meaning.
Figure 6.2 present the first crossing curves as τ increasing from 0. After

this crossing the system becomes more and more unstable.

Example 14 (Model with 4 non-identical cars) In the sequel, we con-
sider p = 4, n = 2 and α1 = 1, α2 = 7, α3 = 4 and α4 = 5. The characteris-
tic equation is expressed by (6.6) with A given by:

A =




−1 0 0 1
7 −7 0 0
0 4 −4 0
0 0 5 −5




Applying the method developed in this paper we obtain

card(U+) =





0, if T ∈ (0, 0.135)
2, if T ∈ (0.135, 0.24)
4, if T ∈ (0.24, 1.569)
6, if T > 1.569

The matrix A has three non-zero eigenvalue: −8.3271, −4.3364 ± 2.8241j,
and the corresponding crossing curves for ` ∈ {0, 1, 2, 3} can be seen in figure
6.3. The first stability crossing curves, which separate the stability region
from the instability region, can be seen in figure 6.4.
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Figure 6.1: τ`, ` ∈ {0, 1, 2, 3} versus T

6.4 Concluding remarks

This chapter contains an extension of the algebraic manipulation proposed
in Chapter 5. It focusses on the stability problem of a class of linear systems
including distributed delay with commensurate gap-values. First, we present
a traffic flow dynamics model in order to motivate our study. After the
complete analysis of this model we proceed to the study of a more general
class of systems. The Walton-Marshall method was used to simplify the
expression of the characteristic equation. In order to find the cardinality of
the crossing set we have used an approach based on Routh-Sturm algorithm.
A characterization of stability regions in the (mean-delay,gap) parameter-
space has been proposed. Illustrative examples are also included.
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Figure 6.3: τ`, ` ∈ {0, 1, 2, 3} versus T
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Figure 6.4: τ0 versus T for µ2 = −4.3364 + 2.8241j (the bound of stability
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Part IV

Further works
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Chapter 7

Conclusions and further works

7.1 Final discussions

In this section we point out our contribution of the study of linear dynam-
ical systems in presence of delays. First, we make a brief analysis of our
work indicating the main developments presented in this thesis. A list of
publications during the thesis completes the discussion.

7.1.1 Contributions

The main interest of the dynamical systems containing delays is twofold: first,
the delay systems represent one of the simplest class of infinite dimensional
systems, and second, by increasing number of applications in engineering
and biology. In the last decades, a lot of research was concentrated in find-
ing simple methods to solve the specific problems whose dynamics are given
by delay differential equations. Motivated by some exciting applications in
quite distinct research domains (biology, communication over network, traffic
flow), in March 2004, we started to work in time-delay systems area. The first
aim was to understand the stability mechanism of dynamics behavior of a
general class of mathematical equations describing these models (Chapter 2).
From the beginning we were interested to find systems that accurately reflect
the reality. In biology, the use of distributed delay depicts some stochastic
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behavior of different components of the model leading to behavior-type mod-
els. More recently, it was pointed out that some distributed delays with a
gap can be also encountered in the problem of communication over network.
Taking into account the memory of the drivers in traffic flow dynamics, we
arrive once again to a distributed delay model. Although, we were interested
to develop new methods for stability analysis of a class of linear system in
presence of distributed delay, the first contribution of this thesis consists in
developing some results related to the Smith predictor controller (Chapter
3): regular, and singular cases. If the regular cases have received some at-
tention in the literature, however the analysis of singular cases and related
interpretations represents a novelty.

The main contributions of the study of distributed delay systems are
presented in Chapter 4, 5 and 6. We note that our algorithms propose
simple methods for the analysis of stability regions of the corresponding
systems. The method developed in Chapter 4 is based on some geometrical
interpretations and its goal is to analyze the stability using the stability
crossing curves in the corresponding time-delay parameter space. In the
third part of the thesis, containing Chapter 5 and 6, we developed some
algebraic techniques based on matrix manipulations. Chapter 5 can be seen
as a ”dual” of Chapter 4, since it treats the same class of systems using a
different approach. Next, the theory is extended for the case of distributed
delay systems in presence of commensurate delays. Starting from a traffic
flow model we first introduce a direct method to derive the stability region,
next, we adapt and combine the Walton-Marshall [159] procedure and the
development in Chapter 5 to analyze the stability of a more general class of
systems.

Although our approaches are very intuitive, they are computationally ori-
ented. In this context, we note the existence of the DDE-BIFTOOL Matlab-
package, developed by a group of researchers from Department of Computer
Science of Catholic University of Leuven, which can be used for studying the
stability analysis of various delay differential equations. However, in collab-
oration with Adriana Jianu, student from Craiova University, we prepared a
specific and simplified Matlab routine that can be used for our algorithms. I
believe that such routines can be integrated in DDE-BIFTOOL for treating
particular problems or, if it is not possible, it offers some simple alternative
to DDE-BIFTOOL for treating specific problems.
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7.1.2 Publications

The publications list during the Ph. D. thesis can be resumed as follows:

1. The geometric approach presented in Chapter 4 was developed in col-
laboration with one of my promotor Silviu Niculescu and with Keqin
Gu:

• The first results in this direction, named: Remarks on the stability
crossing curves of some distributed delay Systems were presented
by myself in the framework of the ”Conference on Differential &
Difference Equations and Applications” - Melbourne, Florida, 1-5
August 2005.

• A final version of our work: On the Stability Crossing Curves of
Some Distributed Delay Systems was submitted for publication to
some journal. (February 2006)

2. In collaboration with Silviu Niculescu, I studied the coherency of our
results starting from a classical Biology application: Old and new in
stability analysis of Cushing equation: A geometric perspective- Physics
International Year - 2005 - Bucharest, Romania, 11-13 September 2005
(paper presented by I. C. Morărescu)

3. A variety of application (biology and communication over network)
of my work with Silviu Niculescu, Wim Michiels and Keqin Gu, was
presented by Silviu Niculescu: Some simple geometric ideas for the
stability analysis of some delay models in biology - Workshop NSF-
CNRS Biology and Control Theory : current challenges 24-25 April,
2006, Toulouse, France

4. The algebraic approach was developed with Silviu Niculescu and Wim
Michiels. A part of this work: Asymptotic stability of some distributed
delay systems: An algebraic approach was presented by myself at the:
13th IFAC Workshop on Control Applications of Optimisation CAO’06,
26-28 April 2006 Paris - Cachan, France.

5. The study on Smith predictor principle is a joint-work with Silviu
Niculescu and Keqin Gu.
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• Some aspects were presented in Italy - Some remarks on Smith
Predictors: A geometric point of view - 6th IFAC Workshop on
Time Delay Systems, 10-12 July 2006 L’Aquila.

• The complete work:On the geometry of stability regions of Smith
predictors subject to delay uncertainty was submitted to IMA Jour-
nal of Mathematical Control and Information (May 2006).

6. The stability of the systems controlled by delayed output feedback was
carried out with Silviu Niculescu.

• Some aspects will be presented in Germany: Further remarks on
stability crossing curvesfor SISO systems controlled by delayed
output feedback - IEEE CCA/CACSD/ISIC, 4-6 October 2006,
Munich.

• The complete work: Stability crossing curves of SISO systems
controlled by delayed output feedback was submitted to DCDIS
(Dynamics of Continuous, Discrete and Impulsive Systems) Jour-
nal(March 2006).

7. Some part of my thesis, have leaded to the following talks:

• Further Remarks on Stability Crossing Curves of Distributed Delay
Systems, Workshop CTS-HYCON, Paris, France,10-12 July 2006.

• Summer School in Automatics: Geometric and Algebraic approaches
in the Qualitative Analysis of Time Delay systems - ”Politehnica”
University of Bucharest, Bucharest, Romania, 23-28 May 2006.

7.2 Research directions

In this section we present some possible future research directions related to
the work reported in this thesis.

7.2.1 Other distributions

We note that our developments concern especially models with delays given
by a gamma-distributed kernel. It is interesting to develop similar techniques
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for system including delays given by different probability distributions. Some
results in this direction, for first order delay-differential equations (DDEs)
can be found in [20], but the characterization is far to be completed. The
probability distributions considered are rather standard: Dirac delta func-
tion, uniform density, gamma density. However, using a method based on the
expectation of the probability density f , the authors of [20] derive sufficient
condition for stability of the system

ẋ(t) = −αx(t)− β

∫ ∞

0

x(t− τ)f(τ)dτ, (7.1)

where α and β are constants such that β > |α|.
For a general class of linear systems the problem is more exciting and chal-
lenging.

In this thesis we considered a gamma distribution

gn(ξ) =
an+1

n!
ξne−aξ.

where n is an integer positive number. Although a lot of models can be
studied using this probability distribution [2, 88, 130], we note that some
models require a gamma-distribution with a rational parameter n. Many re-
sults stated in this thesis holds in the case of ”rational” gamma-distribution,
but a careful analysis and manipulations are necessary.

7.2.2 Bifurcation analysis

Throughout this thesis we studied some regular and degenerate cases of mod-
els containing discrete and distributed delays. Although the regular cases are
completely treated and their behavior is well understood, the analysis of the
degenerate cases can be improved and needs further analysis. More precisely,
the degenerate cases refer to systems having non-smooth stability crossing
curves. The points where the smoothness is lost are typically bifurcation
points.
The theory of bifurcation applies generally to nonlinear problems, not only
when bifurcation solutions are equilibrium solutions of evolution problems
like

dx

dt
= F (t, x(t), µ), where −∞ < µ < ∞ is a parameter, (7.2)
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but also in the case of integral equations, nonlinear algebraic and functional
equations, integro-differential and functional-differential equations, especially
those of retarded type in which the memory effects are important (like in the
distributed delay case).

The time-derivative in (7.2) is important in the definition of equilibrium
solutions and discussion of their stability [66]. The study of singular points
may be connected with stability but the connection is incidental and not
intrinsic. Generically speaking the problem of stability depends on whether
the system is dissipative or conservative.
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We note that it is not necessary for stability crossing curves of functional
differential equations to be connected by bifurcation. There are isolated
curves that are not connected to other curves through bifurcation. This phe-
nomenon is very common in dynamical problems. However, we are interested
to analyze the stability changes around a bifurcation point. Double-point
bifurcation is the most common form of bifurcation which can occur at a
singular point. Other types of bifurcation, cusp points, triple points, etc, are
less common because they require some relationship between higher-order
derivatives of F (for instance, see [66]). Such situations are sometimes called
non-generic bifurcation. In the figure 7.1 is easy to identify a double point
(a singular point through which pass two and only two branches possessing

different tangents) and several regular turning points (a point at which
dT

dτ
-
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the derivative of T = T (τ) w.r.t. τ - changes sign).
The elementary theory of singular points of plane curves is discussed

in many books on classical analysis (for example, see [33]). To complete the
study of bifurcation we shall also need to study the stability of the bifurcating
solutions [72]. We conclude that the analysis of specific cases pointed out
throughout the thesis has to be done carefully in order to see the type of
bifurcation points and the behavior of the system around them.

7.2.3 Other class of delay differential equation

As presented in Chapter 6, the algebraic procedure to study the stability
region of models described by (4.1) can be extended to more complex models
whose dynamics are given by (6.19). The extension of the geometric ap-
proach requires an appropriate interpretation or a reduction that keeps the
stability crossing curves unchanged. For the particular form of the system
(6.4) it is clear that we can easily find the stability crossing curves using
the development presented in section 6.1. However, more details and a well
formulated algorithm are needed.

Another extension that might be possible is towards the linear neutral
systems including distributed delays. Some aspects related to the class of
linear neutral systems were considered in Section 3.2 and 3.3. However, we
developed our algorithms only for the class of retarded type delay differential
equations.

We note that the general methods are not always easy to apply to specific
problems. Therefore, in order to study these models, we often need to develop
new computationally oriented methods. The aim of this thesis and our future
works is to overcome the inconvenient implementation.
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Appendix A

Useful results

A.1 Implicit function theorem

In multi-variable calculus of mathematics the implicit function theorem says
that for a suitable set of equations, some of the variables are defined as
functions of the others. There are some natural limitations on this use of
a mathematical relation to define implicit functions, which may be seen in
trying to use the unit circle as the graph of a function. Firstly, the projection
of the circle onto the x-axis is two-to-one on the interval (−1, 1); this means
that y can only be made a local function of x. Further, at the points (1, 0)
and (−1, 0), the tangent line to the circle is vertical. This means that y
cannot be a differentiable function of x at those points.

The implicit function theorem gets around both these difficulties, which
represent the typical obstructions. The implicit function is only locally de-
fined, and points at which the first-order behavior would be problematic are
outside the scope of the result.

Theorem 16 Let f : Rm+n 7→ Rn be a continuously differentiable function
defined in an open subset of Rm+n which contains the point (a, b), where
a = (x1, ..., xm) ∈ Rm and b = (y1, ..., yn) ∈
mathbbRn, and suppose that f satisfy the following conditions:

• f(a, b) = 0.

•
(

∂fi

∂yk

∣∣∣∣
(a,b)

)

1≤i≤n, 1≤k≤n

is invertible.
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•
(

∂fi

∂yk

∣∣∣∣
(a,b)

)

1≤i≤n, 1≤k≤n

is continuous.

Then, there exists an ε > 0 and an implicit function ϕ : B(a, ε) 7→ Rn such
that:

• ϕ(a) = b;

• f(x, ϕ(x)) = 0, ∀x ∈ B(a, ε);

• ϕ is a continuous function.

Furthermore, if f is differentiable (Ck-class respectively) then ϕ is differen-
tiable (Ck-class respectively) and

d

dx
ϕ(a) = −

(
∂fi

∂yk

∣∣∣∣
(a,b)

)−1

1≤i≤n, 1≤k≤n

·
(

∂fi

∂xk

∣∣∣∣
(a,b)

)

1≤i≤n, 1≤k≤m

A.2 Rouchés theorem

In complex analysis, Rouchés theorem tells us that if the complex-valued
functions f and g are holomorphic inside and on some closed contour C, with
|g(z)| < |f(z)| on C, then f and f + g have the same number of zeros inside
C, where each zero is counted as many times as its multiplicity. This theorem
assumes that the contour C is simple, that is, without self-intersections.
It is possible to provide an informal explanation on why the Rouché’s theorem
holds.

First we need to rephrase the theorem a little bit. Let h(z) = f(z)+g(z).
Notice that f, g holomorphic implies h holomorphic too. Then, with the
conditions imposed above, Rouché’s theorem says that:

Theorem 17 If |f(z)| > |h(z) − f(z)| then f(z) and h(z) have the same
number of zeros on the interior of f(z).

Notice that the condition |f(z)| > |h(z) − f(z)| means that for any z, the
distance of f(z) to the origin is larger than the length of h(z)− f(z). Infor-
mally we can say that the curve g(z) is always closer to the curve f(z) than
to the origin.
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A.3 Laplace transform

The Laplace transform is an integral transform, perhaps second (only to the
Fourier transform) in its utility in solving physical problems. The Laplace
transform is particularly useful in solving linear ordinary differential equa-
tions. More precisely, this transform is a solution technique which trans-
forms differential equations in the time-domain into algebraic equations in
the frequency-domain.

A.3.1 Formal definition

The Laplace transform of a piecewise continuous function f(t), defined for
all real numbers t > 0 and with an exponential order at infinity (i.e. there
exist α ∈ R and M ∈ R+ such that |f(t)| < Meαt, ∀t > 0), is the function
F (s), defined by:

F (s) = L{f(t)} =

∫ ∞

0−
e−stf(t)dt. (A.1)

The lower limit of 0− is short notation to mean lim
ε→0,ε>0

− ε, and assures the

inclusion of the entire Dirac delta function δ(t) at 0 if there is such an impulse
in f(t) at 0. The parameter s is in general complex i.e. s = σ+ iω. This inte-
gral transform has a number of properties that make it useful for analyzing
linear dynamical systems. The most significant advantage is that differenti-
ation and integration become multiplication and division, respectively, with
s. (This is similar to the way that logarithms change an operation of multi-
plication of numbers to addition of their logarithms.) This changes integral
equations and differential equations to polynomial equations, which are much
easier to solve.

A.3.2 Bilateral Laplace transform

When one says ”the Laplace transform” without qualification, the unilateral
or one-sided transform is normally intended. The Laplace transform can be
alternatively defined as the bilateral Laplace transform or two-sided Laplace
transform by extending the limits of integration to be the entire real axis.
If that is done the common unilateral transform simply becomes a special
case of the bilateral transform where the definition of the function being
transformed is multiplied by the Heaviside step function.

165



The bilateral Laplace transform is defined as follows:

F (s) = L{f(t)} =

∫ +∞

−∞
e−stf(t) dt. (A.2)

A.4 Riesz representation theorem

Historically, the theorem is often attributed simultaneously to Riesz and
Frchet [44]. There are a couple of versions of this theorem. Basically, it says
that any bounded linear functional T on the space of compactly supported
continuous functions on X is the same as integration against a measure µ,

Tf =

∫
fdµ.

Here, the integral is the Lebesgue integral.
Because linear functionals form a vector space, and are not positive, the

measure µ may not be a positive measure. But if the functional T is positive,
in the sense that f ≥ 0 implies that Tf ≥ 0, then the measure µ is also
positive. In the generality of complex linear functionals, the measure µ is a
complex measure.

A.4.1 The Hilbert space representation theorem

The Hilbert representation theorem establishes an important connection be-
tween a Hilbert space and its dual space: if the ground field is the real num-
bers, the two are isometrically isomorphic; if the ground field is the complex
numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism
is a particular natural one as will be described next.

Let H be a Hilbert space, and let H′ denote its dual space, consisting of
all continuous linear operators from H into the base field R or C. If x is an
element of H, then the function ϕx defined by

ϕx(y) = (x, y) ∀y ∈ H
where ( , ) denotes the inner product of the Hilbert space, is an element

of H′. The Riesz representation theorem states that every element of H′ can
be written uniquely as follows:
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Theorem 18 The mapping

Φ : H → H′, Φ(x) = ϕx

is an isometric (anti-) isomorphism, meaning that:

• Φ is bijective.

• The norms of x and Φ(x) agree: ||x|| = ||Φ(x)||.

• Φ is additive: Φ(x1 + x2) = Φ(x1) + Φ(x2).

• If the base field is R, then Φ(λx) = λΦ(x) for all real numbers λ.

• If the base field is C, then Φ(λx) = λ∗Φ(x) for all complex numbers λ,
where λ∗ denotes the complex conjugation of λ.

The inverse map of Φ can be described as follows. Given an element ϕ of H′,
the orthogonal complement of the kernel of ϕ is a one-dimensional subspace
of H. Take a non-zero element z in that subspace, and set x = ϕ(z)/||z||2 · z.
Then Φ(x) = ϕ.

A.4.2 The representation theorem for linear function-
als on Cc(X)

The following theorem represents positive linear functionals on Cc(X), the
space of continuous complex valued functions of compact support. The Borel
sets in the following statement refers to the σ-algebra generated by the open
sets.

Definition 9 A non-negative countably additive Borel measure µ on a locally
compact Hausdorff space X is regular if and only if:

• µ(K) < ∞ for every compact K;

• For every Borel set E,

µ(E) = inf{µ(U) : E ⊆ U,U open}
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• The relation

µ(E) = sup{µ(K) : K ⊆ E, K compact}
holds whenever E is open or when E is Borel and µ(E) < ∞.

Theorem 19 Let X be a locally compact Hausdorff space. For any positive
linear functional ψ on Cc(X), there is a unique Borel regular measure µ on
X such that

ψ(f) =

∫

X

f(x) dµ(x) ∀f ∈ Cc(X)

One approach to measure theory is to start with a Radon measure, defined as
a positive linear functional on C(X). This is the way adopted by Bourbaki;
it does of course assume that X starts life as a topological space, rather than
simply as a set. For locally compact spaces an integration theory is then
recovered.

A.4.3 The representation theorem for the dual of C0(X)

The following theorem, also referred to as the Riesz-Markov theorem gives a
concrete realization of the dual space of C0(X), the set of continuous func-
tions on X which vanish at infinity. The Borel sets in the statement of the
theorem also refers to the σ-algebra generated by the open sets. This result
is similar to the result of the preceding section, but it does not subsume the
previous result. See the technical remark below.

If µ is a complex-valued countably additive Borel measure, µ is regular
if and only if the non-negative countably additive measure |µ| is regular as
defined above.

Theorem 20 Let X be a locally compact Hausdorff space. For any continu-
ous linear functional ψ on C0(X), there is a unique regular countably additive
complex Borel measure µ on X such that

ψ(f) =

∫

X

f(x) dµ(x) ∀f ∈ C0(X).

The norm of ψ as a linear functional is the total variation of µ, that is
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‖ψ‖ = |µ|(X).

Finally, ψ is positive if and only if the measure µ is non-negative.

Remark 25 A positive linear functional on Cc(X) may not extend to a
bounded linear functional on C0(X). For this reason the previous results
apply to slightly different situations.
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Appendix B

MatLab Routines

In the sequel we present the MatLab routines developed for the algorithms
presented in this thesis.

B.1 Smith Predictor principle

clear all;

%citesc numaratorul si numitorul lui a1

%Nnum=input(’Dati gradul lui numaratorului: ’);

%disp(’Dati NUMARATORUL lui h:’);

%for i=1:Nnum+1

%fprintf(’Dati coeficientul de gradul %d: ’,Nnum-i+1)

% numh(i)=input(’’);

%end

%fprintf(’\n’);

%numh;

%Nden=input(’Dati gradul lui numitorului: ’);

%disp(’Dati NUMITORUL lui h:’);

%for i=1:Nden+1

%fprintf(’Dati coeficientul de gradul %d: ’,Nden-i+1)

% denh(i)=input(’’);

%end
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%fprintf(’\n’);

%denh;

%Exemplul 1

numh=[4 1]; denh=[4 4 4];

%Exemplul 2

%numh=[1 sqrt(2)];

%denh=[2 1 8 1];

%Exemplul 3

%numh=[1 2];

%denh=[1 0 2];

Nnum=length(numh); Nden=length(denh);

%afisarea sub forma polinomiala a lui h

syms s w q; disp(’Numaratorul lui h este ’);%

disp(poly2sym(numh,s)); %

disp(’Numitorul lui h este ’);

disp(poly2sym(denh,s)); fprintf(’\n’);

%Impartirea numaratorului lui h in parte reala

%si parte imaginara

numhR=[]; numhI=[]; for i=1:Nnum

switch (mod(Nnum-i,4))

case 0

numhR=[numhR numh(i)];

numhI=[numhI 0];

case 1

numhR=[numhR 0];

numhI=[numhI numh(i)];

case 2

numhR=[numhR -numh(i)];
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numhI=[numhI 0];

otherwise

numhR=[numhR 0];

numhI=[numhI -numh(i)];

end

end numhR; numhI;

disp(’Real part of the nominator of h ’);

numhRP=poly2sym(numhR,w); disp(numhRP);%

disp(’Imaginary part of the nominator of h ’);

numhIP=poly2sym(numhI,w); disp(numhIP);%

fprintf(’\n’);

%Impartirea numitorului lui h in parte reala si

%parte imaginara

denhR=[]; denhI=[];%

for i=1:Nden

switch (mod(Nden-i,4))

case 0

denhR=[denhR denh(i)];

denhI=[denhI 0];

case 1

denhR=[denhR 0];

denhI=[denhI denh(i)];

case 2

denhR=[denhR -denh(i)];

denhI=[denhI 0];

otherwise

denhR=[denhR 0];

denhI=[denhI -denh(i)];

end

end denhR; denhI;

disp(’Real part of the denominator of h ’);

denhRP=poly2sym(denhR,w); disp(denhRP); %

disp(’Imaginary part of the denominator of h’);

denhIP=poly2sym(denhI,w); disp(denhIP); %
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fprintf(’\n’);

%The end point corresponding to |h|=1/2

A=sym2poly(4*numhRP^2+4*numhIP^2-denhRP^2-denhIP^2);%

A1=roots(A); v1=transp(A1); v1=sort(v1); %

disp(’Increasing sequence of the roots:’);%

disp(v1); v11=[-inf v1 inf];

C1_interval=[]; for i=1:length(v11)-1

if v11(i)==-inf && v11(i+1)==inf

if polyval(A,0)>=0

C1_interval=v11;

end

elseif v11(i)==-inf

if polyval(A,(v11(i+1)-50))>=0

C1_interval=[C1_interval v11(i) v11(i+1)];

end

elseif v11(i+1)==inf

if polyval(A,(v11(i)+50))>=0

C1_interval=[C1_interval v11(i) v11(i+1)];

end

elseif polyval(A,(v11(i)+v11(i+1))/2)>=0

C1_interval=[C1_interval v11(i) v11(i+1)];

end

end C1_interval

C2_interval=[-inf inf]

int1=[]; for i=1:2:length(C1_interval)-1

for j=1:2:length(C2_interval)-1

if C1_interval(i)<=C2_interval(j)

&& C2_interval(j)<=C1_interval(i+1)

&& C1_interval(i)<=C2_interval(j+1)

&& C2_interval(j+1)<=C1_interval(i+1)

int1=[int1 C2_interval(j) C2_interval(j+1)];%

disp(1)
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end

if C2_interval(j)<C1_interval(i)

&& C1_interval(i)<=C2_interval(j+1)

&& C2_interval(j+1)<=C1_interval(i+1)

int1=[int1 C1_interval(i) C2_interval(j+1)];%

disp(2)

end

if C1_interval(i)<C2_interval(j)

&& C2_interval(j)<=C1_interval(i+1)

&& C1_interval(i+1)<C2_interval(j+1)

int1=[int1 C2_interval(j) C1_interval(i+1)];%

disp(3)

end

if C2_interval(j)<C1_interval(i)

&& C1_interval(i)<=C2_interval(j+1)

&& C2_interval(j)<=C1_interval(i+1)

&& C1_interval(i+1)<C2_interval(j+1)

int1=[int1 C1_interval(i) C1_interval(i+1)];%

disp(4)

end

end

end int1

%crossing set

poz_fin=[]; for i=1:2:length(int1)-1

if int1(i+1)>0

if int1(i)<0

poz_fin=[poz_fin 0 int1(i+1)];

else

poz_fin=[poz_fin int1(i) int1(i+1)];

end

end

end
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poz_fin

%formez matricea in care am intervalele

x=zeros(length(poz_fin)/2,3); k=1;

for i=1:2:length(poz_fin)-1

x(k,1)=poz_fin(i);

x(k,2)=poz_fin(i+1);

% display the interval type

if x(k,1)==0

x(k,3)= x(k,3);

elseif find(v1==x(k,1))

x(k,3)=10;

end

if find(v1==x(k,2))

x(k,3)=x(k,3)+1;

end

fprintf(’Interval %f %f of type ’,x(k,1),x(k,2));

switch x(k,3)

case 1

fprintf(’01’);

case 11

fprintf(’11’);

end

fprintf(’\n’);

k=k+1;

end

%tau1 and tau2 computation

for i=1:length(poz_fin)/2

for u=1:4

for v=1:4

tau1_fplus1=[];

tau2_fplus1=[];

tau1_fminus1=[];

tau2_fminus1=[];
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a=x(i,1);

b=x(i,2);

k=0;

l=0;

for o=a:(b-a)*0.005:b

numhRV=polyval(numhR,o);

numhIV=polyval(numhI,o);

denhRV=polyval(denhR,o);

denhIV=polyval(denhI,o);

q=acos(1/(2*sqrt((numhRV^2+numhIV^2)/

(denhRV^2+denhIV^2))));

tau1plus=(angle(complex(numhRV,numhIV)/

complex(denhRV,denhIV))+(2*u-1)*pi+q)/o;

tau2plus=(angle(complex(numhRV,numhIV)/

complex(denhRV,denhIV))+(2*v)*pi-q)/o;

tau1minus=(angle(complex(numhRV,numhIV)/

complex(denhRV,denhIV))+(2*u-1)*pi-q)/o;

tau2minus=(angle(complex(numhRV,numhIV)/

complex(denhRV,denhIV))+(2*v)*pi+q)/o;

tau1_fplus1=[tau1_fplus1 tau1plus];

tau2_fplus1=[tau2_fplus1 tau2plus];

tau1_fminus1=[tau1_fminus1 tau1minus];

tau2_fminus1=[tau2_fminus1 tau2minus];

tau1_fplus=[];

tau2_fplus=[];

tau1_fminus=[];

tau2_fminus=[];

n=1;

r=1;

for m=1:length(tau2_fplus1)

if tau2_fplus1(m)>tau1_fplus1(n)

tau1_fplus=[tau1_fplus tau1_fplus1(n)];

tau2_fplus=[tau2_fplus tau2_fplus1(m)];

end

n=n+1;

k=k+1;

end
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for q=1:length(tau2_fminus1)

if tau2_fminus1(q)>tau1_fminus1(r)

tau1_fminus=[tau1_fminus tau1_fminus1(r)];

tau2_fminus=[tau2_fminus tau2_fminus1(q)];

end

r=r+1;

end

end

plot(tau1_fplus,tau2_fplus,’b’);

hold on;

plot(tau1_fminus,tau2_fminus,’g’);

hold on;

x1=xlabel(’\tau 1’,’FontWeight’,’bold’);

y1=ylabel(’\tau 2’,’FontWeight’,’bold’);

title(’The crossing curves’,’FontWeight’,’bold’);

end end

y=[];

for h=1:tau2_fplus(1)

y(h)=h;

end

plot(y,y,’r’)

hold on; pause;%

hold off;

end

pause;

hold off;

B.2 Distributed Delay with a gap

clear;

%p=[1 0 2]; %tip 12 21

%q=[1 0];

%p=[1 0 3 0 2]; %tip 32 22 21
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%q=[1 4];

%p=[1 3 2]; %tip 11

%q=[sqrt(10) 0];

%p=[1 3]; %tip 31

%q=[5];

n=input(’Degree of P: ’); for i=1:n+1

fprintf(’The coefficient coresponding %

to degree %d :’,n-i+1)

p(i)=input(’’);

end

m=input(’Degree of Q: ’); for i=1:m+1

fprintf(’The coefficient coresponding %

to degree %d :’,m-i+1)

q(i)=input(’’);

end

nP=length(p); nQ=length(q);

%punerea lui P si Q sub forma polinomiala

syms s w; disp(’P(s) = ’);

disp(poly2sym(p,s)); disp(’Q(s)=’);

disp(poly2sym(q,s));

%impartirea lui P in Preal si Pimag

preal=[]; pimag=[]; for i=1:nP

switch (mod(nP-i,4))

case 0

preal=[preal p(i)];

pimag=[pimag 0];

case 1

pimag=[pimag p(i)];

preal=[preal 0];

case 2

preal=[preal -p(i)];
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pimag=[pimag 0];

otherwise

pimag=[pimag -p(i)];

preal=[preal 0];

end

end

disp(’Real part of P(jw)= ’);

polPR=poly2sym(preal,w);

disp(polPR);

disp(’Imaginary part of P(jw)= ’);

polPI=poly2sym(pimag,w);

disp(polPI);

%impartirea lui Q in Q real si Q imaginar

qreal=[]; qimag=[]; for i=1:nQ

switch (mod(nQ-i,4))

case 0

qreal=[qreal q(i)];

qimag=[qimag 0];

case 1

qimag=[qimag q(i)];

qreal=[qreal 0];

case 2

qreal=[qreal -q(i)];

qimag=[qimag 0];

otherwise

qimag=[qimag -q(i)];

qreal=[qreal 0];

end

end

disp(’Real part of Q(jw)= ’);

polQR=poly2sym(qreal,w);

disp(polQR); disp(’Imaginary part of Q(jw)= ’);

polQI=poly2sym(qimag,w); disp(polQI);
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%calculul radacinilor ec |P(jw)|=|Q(jw)|

R=polPR^2+polPI^2-polQR^2-polQI^2;

polR=sym2poly(R); %returneaza coeficientii lui R

rad=roots(polR); disp(’Roots of P(jw)=Q(jw) are:’);

disp(rad’);

%eliminarea valorilor imaginare

k=1; for i=1:length(rad)

if imag(rad(i))==0 %dc exista parte imaginara %

atunci de elimina

rad_reale(k)=rad(i);

k=k+1;

end

end

rad_sort=sort(rad_reale); %radacinile sortate

disp(’The increasing sequence of P(jw)=Q(jw) is’); %

disp(rad_sort);

%radacinile se introduc in matricea x in prima si %

a doua coloana

disp(’The intervals given for P(jw)=Q(jw) are’); %

x=[]; k=1; for

i=1:2:length(rad_sort)

x(k,1)=rad_sort(i);

x(k,2)=rad_sort(i+1);

k=k+1;

end disp(x);

%calculul expr |P(jw)|=0

PRV=poly2sym(preal,w) PIV=poly2sym(pimag,w)

if (PIV==0)

PP=PRV;

else

PP=PRV^2+PIV^2;

end PV=roots(sym2poly(PP)) PV=PV’; PVS=[];

%eliminarea valorilor imaginare

181



k=1;

for i=1:length(PV)

if (imag(PV(i))==0)

PVS(k)=PV(i);

k=k+1;

end

end PVS=sort(PVS); disp(’The roots of P(jw)=0 are’);

disp(PVS);

y=[x zeros(length(rad_sort)/2,length(PVS))]; %

for i=1:(length(rad_sort)/2)

k=2;

for j=1:length(PVS)

if x(i,1)<PVS(j)&& PVS(j)<x(i,2)

y(i,k)=PVS(j);

k=k+1;

end

end

y(i,k)=x(i,2);

end

%afisarea intervalelor fara eliminarea val negative

x=[]; k=1;

for i=1:length(rad_sort)/2

for j=1:length(PVS)+1

if y(i,j+1)~=0

x(k,1)=y(i,j);

x(k,2)=y(i,j+1);

k=k+1;

end

end

end

disp(’The intervals |P(jw)|<=|Q(jw)|’); disp(x);

disp(’crossing set’)

z=[]; y=[]; j=1;
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for i=1:k-1

z(1)=x(i,1);

z(2)=x(i,2);

if z(2)>0

if z(1)<0

z(1)=0;

end

% else dc nu e negativ at afiseaza intervalul

y(j,1)=z(1);

y(j,2)=z(2);

if find(rad_sort==z(1))

if find(rad_sort==z(2))

y(j,3)=11;

disp(’Type 11’);

else

y(j,3)=12;

disp(’Type 12’);

end

elseif z(1)==0

if find(PVS==z(2))

y(j,3)=32;

disp(’Type 32’);

else

y(j,3)=31;

disp(’Type 31’);

end

elseif find(PVS==z(1))

if find(PVS==z(2))

y(j,3)=22;

disp(’Type 22’);

else

y(j,3)=21;

disp(’Type 21’);

end

end

j=j+1;

disp(z);

end
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end

%afisarea grafica

n=input(’n= ’);

for k=1:j-1

a=y(k,1);

b=y(k,2);

switch(y(k,3))

case 11

b=b+(b-a)*0.01;

case 12

b=b-(b-a)*0.1;

case 21

a=a+(b-a)*0.1;

b=b+(b-a)*0.01;

case 22

a=a+(b-a)*0.1;

b=b-(b-a)*0.1;

case 32

a=a+(b-a)*0.1;

b=b-(b-a)*0.1;

otherwise

b=b+(b-a)*0.01;

end

for m=1:3

%n=1;

T1=[];

tau1=[];

for o=a:(b-a)*0.01:b

valPR=polyval(preal,o);

valPI=polyval(pimag,o);

valQR=polyval(qreal,o);

valQI=polyval(qimag,o);

T=(1/o)*sqrt(((valQR^2+valQI^2)/

(valPR^2+valPI^2))^(1/n)-1);

T1=[T1 T];

tau=(1/o)*(angle(complex(valQR,valQI))-

angle(complex(valPR,valPI))-n*atan(o*T)+pi+(m-1)*2*pi);
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tau1=[tau1 tau];

end

plot(T1,tau1,’k’);

x1=xlabel(’T’,’FontWeight’,’bold’);

y1=ylabel(’\tau’,’FontWeight’,’bold’);

title(’Stability crossing curves’,’FontWeight’,’bold’);

% switch(y(k,3))

% case 11

%title([’Intervalul [’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’]

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% case 12

%title([’Intervalul [’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’)

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% case 21

%title([’Intervalul (’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’]

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% case 22

%title([’Intervalul (’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’)

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% case 31

%title([’Intervalul (’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’]

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% otherwise

%title([’Intervalul (’,num2str(y(k,1)),’,’,

% num2str(y(k,2)),’)

% de tipul ’,num2str(y(k,3))],’FontWeight’,’bold’);

% end

text(T,tau,[’ \leftarrow m = ’,num2str(m-1)],

’fontsize’,10);

hold on;

end

end hold off;

185



186



Bibliography

[1] Abdallah, C., Dorato, P., Benitez-Read, J. and Byrne, R.: Delayed
positive feedback can stabilize oscillatory systems. in Proc. American
Contr. Conf. 3106-3107. (1993).

[2] Aiello, W. G. and Freedman H. I.: A Time-Delay Model of Single-Species
Growth, with Stage Structure, Mathematical Biosciences, 101, 139-153.
(1990).

[3] Alamir, M.& Commault, C.:A new equal-partition measurement encod-
ing scheme for netxorked control systems. Proc. of the 2004 NOLCOS
Symposium on Nonlinear Control Systems, Stuttgard, Germany. (2004).

[4] Alpcan, T. & Basar, T.: A game-theoretic framework for congestion
control in general topology networks Proc. of the 41st Conference on
Decision and Control, Las Vegas, NV, USA. (2002).

[5] Alpcan, T. & Basar, T.: Global stability analysis of an end-to-
endcongestion control scheme for general topology networks with delay.
Proc. of the 42nd Conference on Decision and Control, Maui, Hawaii,
USA. (2003).

[6] Anderson, J. A. and Spong, M. W.: Bilateral control of teleoperators
with time delay. IEEE Trans. Automat. Contr. AC-34, 494-501, (1989).

[7] Artsein, Z.: Linear systems with delayed control: A reduction. IEEE
Trans. Automat. Contr. AC-27, 869-879, (1982).

[8] Ash, N. and Greenberg, B.: Developmental temperature response of the
sibling species Phaenicia sericata and Phaenicia pallescens Annals of
the Entomological Society of America, 68, 197-200. (1975).

187



[9] Avalos, G. Lasiecka, I. and Rebarber, R.: Lack of time-delay robust-
ness for stabilization of a structural acoustic model. SIAM J. Control
Optimiz. 37 1394-1418. (1999).

[10] Azimi-Sadjadi, B.: Stability of networked control systems in the presence
of packet losses. Proc. of the 42nd IEEE Conference on Decision and
Control, Maui, Hawaii, USA. (2003).

[11] Baker C. T. H., Bocharov G. A. and Rihan, F. A.: A Report on the Use of
Delay differential Equations in Numerical Modelling in the Biosciences,
MCCM Tech. Rep., 343 , Manchester, ISSN 1360-1725, (1999).

[12] Bando, M., Hasebe, K., Nakanishi, Nakayama, A.: Delay of Vehicle
Motion in Traffic Dynamics. Internal Report Aichi University. (1996).

[13] Bando, M., Hasebe, K., Nakanishi and Nakayama, A.: Analysis of Op-
timal Velocity Model with explicit Delay. Physical Review E, 58 (1998)
5429-5435.

[14] Barnett, S. (1983): Polynomials and linear control systems, (Marcel
Dekker, Inc.,New York).

[15] Bellman, R. and Cooke, K.: Differential Difference Equations Accad-
emic Press, (1963).

[16] Benke, A. C. and Benke, S. S.: Comparative dynamics and life histories
of coexisting dragonfly populations. Ecology, 56, 302-317. (1975).

[17] Bensoussan, A., Da Prato, G. Defour, M. C. and Mitter, S. K.: Repre-
sentation and control of infinite dimensional systems. Systems & Con-
trol: Foundation & Applications, 2 volumes, Birkhäuser, Boston, (1993).
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[44] Fréchet, M.: Sur les ensembles de fonctions et les oprations linaires. C.
R. Acad. Sci. Paris 144, 14141416. (1907).

[45] Freudenberg, J.S. and Looze, D.P.: A sensitivity tradeoff for plants with
time delay. IEEE Trans. Automat. Contr. 32 99-104.(1987).

[46] Fridman, E. Seuret, A. and Richard, J. -P.: Robust sampled-data stabi-
lization of linear systems: an input delay approach. Automatica 40(8),
1441-1446. (2004).

[47] Fridman, E., and Shaked, U.: Delay-dependent stability and H∞ control:
constant and time-varying delays. Int. J. Control, 76(1), 48-60. (2003).

[48] Fridman, E., Shaked, U. and Xie, L.: Robust H∞ filtering of linear
systems with time varying delay. IEEE Trans. Auto. Contr. 48(1), 159-
165. (2003).

[49] Glass, L. and Mackey, M. C.: From Clocks to Chaos. Princeton Univ.
Press, Princeton, N. J. (1988).

[50] Gopalsamy, K.: Harmless delays in a model system. Bull. Math. Biol.
45, 295-309, (1983).
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