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Abstract— This paper deals with the adaptation of a real-
time controller’s sampling period to account for the available
computing resource variations. The design of such controllers
requires a parameter-dependent discrete-time model of the
plant, where the parameter is the sampling period. A polytopic
approach for LPV (Linear Parameter Varying) systems is then
developed to get anH∞ sampling period dependent controller.
A reduction of the polytope size is here performed which
drastically reduces the conservatism of the approach and makes
easier the controller implementation. Some experimental results
on a T inverted pendulum are provided to show the efficiency
of the approach.

Index Terms— Digital control, linear parameter varying sys-
tems, H∞ control, real experiments.

I. INTRODUCTION

High-technology applications (cars, household appli-
ances..) are using more and more computing and network
resources, leading to a need of consumption optimisation
for decreasing the cost or enhancing reliability and perfor-
mances. A solution is to improve the flexibility of the system
by on-line adaptation of the processor/network utilisation,
either by changing the algorithm or by adapting the sampling
period. This paper deals with the latter case and presents the
synthesis of a control law with varying sampling period.

Few recent works have been devoted to the computing
resource variations. In [1] a feedback controller with a
sampling period dependent PID controller is used. In [2],
[3] a feedback scheduler based on a LQ optimisation of the
control tasks periods is proposed. In [4] a processor load
regulation is proposed and applied for real-time control ofa
robot arm. In [5] the design of a sampling period dependent
RST controller was proposed.

The presented contribution enhances a previous paper
([6]) using a linear parameter-varying (LPV) approach of
the robust linear control framework. The main point is the
problem formulation such that it can be solved following
the LPV design of [7]. We first propose a parametrised
discretization of the continuous time plant and of the weight-
ing functions, leading to a discrete-time sampling period
dependent augmented plant. In particular the plant discretiza-
tion approximates the exponential by a Taylor series of
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order N. Therefore the LPV design we formerly used build
discrete-time sampling period dependent controller through
the convex combination of 2N controllers, which may be con-
servative and complex to implement. In this paper we exploit
the dependency between the variables parameters, which are
the successive powers of the sampling periodh,h2, ...,hN, to
reduce the number of controllers to be combined toN + 1.
This reduction of the polytopic set drastically decreases the
conservatism of the previous work and makes the solution
easier to implement. This approach is then validated by
experiments on real-time control of a T inverted pendulum.

The outline of this paper is as follows. Section II describes
the plant discretization and the reduction of the original com-
plexity using the parameters dependency. In section III the
closed-loop objectives are stated and expressed as weighting
functions in theH∞ framework. Section IV comments briefly
the augmented plant and gives background onH∞/LPV
control design. The experiments on the T inverted pendulum
are described in section V. Finally, the paper ends with some
conclusions and further research directions.

II. A POLYTOPIC DISCRETE-PLANT MODEL

We consider a state space representation of continuous
time plants as :

G :

{

ẋ = Ax+Bu
y = Cx+Du

(1)

The exact discretization of this system with a zero order hold
at the sampling periodh can be computed using expression
(2) and (3), see [8].

(

Ad Bd

0 I

)

= exp(

(

A B
0 0

)

h) (2)

Cd = C Dd = D (3)

This leads to the discrete-time LPV system (4)

Gd :

{

xk+1 = Ad(h)xk +Bd(h)uk

yk = Cd(h)xk +Dd(h)uk
(4)

with h ranging in[hmin;hmax]. However in (2)Ad andBd are
not affine onh.

A. Preliminary approach: Taylor expansion

To get a polytopic model (and then apply an LPV design),
we propose to approximate the exponential by a Taylor series
of orderN as :

eMh ≈
N

∑
i=0

(Mh)i

i!
, (5)



which leads, withH = [h h2 . . . hN], to

Ad(h) ≈ I +
N

∑
i=1

Ai

i!
hi := Ad(H) (6)

Bd(h) ≈
N

∑
i=1

Ai−1B
i!

hi := Bd(H) (7)

Now the dependence onH is affine. To get a polytopeH
containingH, a solution is to chooseH with the 2N vertices
ωi corresponding to the vertices of the hypercube (9).

H =

{

2N

∑
i=1

αi(h)ωi : αi(h) ≥ 0,
2N

∑
i=1

αi(h) = 1

}

(8)

{h,h2, . . . ,hN}, hi ∈ {hi
min,h

i
max} (9)

This leads to the plant polytopic model (10) whereGdi are
Gd(H) evaluated at the verticesωi .

Gd(H) =
2N

∑
i=1

αi(h)Gdi and H =
2N

∑
i=1

αi(h)ωi (10)

As the gain-scheduled controller will be a convex com-
bination of 2N ”vertex” controllers, the choice of the series
order N gives a trade-off between the approximation accu-
racy and the controller complexity. To reduce the complexity
(and the conservatism of the corresponding control design
as well), a reduction of the polytope is proposed in the next
section.

B. Reduction of the polytope

In (6), h, h2, ..., hN are viewed as independent parameters
which leads to some conservatism and useless complexity.
To decrease the volume and number of vertices of the
matrices polytope we now exploit the dependency between
the successive powers of the parameterh.

The parameter range 0≤ hmin ≤ h ≤ hmax with 0 < hmax

leads to :
hn+1 ≤ hn hmax (11)

Recall that the verticesωi of H are defined by
h,h2, . . . ,hN with hi ∈ {hi

min,h
i
max}. Considering the con-

straint (11) leads to the following set of admissible vertices :

ω1 = [hmin,h
2
min,h

3
min, . . . ,h

N
min]

ω2 = [hmax,h
2
min,h

3
min, . . . ,h

N
min]

ω3 = [hmax,h
2
max,h

3
min, . . . ,h

N
min] (12)

...

ωN+1 = [hmax,h
2
max,h

3
max, . . . ,h

N
max]

Therefore we getN+1 vertices rather than 2N. Note that
these vertices are linearly independent and make a simplex,
which is itself basically a polytope [9].

When N = 2 the square is downsized to the triangle in
figure 1. WhenN = 3 the pyramid in figure 2 is the reduction
of a cube.

Remark 1:Note that exact calculations of matrix expo-
nential via diagonalising or Cayley-Hamilton theorems are

Fig. 1. Polytope reduction for N=2

Fig. 2. Polytope reduction for N=3

more involved here as their expression will lead to non affine
representations ofAd(H) andBd(H).

Remark 2:Taylor’s approximation, especially of low or-
der, is inaccurate for large value of the parameterh. There-
fore it is important to split (5) aseMh = eM(h0+δh) = eMh0eMδh

with δh ∈ [h0−hmin;hmax−h0], then calculate exactlyeMh0

and apply approximation only oneMδh (see section V).
To evaluate the approximation error due to the Taylor

approximation (in both cases of full and reduced polytope),
the criterion (13) is used. TheH∞ norm is chosen here
to express the worst case error betweenGde and Gd, two
discretizations which use matrix exponential and Taylor
series approximation of orderN respectively.

JN = max
hmin<h<hmax

‖ Gde
(h,z)−Gd(h,z) ‖∞ (13)

III. PERFORMANCE SPECIFICATION

In the H∞ framework, the general control configuration
of figure 3 is considered, whereWi and Wo are weighting
functions specifying closed-loop performances (see [10]).
The objective is here to find a controllerK such internal
stability is achieved and‖z̃‖2 < γ‖w̃‖2, whereγ represents
the H∞ attenuation level.

Classical control design assumes constant performance
objectives and produces a controller with an unique sampling
period. This sampling period is chosen according to the
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Fig. 3. Focused interconnection

controller bandwidth, the noise sensibility and the availability
of computation resources. When the sampling period varies
the usable controller bandwidth also varies and the closed-
loop objectives should logically be adapted ; therefore we
propose to adapt the bandwidth of the weighting functions.
In this aim,Wi andWo are split into two parts :

• a constant part with constant poles and zeros. This
allows, for instance, to compensate for oscillations or
flexible modes which are, by definition, independent of
the sampling period. This part is merged with the plant
before its discretization.

• the variable part contains poles and zeros whose pulsa-
tions are expressed as an affine function of the frequency
f = 1/h. This permits to adapt the bandwidth of the
weighting functions. These poles and zeros are here
constrained to bereal by the discretization step.

To discretize the variable partV(s) of a weighting func-
tion, we propose the following methodology

1) factoriseV(s) as a product of first order systems, with
ai ,bi ∈ R

V(s) = β ∏
i

s−bi f
s−ai f

= β ∏
i

Vi(s) (14)

2) use the observable canonical form forVi(s)

Vi(s) :

{

ẋi = ai f xi + f (ai −bi) ui

yi = xi +ui
(15)

3) form the series interconnection of the state space
representation of eachVi(s) and thus

V(s) :

{

ẋv = Av f xv +Bv f βuv

yv = Cv xv +Dvβuv
(16)

4) discretize the state space representation ofV(s).
Thanks to the affine dependence inf in (16) the
discrete-time model of the variable part becomes in-
dependent ofh since:










Avd = eAv f h = eAv

Bvd = (Av f )−1(Avd − I)βBv f = A−1
v (Avd − I)βBv

Cvd = Cv andDvd = Dv
(17)

Remark 3:The serial interconnection of two systemsVi(s)
leads to the expressions (18). It is easy to verify that even
with more than two first order systems, matricesA andB of

V(s) remain affine inf :

Av =

(

a1 0
a2−b2 a2

)

Bv =

(

a1−b1

a2−b2

)

Cv =
(

1 1
)

Dv = 1 (18)

xv = (x1 x2)
T

Remark 4:The simplification betweenf and h in (17)
makes easy the discretization step. This is why plant and
weighting functions are separately discretized and the aug-
mented plant is obtained in discrete time afterwards by
interconnection.

IV. LPV/H∞ CONTROL DESIGN

Interconnection of figure 3 between the discrete-time poly-
topic model of the plant̃P (A, Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw,
Dyu) and the weighting functionsWi (Ai , Bi , Ci , Di) andWo

(Ao, Bo, Co, Do) leads to the discrete-time LPV augmented
plant P(H),

P(H) =











A(H) Bw(H)Ci 0 Bw(H) Bu(H)
0 Ai 0 Bi 0

BoCz BoDzwCi Ao BoDzwDi BoDzu
DoCz DoDzwCi Co DoDzwDi DoDzu
Cy DywCi 0 DywDi Dyu











with H ∈ H (19)

:=





Ā(H) B̄1(H) B̄2(H)
C̄1(H) D̄11(H) D̄12(H)
C̄2(H) D̄21(H) D̄22(H)



 (20)

We aim to use here theH∞ control design for linear
parameter-varying systems as stated in [7]. Let the discrete-
time LPV plant, mapping exogenous inputsw and control
inputsu to controlled outputsz and measured outputsy, with
x∈ R

n, be given by the polytopic model






xk+1 = Ā(H)xk + B̄1(H)w+ B̄2(H)u
z= C̄1(H)xk + D̄11(H)w+ D̄12(H)u
y = C̄2(H)xk + D̄21(H)w+ D̄22(H)u

(21)

where the dependence ofA(H), B(H), C(H) and D(H) on
H is affine and the parameter vectorH, ranges over a fixed
polytopeH with r verticesωi

H =

{

r

∑
i=1

αi(h)ωi : αi(h) ≥ 0,
r

∑
i=1

αi(h) = 1

}

(22)

wherer is equal toN+1 or to 2N according to the kind of
polytope (reduced or full).

Proposition 1: Under the assumptions :
(A1) D̄22(H) = 0
(A2) B̄2(H),C̄2(H), D̄12(H), D̄21(H) are parameter- indepen-

dent
(A3) the pairs(Ā(H), B̄2) and (Ā(H),C̄2) are quadratically

stabilizable and detectable overH respectively,
the gain-scheduled controller

{

xKk+1 = AK(H)xKk +BK(H)yk

uk = CK(H)xKk +DK(H)yk
(23)

where xK ∈ R
n, ensures over all parameter trajectories, for

the closed-loop system of figure (4):
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Fig. 4. Closed-loop of the LPV system

• closed-loop quadratic stability
• L2-induced norm of the operator mappingw into z

bounded byγ, i.e. ‖z‖2 < γ‖w‖2

if and only if there existγ and two symmetric matrices(R,S)
satisfying 2r +1 LMIs (which are computed off-line) :

(

NR 0
0 I

)T

L1

(

NR 0
0 I

)

< 0, i = 1. . . r (24)

(

NS 0
0 I

)T

L2

(

NS 0
0 I

)

< 0, i = 1. . . r (25)
(

R I
I S

)

≥ 0 (26)

where

L1 =





ĀiRĀT
i −R ĀiRCT

1i B̄1i

C̄1iRĀT
i −γI +C̄1iRC̄T

1i D̄11i

B̄T
1i D̄T

11i −γI





L2 =





ĀT
i SĀi −S ĀT

i SB̄1i C̄T
1i

B̄T
1iSĀi −γI +BT

1iSB̄1i D̄T
11i

C̄1i D̄11i −γI





Āi , B̄1i , C̄1i , D̄11i are Ā(H), B̄1(H), C̄1(H), D̄11(H) eval-
uated at theith vertex of the parameter polytope.NS and
NR denote bases of null spaces of(B̄T

2 , D̄T
12) and (C̄2, D̄21)

respectively.
OnceR, S and γ are obtained, the controllers are recon-

structed at each vertex of the parameter polytope. The gain-
scheduled controllerK(H) is then the convex combination
of these controllers

K(H) :

(

AK(H) BK(H)
CK(H) DK(H)

)

=
r

∑
i=1

αi(h)

(

AKi BKi

CKi DKi

)

(27)

with αi(h) such thatH =
r

∑
i=1

αi(h)ωi (28)

Remark 5:This synthesis uses a constant Lyapunov func-
tion approach which is known to produce a sub-optimal
controller.

Remark 6: In (19) assumption (A2) is not satisfied due to
Bu(H) term inB2(H). To avoid this, a strictly proper filter is
added on the control input. It is a numerical artifact, therefore
its bandwidth should be chosen high enough to be negligible
regarding the plant and objective bandwidths.

Note that on-line scheduling of the controller needs the
computation ofαi(h) knowing h which is easy with the re-
duced polytopeH ([11], [12]). These polytopic coordinates
are solutions of the following system :























N+1

∑
i=1

αi(h)ωi = H = [h,h2, ...,hN]

N+1

∑
i=1

αi(h) = 1, αi(h) ≥ 0

(29)

which leads, for the caseN = 2 of the next section to the
simple explicit solutions:

α1 =
hmax−h

hmax−hmin
,α2 = 1− (α1 +α3),α3 =

h2−h2
min

h2
max−h2

min

V. CONTROL OF THET INVERTED PENDULUM

This section is devoted to an experimental validation of
the approach using a ”T” inverted pendulum of Educational
Control Products1, available at LAG, in the NeCS (Network
Controlled Systems) project. These experiments will empha-
sise the applicability of the proposed design method.

A. System description

The pendulum is shown in figure 5.
The pendulum scheme in figure 6 is composed of two rods.

A vertical one which rotates around the pivot axle, and an
horizontal sliding balance one. Two optional masses allow
to modify the plan dynamical behaviour.

The control actuator (DC motor) delivers a forceu to the
horizontal sliding rod, through a drive gear-rack.

The θ angle, positive in the trigonometric sense, is mea-
sured by the rod angle sensor. The positionzof the horizontal
rod is measured by a sensor located at the motor axle.

The DC motor is torque controlled using a local current
feedback loop (assumed to be a simple gain due to the high
dynamics). The dynamical behaviour of the sensors is also
neglected.

B. Modelling

A mechanical model of the pendulum is presented below,
which takes into account the viscous friction (but not the
Coulomb friction).

(

m1 m1l0
m1l0 J̄

)(

z̈
θ̈

)

+

(

− fvz −m1zθ̇
2m1zθ̇ 0

)(

ż
θ̇

)

+

(

−m1sinθ
−(m1l0 +m2lc)sinθ −m1zcosθ

)

g =

(

u
0

)

(30)

where the time dependence of the state variables is implicit,
and the parameter values of given below in table I.

1http://www.ecpsystems.com/controls pendulum.htm



Fig. 5. Picture of the T pendulum
θ(t)

z(t)

u(t)

Fig. 6. Coordinates of the T pendulum

TABLE I

PARAMETERS

Name Value Description
m1 0.217 kg horizontal sliding rod mass
m2 1.795 kg vertical rod mass
l0 0.33 vertical rod length
lc -0.032 m vertical rod position of the centre of gravity
g 9.81 m.s−2 gravity acceleration
J̄ 0.061 Nm2 Nominal inertia
fvz 0.1 kg.s−1 viscous friction

Choosing the state vector asx = [z, ż,θ , θ̇ ], we get the

+

du

+ GKr y

Wu

M

We

+

−

θ

ẽ

ũ

Fig. 7. General control configuration

following non linear state space representation:











































ẋ1 = x2

ẋ2 = −l0ẋ4 +x1x2
4 +gsinx3−

fvz

m1
x2 +

u
m1

ẋ3 = x4

ẋ4 =
1

J0(x1)−m1l2
0

(+g(m1x1cosx3 +m2lcsinx3)

−m1(l0x4 +2x2)x1x4− l0u)

(31)

with J0(x1) = J̄+m1x2
1. The steady-state linearisation around

x = [0,0,0,0] gives the linear state space representation
ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t) with

A =











0 1 0 0
−l0gm1

J̄−m1l2
0

−
fvz
m1

−l0gm2lc
J̄−m1l2

0
+g 0

0 0 0 1
gm1

J̄−m1l0
0 gm2lc

J̄−m1l2
0

0











,B =











0
l2
0

J̄−m1l2
0
+ 1

m1

0
−l0

J̄−m1l2
0











C =

(

1 0 0 0
0 0 1 0

)

which gives numerically:

A =







0 1 0 0
−18.79 −0.46 14.82 0

0 0 0 1
56.92 0 −15.18 0






B =







0
7.52

0
−8.82






(32)

The poles of the linear model arep1,2 = −0.122±6.784,
p3 = −3.592 andp4 = 3.376.

C. Performance specification

As such a T pendulum system is difficult to be controlled,
our main objective is here to get a closed-loop stable sys-
tem, to emphasise the practical feasibility of the proposed
methodology for real-time control.

The sampling period is assumed to be in the interval
[1,3] ms.

The chosen performance objectives are represented in
figure 7, where the tracking error and the control input are
weighted (as usual in theH∞ methodology).
This corresponds to the mixed sensitivity problem given in
(33).

∥

∥

∥

∥

We(I −MSyGK1) WeMSyG
WuSuK1 WuTu

∥

∥

∥

∥

∞
≤ γ (33)
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with

K =
[

K1 K2
]

M =
[

0 0 1 0
]

Su = (I −K2G)−1 Sy = (I −GK2)
−1

Tu = −K2G(I −K2G)−1 (34)

The performance objectives are represented by weighting
functions and may be given by the usual transfer functions
[10]:

We(p, f ) =
pMS+ωS( f )

p+ωSεS
ωS( f ) = hminωSmax f (35)

Wu(p, f ) =
1

MU
(36)

where f = 1/h, ωSmax = 1,5 rad/s,MS = 2, εS = 0.01 and
MU = 5.

D. Polytopic discrete-time model

We follow here the methodology proposed in section II.
The approximation is done around the nominal periodho =
1ms, for h∈ [1,3] ms, i.e. δh ∈ [0,2] ms (see Remark 2).

On figure 8 the criterion (13) is evaluated for different
sampling periods (h∈ [1,3]ms ) and different orders of the
Taylor expansions (k ∈ [1,5]). It shows that this error may
be large if the order 1 is used.

On figure 9 |Gde(δh,z)−Gd(δh,z)| is plotted according
to the frequency, evaluated for 5 sampling periods ( i.e.
δh ∈ [0,2]ms) and for two cases of Taylor expansions (2
and 4). This allows to conclude that the choice of an order
2 of the Taylor expansion is quite good as it leads to an
approximation error less than−40dB.

Note that choosing the case ”order 2” leads to a reduced
polytope with 3 vertices.

E. LPV/H∞ design

The first step is the discretization of the weighting func-
tions. The augmented system is got, using a preliminary fil-
tering of the control input, to satisfy the design assumptions.
The augmented system is of order 6.
Applying the design method developed in section IV leads to
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Fig. 9. |Gde(δh,z)−Gd(δh,z)| for 6= h - Taylor order 2 and 4

the following results, combining the Taylor expansion order
and the polytope reduction:

Polytope Nb vertices γopt

Taylor order N=2 full 4 1.1304
Taylor order N=2 reduced 3 1.1299
Taylor order N=4 full 16 1.1313
Taylor order N=4 reduced 5 1.1303

This table emphasises that both design of orders 2 and
4 are reliable. For implementation reasons (simplicity and
computational complexity) we have chosen the case of the
reduced polytope using a Taylor expansion of order 2.

The corresponding sensitivity functions of the above de-
sign are shown in figure 10. UsingSe = e/r the steady-state
tracking error is less than−46dB, with a varying bandwidth
from 0.4 to 1.2 rad/s, i.e the ratio 3, specified according to
the interval of sampling period is satisfied.

The peak value ofSuK1 varies from 1.2 to 10.8dB, which
is reasonable for the control gain. Note that we will benefit
from the relatively high sensitivity in high frequencies,
because it allows some persistence noise in the control action,
allowing to reduce the effect of friction, as we will see in
the experiments.

Finally the functionMSyGdu is very low so that the effect
of input disturbancedu on the tracking error will be greatly
attenuated.

On figure 11 the time-domain response of the non linear
pendulum model (angle and position) interconnected with
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the discrete-time LPV sampling variable controller (here for
different frozen values of the sampling periods) is shown.
The settling time varies from 1.1 to 4.8 sec, i.e. in a ratio
4.3 with is very interesting for real-time control. There is
no overshoot as seen on the frequency responses of the
sensitivity functionSyGK1.

F. Simulation results

In this section, the application of the proposed sampling
variable controller when the sampling period varies between
1 and 3 msec. is provided.
Two cases are presented. First in figure 12 the sampling
period variation is continuous and follows a sinusoidal signal
of frequency 0.15rad/s. Then in figure 13 some step changes
of the sampling period are done.

These results show that the settling time of the closed-loop
system varies according to the sampling period, as expected.
When the period is large (i.e fort = 10sec) the pendulum is
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Fig. 12. Motion of the T pendulum under a sinusoidal sampling period
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Fig. 13. Motion of the T pendulum under a square sampling period

slower, while when the period is large (i.e fort = 30sec in
Fig. 12) the pendulum response is faster. Moreover, thanks to
the LPV approach, the variations (sinusoidal or step changes)
of the sampling period do not lead to abrupt transient of
the pendulum behaviour. This is a great benefit of the
LPV approach which ensures the stability evens for quick
variations of the parameter (this is due to the use of a single
Lyapunov function in the design [7]). The same assessment
can be done for the control input.

The LPV scheme allows here to guarantee the closed-
loop quadratic stability, a boundedL2-induced norm for
all variation of the sampling period and have a predictable
closed-loop behaviour.

G. Experiments

The same scenarii as the previous section (simulation
results) are now implemented for the real plant of figure 5.
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This plant is controlled through Matlab/Simulink using the
Real-time Workshop and xPC Target.

The results are given in figures 14 and 15. As in the
previous section, the settling time is minimal when the
sampling period is maximal, and vice versa. In the same
way, there is no abrupt changes in the control input (even
when the sampling period vary from 1 to 3 ms as in figure
15).

Note that, as explained before, the real control input is
sensitive to noise, allowing to minimise the friction effect,
and therefore to obtain a closed-loop system with much less
oscillations.

These results emphasise the great advantage and flexibility
of the method when the available computing resources may
vary, and when sampling period variations are used to handle
such a computing flexibility as in [4].

VI. CONCLUSION

In this paper, an LPV approach is proposed to design a
discrete-time linear controller with a varying sampling period
and varying performances. Compared to our previous result
in [6], a way to reduce the polytope from 2N to N+1 vertices
(whereN is the Taylor order expansion) is provided, which
drastically reduces the conservatism of the results and makes
the solution easier to implement.

Also the complete methodology is applied to the case of
a ”T” inverted pendulum, where experimental results have
been given. These results emphasise the real applicability
of the LPV approach as well as its interest in the context of
adaptation to varying processor or network load where a bank
of switching controllers would need too much resources.
In our case, the stability and performance property of the
closed-loop system are guaranteed whatever the speed of
variations of the sampling period are.
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