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Abstract. This paper characterizes the stability crossing curves of a class of linear systems with
gamma-distributed delay with a gap. First, we describe the crossing set, i.e., the set of frequencies
where the characteristic roots may cross the imaginary axis as the parameters change. Then, we
describe the corresponding stability crossing curves, i.e., the set of parameters such that there is at
least one pair of characteristic roots on the imaginary axis. Such stability crossing curves divide the
parameter space R

2
+ defined by the mean delay and the gap into different regions. Within each such

region, the number of characteristic roots on the right half complex plane is fixed. This naturally
describes the regions of parameters where the system is stable. The classification of the stability
crossing curves is also discussed. Some illustrative examples (Cushing equation in biology, traffic
flow models in transportation systems, control over networks of a simplified helicopter model) are
also presented.
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1. Introduction. The stability of dynamical systems in the presence of time
delay is a problem of recurring interest (see, for instance, [11], [16], [8], [14], and
the references therein). The presence of a time delay may induce instabilities and
complex behaviors. Systems with distributed delays are present in many scientific
disciplines such as physiology, population dynamics, and engineering.

One of the first studies devoted to population dynamics using a model with
gamma-distributed delay is due to Cushing [5]. The linearization of this model is

ẋ(t) = −αx(t) + β

∫ t

−∞
g(t − θ)x(θ)dθ, (1.1)

where α is a constant defining the death rate per unit time, and β a constant corre-
sponding to the maternity function. The integration kernel of the distributed delay
is the gamma distribution [15, 4]

g(ξ) =
an+1

n!
ξne−aξ. (1.2)

Applying a Laplace transform of (1.1), with g(ξ) as expressed in (1.2) yields a parameter-
dependent polynomial characteristic equation of the form

D(s; τ̄ , n) := (s + α)

(

1 + s
τ̄

n + 1

)n+1

− β = 0, (1.3)

where “s” is the Laplace transform variable and τ̄ = (n + 1)/a is the mean delay.
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Cooke and Grossman [4] discussed the change of stability of (1.3) when one of the
parameters, the mean delay value τ̄ or the exponent n, varies while the other is fixed.

Nisbet and Gurney [17] modified the gamma distribution g(ξ) expressed in (1.2)
to the gamma distribution with a gap

ĝ(ξ) =

{

0, ξ < τ

an+1

n! (ξ − τ)ne−a(ξ−τ), ξ ≥ τ,
(1.4)

to more accurately reflect the reality (see, for instance, [1], [15] for additional discus-

sions). In this case, a simple computation shows that the mean delay is τ̂ = τ +
n + 1

a
.

The characteristic equation becomes a parameter-dependent quasipolynomial equa-
tion [1], [2] of the form

D̂(s; τ̄ , τ, n) := (s + α)

(

1 + s
τ̄

n + 1

)n+1

− βe−sτ = 0. (1.5)

We note that [2] pointed out some inaccuracies of the earlier results presented in [4]
and [1]. It is also interesting to mention that Farkas, et. al [7] studied the bifurcation
problem of predator-prey model, also in the case of a gamma-distributed delay. More
general bifurcation study of systems with distributed delay can be found in a book
by Farkas [6].

More recently and in a quite different field (engineering), it was pointed out that
such gamma-distributed delays with a gap can also be encountered in the problem of
controlling objects over communication networks [19]. More specifically, the overall
communication delay in the network is modeled by a gamma-distributed delay with a
gap, where the gap value corresponds to the minimal propagation delay in the network,
which is always strictly positive. The stability problem of the closed-loop system
in [19] reduces to a parameter-dependent characteristic quasipolynomial equation of
the following form,

D(s; τ̄ , τ, n) := P (s)

(

1 + s
τ̄

n + 1

)n+1

+ Q(s)e−sτ = 0, (1.6)

where P (s) and Q(s) are polynomials. Obviously, the equation (1.5) is a special case
of (1.6).

Another research area where a distributed delay appears naturally is the traffic
flow dynamics. A simplified car-following model, where multiple vehicles in a ring
have drivers with identical behavior, and under the influence of a single constant
time-delay [3, 12], can be written as

ẋi(t) = αi(xi−1(t − τ) − xi(t − τ)), i = 1, . . . , p, (1.7)

where p is the number of vehicles considered and x0 = xp. The left hand side repre-
sents the acceleration of the ith vehicle, and the right hand side express the velocity
difference of consecutive vehicles.

When the delays are not assumed to be identical, several models in the literature
are used to describe the dynamics of the model (see, for instance, [21] for some clas-
sifications and a large list of references therein). As suggested in [22], we can extend
the previous models by incorporating a more general memory effect. Consider the
following system:

ẋi(t) = αi

∫ t

−∞
g(t − θ)(xi−1(θ) − xi(θ))dθ, (1.8)
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where g is the delay distribution, which can represent both dead-time and past mem-
ory. The corresponding characteristic equation of (1.8) is given by

det[sI − (A1 + A2)G(s)] = 0, (1.9)

where G denotes the Laplace transform of g. When g represents the gamma-distribution
with a gap, we get

G(s) = e−sτ

(

1 + s
τ̄

n + 1

)−(n+1)

.

In the simplest case of two vehicles in a ring (p = 2, i = 1, 2, and x0 = x2), the
matrices A1 and A2 are given by

A1 =

(

−α1 0
0 −α2

)

, A2 =

(

0 α1

α2 0

)

, (1.10)

and the characteristic equation becomes

s

(

1 + s
τ̄

n + 1

)n+1

+ (α1 + α2)e
−sτ = 0, (1.11)

which is again a special case of equation (1.6).
Finally, another interesting engineering example involving gamma-distributed de-

lay is the machine tool vibration problem. The readers are referred to the nice paper
by Stépán [24] for details. It is also interesting to mention that Insperger and Stépán
[13] also used gamma-distributed delay in their numerical study of time-delay system.

In this paper, we will study the stability of systems with the characteristic equa-
tion (1.6) as the parameters τ̄ and τ vary. Specifically, we will describe the stability
crossing curves, i.e., the set of parameters such that there exists at least one pair of
characteristic roots on the imaginary axis. Such stability crossing curves divide the
parameter space R2

+ into different regions. Within each such region, the number of
characteristic roots on the right-half complex plane is fixed. This naturally describes
the regions of parameters where the system is stable.

It should be noted that there have been numerous works in the literature to de-
scribe the stability regions of parameter space, known as stability charts [23], [24].
These descriptions are typically valid for one specific system except that the param-
eters are allowed to vary. In a recent paper, Gu, et al [9] gave a characterization
of the stability crossing curves for systems with two discrete delays as the parame-
ters. One significant difference of [9] as compared to the stability charts is the fact
that such characterization applies to any systems within the class, i.e., any system
with two delays. We note also the paper of [20], where we can find some interesting
characterization that can be used for a large class of time delay systems (including
distributed delay systems). However, the approach proposed in [20] requires rather
heavy computation when dealing with quasipolynomials of a high degree.

The current paper follows the line of [9], and our conclusion is valid for any system
of the form (1.6).

The rest of this paper is organized as follows: Section 2 contains the problem
statement and assumptions. Section 3 first discusses geometric characterization of
the crossing curves. Next, the stability crossing curves together with their classifica-
tion are described. Several simple examples are described to illustrate the types of
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curves in our classification. Finally, tangent and smoothness properties and crossing
direction are described. Section 4 includes four illustrative examples in some detail:
linearized first-order Cushing equation, a second-order system depicting some particu-
lar behavior, a simplified traffic flow model, and a control over networks of a simplified
helicopter model. Some concluding remarks end the paper.

Throughout the paper, the following standard notation is used: C (C+, C−) is the
set of complex numbers (with strictly positive, and strictly negative real parts), and
j =

√
−1. For z ∈ C, ∠(z), Re(z) and Im(z) define the argument, the real part and

the imaginary part of z. R (R+, R−) denotes the set of real numbers (greater than
or equal to zero, less than or equal to zero). Next, N is the set of natural numbers,
including zero and Z the set of integers. Finally, RHP denotes the right-half plane of
C.

2. Problem formulation. Consider a system with the following characteristic
equation

D(s; T, τ) := P (s)(1 + sT )n + Q(s)e−sτ = 0, (2.1)

where the two parameters T and τ are nonnegative. We will describe the stability
crossing curves T , which is the set of (T, τ) such that (2.1) has imaginary solutions.

As the parameters (T, τ) cross the stability crossing curves, some characteristic
roots cross the imaginary axis. Therefore, the number of roots on the right half
complex plane are different on the two sides of the curves, from which, we may describe
the parameter regions of (T, τ) in R2

+ for the system to be stable.
Another related useful concept is the crossing set Ω, which is defined as the

collection of all ω > 0 such that there exists a parameter pair (T, τ) such that
D(jω; T, τ) = 0. In other words, as the parameters T and τ vary, the character-
istic roots may cross the imaginary axis at jω if and only if ω ∈ Ω.

We will restrict our discussions on the systems that satisfy the following assump-
tions.
Assumption I. deg(Q) < deg(P );
Assumption II. P (0) + Q(0) 6= 0;
Assumption III. P (s) and Q(s) do not have common zeros;
Assumption IV. If P (s) = p, Q(s) = q, where p and q are constant real, then

|p| 6= |q|;
Assumption V. P (0) 6= 0, |P (0)| 6= |Q(0)|;
Assumption VI. P ′(jω) 6= 0 whenever P (jω) = 0.

Assumption I means that the time-delay system represented by (2.1) is of retarded
type. While not discussed here, it is possible to extend the analysis to systems of
neutral type by relaxing this assumption to also allow deg(Q) = deg(P ), as long as
lims→∞ Q(s)/P (s) < 1 is satisfied. Assumption II is made to exclude some trivial
cases. If it is not satisfied, then s = 0 is a solution of (2.1) for arbitrary (T, τ),
and therefore, the system can never be stable. Regarding Assumption III, if it is
violated, we may find a common factor of the highest order c(s) 6= constant of P (s)
and Q(s). This would indicates that D(s; T, τ) = c(s)D̂(s; T, τ), where D̂(s; T, τ)
satisfies Assumption III, and our analysis can still proceed on D̂(s; T, τ). Finally,
Assumptions IV to VI are made to exclude some rare singular cases in order to
simplify presentation.

Notice, we have restricted any element ω of the crossing set Ω to satisfy ω > 0.
Indeed, the discussion of ω < 0 is redundant in view of the fact that D(−jω; T, τ) is
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the complex conjugate of D(jω; T, τ). Also, ω = 0 is never an element of Ω in view
of Assumption II.

3. Main results.

3.1. Crossing set and stability crossing curves. Consider a fixed ω > 0,
we first observe that as T and τ each vary within [0,∞), i.e., (T, τ) vary in R2

+,
|1 + jωT |n ∈ [1,∞), |ejωτ | = 1, and ∠ejωτ may assume any nonnegative value by
choosing appropriate τ . From this observation, it is not difficult to conclude the
following proposition.

Proposition 3.1. Given any ω > 0, ω ∈ Ω if and only if it satisfies

0 < |P (jω)| ≤ |Q(jω)|, (3.1)

and all the corresponding T, τ can be calculated by

T =
1

ω

(

∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

2/n

− 1

)1/2

, (3.2)

τ = τm =
1

ω
(∠Q(jω) − ∠P (jω) − n arctan(ωT ) + π + m2π), (3.3)

m = 0,±1,±2, ....

Proof. For necessity of (3.1), let ω ∈ Ω, and apply modulus to (2.1), we obtain

|(1 + jωT )n| |P (jω)| = |Q(jω)| . (3.4)

This implies |P (jω)| ≤ |Q(jω)|, because |(1 + jωT )n| ≥ 1. In addition, |P (jω)| > 0
is also necessary. Otherwise, P (jω) = 0, which implies Q(jω) = 0 in view of (3.4).
But this violates Assumption III.

For sufficiency of (3.1), we only need to recognize that T and τ given by (3.2) and
(3.3) make s = jω a solution of (2.1). It is also easy to see by direct solution that T
and τ given by (3.2) and (3.3) are all the solutions.

There are only a finite number of solutions to each of the following two equations

P (jω) = 0, (3.5)

and

|P (jω)| = |Q(jω)|, (3.6)

because P and Q are both polynomials satisfying Assumptions I to IV. Therefore, Ω,
which is the collection of ω satisfying (3.1), consists of a finite number of intervals.
Denote these intervals as Ω1, Ω2, ..., ΩN . Then

Ω =

N
⋃

k=1

Ωk.

Without loss of generality, we may order these intervals from left to right, i.e., for any
ω1 ∈ Ωk1

, ω2 ∈ Ωk2
, k1 < k2, we have ω1 < ω2.
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In order to give a geometric interpretation that allows deriving the crossing set
Ω, for s = jω, we rewrite (2.1) as

(

−Q(jω)

P (jω)

)1/n

e−jωτ/n = 1 + jωT (3.7)

The equation (3.7) can be interpreted as the intersection between a circle with radius

|Q(jω)/P (jω)|1/n and a vertical line passing trough the point (1, 0), in the complex
plane. Therefore, the characterization of Ω can be easily derived from the following
figure: We will not restrict ∠Q(jω) and ∠P (jω) to a 2π range. Rather, we allow

1 + jωT

Re

Im

Fig. 3.1. The intersection is possible only if the radius |Q(jω)/P (jω)|, is larger than
1. The extreme cases for intersection are given by |Q(jω)/P (jω)| = 1 or |Q(jω)/P (jω)| →
∞ ⇔ P (jω) → 0

them to vary continuously within each interval Ωk. Thus, for each fixed m, (3.2)
and (3.3) represent a continuous curve. We denote such a curve as T m

k . Therefore,
corresponding to a given interval Ωk, we have an infinite number of continuous stability
crossing curves T m

k , m = 0,±1,±2, .... It should be noted that, for some m, part or
the entire curve may be outside of the range R2

+, and therefore, may not be physically
meaningful.

The collection of all the points in T corresponding to Ωk may be expressed as

Tk =
+∞
⋃

m=−∞

(

T m
k

⋂

R
2
+

)

.

Obviously, T =
⋃N

k=1 Tk.

3.2. Classification of stability crossing curves. Let the left and right end
points of interval Ωk be denoted as ωℓ

k and ωr
k, respectively. Due to Assumptions IV

and V, it is not difficult to see that each end point ωℓ
k or ωr

k must belong to one, and
only one, of the following three types:
Type 1. It satisfies the equation (3.6).
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Type 2. It satisfies the equation (3.5).
Type 3. It equals 0.

Denote an end point as ω0, which may be either a left end or a right end of an
interval Ωk. Then the corresponding points in T m

k may be described as follows.
If ω0 is of type 1, then T = 0. In other words, T m

k intersects the τ -axis at ω = ω0.
If ω0 is of type 2, then as ω → ω0, T → ∞ and

τ → 1

ω0

(

∠Q(jω0) − lim
ω→ω0

∠P (jω) − nπ

2
+ π + m2π

)

. (3.8)

Obviously,

lim
ω→ω0

∠P (jω) = ∠

[

d

dω
P (jω)

]

ω→ω0

(3.9)

if ω0 is the left end point ωℓ
k of Ωk, and

lim
ω→ω0

∠P (jω) = ∠

[

d

dω
P (jω)

]

ω→ω0

+ π (3.10)

if ω0 is the right end point ωr
k of Ωk. In other words, T m

k approaches a horizontal
line.

Obviously, only ωℓ
1 may be of type 3. Due to non-singularity assumptions, if

ωℓ
1 = 0, we must have 0 < |P (0)| < |Q(0)|. In this case, as ω → 0, both T and τ

approach ∞. In fact, (T, τ) approaches a straight line with slope

τ/T → (∠Q(0) − ∠P (0) − n arctanα + π + m2π)

α
, (3.11)

where

α =

(

∣

∣

∣

∣

Q(0)

P (0)

∣

∣

∣

∣

2/n

− 1

)1/2

.

We say an interval Ωk is of type ℓr if its left end is of type ℓ and its right end is of
type r. We may accordingly divide these intervals into the following 6 types.
Type 11. In this case, T m

k starts at a point on the τ -axis, and ends at another
point on the τ -axis.

Type 12. In this case, T m
k starts at a point on the τ -axis, and the other end

approaches ∞ along a horizontal line.
Type 21. This is the reverse of type 12. T m

k starts at ∞ along a horizontal line,
and ends at the τ -axis.

Type 22. In this case, both ends of T m
k approaches horizontal lines.

Type 31. In this case, T m
k begins at ∞ with an asymptote of slope expressed in

(3.11). The other end is at the τ -axis.
Type 32. In this case, T m

k again begins at ∞ with an asymptote of slope expressed
in (3.11). The other end approaches ∞ along a horizontal line.

In the sequel, we present two academic examples to illustrate some cases discussed
above.

Example 3.1. (Type 11) Let n = 1, P (s) = s2 + 3s + 2 and Q(s) =
√

10s.
Figure 3.2 (left) plots |P (jω)|/|Q(jω)| against ω. From the plot, it can be seen that the
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0.5 1 1.5 2 2.5 3
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

ω

|P(jω)|
|Q(jω)|

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

m=0

m=1

m=2

T

τ

Fig. 3.2. Example 3.1. Left: |P (jω)|/|Q(jω)| against ω. Right: T m

1
, for m = 0, 1, 2 (type 11) .

crossing set Ω contains only one interval Ω = Ω1 = [1, 2] of type 11. Correspondingly,
the stability crossing curves T is shown in Figure 3.2 (right), which consists of a series
of curves with both ends on the τ-axis.

Example 3.2. (Type 22 and 32) Figure 3.3 (left) plots |P (jω)|/|Q(jω)| against
ω with n = 1,

P (s) = s4 + 3s2 + 2 and Q(s) = s + 4. (3.12)

In this case Ω contains three intervals: Ω1 = (0, 1) (type 32), Ω2 = (1,
√

2) (type 22)
and Ω3 = (

√
2, 1.91] (type 21).

The stability crossing curves consist of three series of curves. Since type 21 has
already been shown in Example 3.1 above, here we will only show the two series corre-
sponding to Ω2 and Ω1. The series corresponding to Ω2 of type 22 is shown in Figure
3.3 (right). We can see that both ends approach infinity along the horizontal direction.
The series corresponding to Ω1 of type 32 is shown in Figure 3.4. The curves start
from infinite in directions that can be calculated by (3.11), and end at infinity along
the horizontal direction.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω

|P(jω)|
|Q(jω)|

10 20 30 40 50 60
2

4

6

8

10

12

14

16

18

m=3

m=2

m=1

T

τ

Fig. 3.3. Example 3.2. Left: |P (jω)|/|Q(jω)| against ω. Right: T m

2 , m = 1, 2, 3 (type 22).

Remark 1. Starting from practical models encountered in the literature, we will
illustrate other types in Section 4. More precisely, the crossing sets of the examples
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T

τ

m=0

m=1

m=2

Fig. 3.4. Example 3.2. T m

2 , m = 0, 1, 2 (type 32)

we consider include intervals of the type 31 (linearized Cushing equation, simplified
helicopter model), type 12 or type 21 (second-order example, simplified traffic flow
model).

3.3. Tangents and smoothness. For a given k we will discuss the smoothness
of the curves in T m

k and thus of

T =

N
⋃

k=1

Tk =

N
⋃

k=1

+∞
⋃

m=−∞

(

T m
k

⋂

R
2
+

)

.

In this part we use an approach based on the implicit function theorem.

For this purpose, we consider T and τ as implicit functions of s = jω defined by
(2.1). For a given m and k, as s = jω moves along the imaginary axis with ω ∈ Ωk,
(T, τ) = (T (ω), τ(ω)) moves along T m

k . For a given ω ∈ Ωk, let:

R0 = Re

(

j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Re {[nTP (jω) + (1 + jωT )P ′(jω)]

· (1 + jωT )n−1 + (Q′(jω) − τQ(jω))e−jωτ
}

,

I0 = Im

(

j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Im {[nTP (jω) + (1 + jωT )P ′(jω)]

· (1 + jωT )n−1 + (Q′(jω) − τQ(jω))e−jωτ
}

,

R1 = Re

(

1

s

∂D(s, T, τ)

∂T

)

s=jω

= Re
(

n(1 + jωT )n−1P (jω)
)

,
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I1 = Im

(

1

s

∂D(s, T, τ)

∂T

)

s=jω

= Im
(

n(1 + jωT )n−1P (jω)
)

,

R2 = Re

(

1

s

∂D(s, T, τ)

∂τ

)

s=jω

= −Re
(

Q(jω)e−jωτ
)

,

I2 = Im

(

1

s

∂D(s, T, τ)

∂τ

)

s=jω

= −Im
(

Q(jω)e−jωτ
)

.

Then, since D(s; T, τ) is an analytic function of s, T and τ , the implicit function
theorem indicates that the tangent of T m

k can be expressed as
(

dT

dω
dτ

dω

)

=

(

R1 R2

I1 I2

)−1(
R0

I0

)

=
1

R1I2 − R2I1

(

R0I2 − I0R2

I0R1 − R0I1

)

, (3.13)

provided that

R1I2 − R2I1 6= 0, (3.14)

and dT/dω and dτ/dω do not vanish simultaneously.
It follows that Tk is smooth everywhere except possibly at the points where either

R1I2 − R2I1 = 0, (3.15)

or when

dT

dω
=

dτ

dω
= 0. (3.16)

From the above discussions, we can conclude the following Proposition.
Proposition 3.2. The curve T m

k is smooth everywhere except possibly at the
points corresponding to s = jω in either of the following two cases:

1) s = jω is a multiple solution of (2.1);
2) ω is a type 1 end point of Ωk.

Proof. From the above discussion, we only need to show that (3.15) or (3.16)
can be satisfied only in the above two cases.

If (3.16) is satisfied then, in view of (3.13), R0 = I0 = 0, which implies

∂D

∂s
= 0.

This, together with D = 0, means that s = jω is a multiple solution of (2.1) in case
1) above.

If Condition (3.15) is satisfied, then

I1

R1
=

I2

R2
,

or

∠
(

n(1 + jωT )n−1P (jω)
)

= ∠
(

−Q(jω)e−jωτ
)

.

But (2.1) implies

∠ ((1 + jωT )nP (jω)) = ∠
(

−Q(jω)e−jωτ
)

.

Therefore, ∠(1 + jωT ) = 0, which in turn means T = 0. From this, we can conclude
|P (jω)| = |Q(jω)|, and ω is a type 1 end point of Ωk.
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3.4. Direction of crossing. Next we will discuss the direction in which the
solutions of (2.1) cross the imaginary axis as (T, τ) deviates from the curve T m

k .
We will call the direction of the curve that corresponds to increasing ω the positive
direction. We will also call the region on the left hand side as we head in the positive
direction of the curve the region on the left.

To establish the direction of crossing we need to consider T and τ as functions
of s = σ + jω, i.e., functions of two real variables σ and ω, and partial derivative
notation needs to be adopted. Since the tangent of T m

k along the positive direction

is

(

∂T

∂ω
,
∂τ

∂ω

)

, the normal to T m
k pointing to the left hand side of positive direction

is

(

− ∂τ

∂ω
,
∂T

∂ω

)

. Corresponding to a pair of complex conjugate solutions of (2.1)

crossing the imaginary axis along the horizontal direction, (T, τ) moves along the

direction

(

∂T

∂σ
,
∂τ

∂σ

)

. So, as (T, τ) crosses the stability crossing curves from the right

hand side to the left hand side, a pair of complex conjugate solutions of (2.1) cross
the imaginary axis to the right half plane, if

(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

> 0, (3.17)

i.e. the region on the left of T m
k gains two solutions on the right half plane. If the

inequality (3.17) is reversed then the region on the left of T m
k loses two right half

plane solutions. Similar to (3.13), we can express

(

∂T
∂σ
∂τ
∂σ

)

s=jω

=
1

R1I2 − R2I1

(

R0R2 + I0I2

−R0R1 − I0I1

)

. (3.18)

Using this we arrive at the following Proposition.
Proposition 3.3. Let ω ∈ (ωℓ

k, ωr
k) and (T, τ) ∈ Tk such that jω is a simple

solution of the characteristic equation

D(s; T, τ) = 0,

given by (2.1) and

D(jω′; T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω

(i.e. (T, τ) is not an intersection point of two curves or different sections of a single
curve of T ).

Then, as (T, τ) crosses the stability crossing curves from the right-hand side to
the left-hand side at this point, a pair of solutions of (2.1) cross the imaginary axis
to the right, through s = ±jω if R2I1 − R1I2 > 0. The crossing is to the left if the
inequality is reversed.

Proof. Direct computation shows that

(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

=
(R2

0 + I2
0 )(R2I1 − R1I2)

(R1I2 − R2I1)2

Therefore (3.17) can be written as R2I1 − R1I2 > 0.
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4. Illustrative Examples. In order to illustrate the cases presented in the pre-
vious sections, we shall consider four examples: the linearized Cushing equation with
a gap (first-order system), a simplified helicopter model (second-order system), a
second-order system encountered in control engineering and finally a simplified traffic
flow model.

Example 4.1 (linearized Cushing equation with a gap). Cushing has formu-
lated and analyzed some general population growth models [5], and some of them have
been largely treated in the literature (see, for instance, [1, 2, 4, 15], and the refer-
ences therein). One of these models leads to the following characteristic equation
(s + α)(1 + sT )n + βe−sτ = 0, where α is the death rate per unit time, and β is a
constant corresponding to the maternity function. Based on the particular form of
the characteristic equation, it is easy to see that the only interesting case is |α| < |β|.
Otherwise, the crossing set Ω is empty.

If |α| < |β|, then Ω = Ω1 = (0,
√

β2 − α2], which is of type 31. The corresponding
pairs (T, τ) are given by:

T =
1

ω

[

(

β2

ω2 + α2

)1/n

− 1

]1/2

,

τm =
1

ω

[

∠

( −β

(α + jω)(1 + jωT )n

)

+ 2mπ

]

.

According to Proposition 3.2, we get:

lim
ω→

√
β2−α2

T = 0, lim
ω→0

T = ∞, lim
ω→0

τm = ∞

and

lim
ω→

√
β2−α2

τm =
1

√

β2 − α2

(

2mπ + ∠

(−β

α

)

− arctan

√

β2 − α2

α

)

.

Also the slopes of the corresponding asymptotes are given by

lim
ω→0

τ

T
=

−n arctan

[

(

β2

α2

)1/n

− 1

]1/2

+ ∠

(−β

α

)

+ 2mπ

[

(

β2

α2

)1/n

− 1

]1/2

Figures 4.1 (right) and 4.2 plot τm, m ∈ {0, 1, 2, 3, 4} against T in the case n = 1 and
n = 4 for α = 3 and β = 5, respectively. The crossing set Ω = (0, 4] is shown in figure
4.1 (left). We observe that τm+1(ω) > τm(ω), ∀m ≥ 0 and ω ∈ Ω. Furthermore, it
is easy to see that at ω = 2 ∈ Ω, for any m,

R2I1 − R1I2 = −13n

(

25

13

)
n−1

n

[

(

25

13

)1/n

− 1

]1/2

< 0.

Therefore, we can conclude that as τ increases from zero, every time it crosses the
stability crossing curve in Figure 4.1 (right) or 4.2, the equation (2.1) gains two
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Fig. 4.1. Linearized Cushing equation example.
Left: |P (jω)|/|Q(jω)| against ω. Right: τm, m ∈ {0, 1, 2, 3, 4} versus T when n = 1
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Fig. 4.2. Linearized Cushing equation example. τm, m ∈ {0, 1, 2, 3, 4} versus T when n = 4

additional right half plane solutions. In addition, we can easily see that the system is
stable when T = 0, τ = 0. Therefore, the linearized Cushing equation is stable only
in the region below the curve labelled “m = 0” and above the T -axis.

Example 4.2 (Simplified helicopter model). Consider a helicopter model [18, 19]
consisting of a fixed base and a rotary arm mounted on the base. The arm carries
the helicopter body on one end, and a counterweight on the other. The arm can make
an elevation motion around an angle x. The corresponding nonlinear mathematical
model is

J · ẍ = −g · y · (M + m) · sin x + 2 · kt · r · v(t) (4.1)

where kt, g represent the motor and the gravity constants, y is the distance between the
rotation point and the rotary arm, r is the distance from the helicopter body to the fixed
base, m and M denote the mass of the helicopter blades (including the motors and
the fixing devices), and the counterweight, respectively. J is the moment of inertia
around the rotating point, and v(t) the corresponding voltage. We note that all of
these values can be explicitly measured. Linearizing around the quiescent point, one
gets

J · ẍ = −g · y · (M + m) · x + 2 · kt · r · v (4.2)
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and finally, after the damping factor identification, we obtain the helicopter transfer
function:

G(s) =
0.2607

s2 + 0.07441s + 2.904
(4.3)

Considering a simple PD-controller (for improving the system response of the above
helicopter laboratory experiment) Gc(s) = (16.5s + 19.5) with a gamma-distribution
with a gap e−sτ/(1+ sT )n modeling the overall communication delay, one obtains the
closed-loop characteristic equation given by:

(s2 + 0.07441s + 2.904)(1 + sT )n + (4.3015s + 5.0836)e−sτ = 0 (4.4)

The crossing set Ω consists of one interval (0, 5.0002] of type 31 (figure 4.3 (left)).
Some stability crossing curves are plotted in figure 4.3 (right).
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Stability crossing curves
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Fig. 4.3. Simplified helicopter model: T m

1
, m = 0, 1, 2, 3 for the equation (4.4).

Example 4.3 (Controlling second-order systems). Consider the equation (2.1)
when Q(s) = k1s + k2 and P (s) = s2 + 2. It is easy to see that if k1 = 0, and T = 0,
the characteristic equation corresponds to the closed-loop system of a simple oscillator
1/(s2 + 2) controlled by a delayed output feedback of the form k2e

−sτ , that is:

ÿ(t) + 2y(t) = u(t),

with

u(t) = −k2y(t − τ).

It is important to point out that for very small delay values τ , and very small gains
k2, the closed-loop system is asymptotically stable, but it is not asymptotically stable
if the delay τ is equal to 0, that is for the control law: u(t) = −k2y(t). We have
the so-called stabilizing effect of the delay (see, for instance, [16], and the references
therein on stabilizing oscillations by using delayed feedback laws).

The more general system with the characteristic equation

(s2 + 2)(1 + sT )n + (k1s + k2)e
−sτ = 0, (4.5)

can be analyzed as follows:
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Case 1: If |k2| < 2 then the crossing set Ω = [ω+, ω−] \ {
√

2}, where

ω± =

√

k2
1 + 4 ±

√

(k2
1 + 4)2 − 4(4 − k2

2)

2
.

We note that

ω− ≤

√

k2
1 + 4 ±

√

(k2
1 + 4)2 − 16

2
≤

√
2 < ω+.

Therefore, Ω consists of two intervals of type 12 and 21, respectively. More
details can be found below where we will discuss the case k2 = 0 and k1 = 1.

Case 2: If |k2| ≥ 2 then the crossing set Ω = (0, ω+] \ {
√

2}, where ω+ >
√

2 is
defined above. So, the crossing set Ω consists of two intervals of type 32 and
21, respectively.

Next we consider the following special case: k1 = 1 and k2 = 0. Using (3.5) and
(3.6), we compute the crossing set Ω = Ω1 ∪ Ω2, where Ω1 = [1,

√
2) is of type 12,

and Ω2 = (
√

2, 2] is of type 21 (see also figure 4.4 (left)). Simple computation shows
that

T =
1

ω

√

(

ω2

(2 − ω2)2

)1/n

− 1

and

τm =
1

ω

(

∠
jω

(2 − ω2)(1 + jωT )n
+ 2mπ

)

.

According to the result of Proposition 3.2 we have lim
ω→1

T = 0, lim
ω→2

T = 0,

lim
ω→

√
2
T = ∞, lim

ω→1
τm = −π

2
+ 2mπ, lim

ω→2
τm =

π

4
+ mπ and

lim
ω→

√
2−0

τm =
[2m − (n − 1)/2]π√

2

lim
ω→

√
2+0

τm =
[2m − (n + 1)/2]π√

2

We will now calculate the direction of crossing. A direction calculation yields

R2I1 − R1I2 = n(1 + ω2T 2)n−1(2 − ω2)2Im(1 − jωT )

= −nωT (1 + ω2T 2)n−1(2 − ω2)2 < 0

Therefore, using Proposition 3.3, we can conclude that as we cross the stability cross-
ing curves from its right hand side to its left hand side, a pair of complex conjugate
solutions of D = 0 cross the imaginary axis from the right half complex plane to the
left half plane.

The computations above show us that the following inequalities holds:

τm(
√

2 + 0) < τm(
√

2 − 0) < τm+1(
√

2 + 0), ∀m ∈ Z.
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Fig. 4.4. Second-order system example 4.3:
Left: |P (jω)|/|Q(jω)| versus ω. Right: τm, m = 0, 1, 2, 3 versus T when n = 1.

This simply states that for large values of T the crossing towards stability and the
crossing towards instability interlace. Consider the additional fact that the system is
obviously stable for τ = 0 and T = 0, and the fact that the stability crossing curves
approaches horizontal, we can conclude that the system has an infinite number of
stable regions. Figure 4.4 shows the case when n = 1.

Example 4.4 (Traffic flow model). Finally we consider a time-delay microscopic
system including delayed reactions of the driver, and as explained in the introduction,
we will use a distributed delay with a gap for modeling human driver reactions with
respect to the traffic behavior. Specifically, consider the traffic flow dynamic described
by (1.8) with α1 = α2 = 2, the stability analysis leads to the conclusion that the system
has only one stability region (see figure 4.5).
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T

Fig. 4.5. Traffic flow model with 2 vehicles: τm, m ∈ {0, 1, 2} versus T when n = 2

More exactly, the crossing set Ω consists of one interval (0, 4] and the crossing
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curves are described by the following equations:

T =
1

ω

√

(

16

ω2

)1/n

− 1 (4.6)

τ =
1

ω

(π

2
− n arctan(ωT ) + 2mπ

)

, m = 0, 1, 2, . . . (4.7)

We note that Assumption V is not satisfied in this case and the shape of the crossing
curves do not perfectly match with the classification proposed in section 3. However,
the ideas of our approach still apply.

It is also important to point out that the matrix A1 + A2 that defines the char-
acteristic equation (1.9) always has an eigenvalue at the origin. This corresponds to
the situation in which the relative movement of one vehicle to the others is zero (the
vehicles are either staying or moving with the same velocity).

On the other hand, varying n over positive integers, we can see that the stability
region becomes smaller as the integer n increases (Figure 4.6).
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Fig. 4.6. Traffic flow model: τ1 versus T when n ∈ {1, 2, 3}

5. Concluding remarks. This paper addressed the stability problem of shifted
gamma-distributed delay systems. More specifically, we have characterized the geom-
etry of the stability crossing curves in the parameter space defined by the gap and the
corresponding mean delay. Several illustrative examples complete the presentation.
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