
Control strategies for H.264 video decoding under
resources constraints∗

Anne-Marie Alt
Inria Grenoble Rhône-Alpes, NeCS project-team

Montbonnot, Inovallée
38334 St Ismier Cedex, France

Anne-Marie.Alt@inrialpes.fr

Daniel Simon
Inria Grenoble Rhône-Alpes, NeCS project-team

Montbonnot, Inovallée
38334 St Ismier Cedex, France
Daniel.Simon@inrialpes.fr

ABSTRACT
Automatic control appears to be an enabling technology to han-
dle both the performance dispersion in highly integrated chips and
computing power adaptability under varying loads and energy stor-
age constraints. This work in progress paper presents a case study,
where a video decoder is controlled via quality loops and frequency
scaling, to meet end-users requirements mixing quality and energy
consumption related constraints.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous—Adap-
tive scheduling

General Terms
Design,Experimentation

Keywords
Feedback scheduling, QoS, H.264 video decoder

1. CASE STUDY OVERVIEW
Mobile devices such as PDAs and mobile phone are increasingly
integrating multimedia and telecommunication embedded applica-
tions, thus requiring increasing on-board computing power. The
required high computing capacities can be provided by highly inte-
grated multi-core chips using several tenths of micro-controllers,
as forecast by the Aravis (Advanced Reconfigurable and Asyn-
chronous Architecture for Video and Software radio Integrated on
chip) project.

Such chips of the future will integrate extremely small scale CMOS
manufacturing, e.g. silicon foundries currently target 32 nm or even
smaller gates. A nasty consequence of very high integration is the
silicon process dispersion, i.e. cores factored on the same chip will
behave differently. In particular different cores will be capable of
different maximum clock frequencies even if coming from the same
design [5]. To take full benefit from the potentially available com-
puting power, it is needed that each computing node (or group of
nodes) can be driven up-to its maximum clock frequency, thus mak-
ing the overall computing architecture heterogeneous and globally
asynchronous. In practice several nodes sharing a common fre-
quency domain are gathered in a cluster, and clusters working at
different frequencies are linked via an Asynchronous Network on
Chip.

∗This work is funded by Minalogic within the Aravis project
http://www.minalogic.com/projets.htm

1.1 QoS requirements
These highly integrated chips are expected to be used in many com-
puting intensive fields. Typical ones are multimedia applications,
such as receiving, decoding and displaying high definition televi-
sion streams on mobile devices : this particular application pro-
vides the case study described in the paper. Thanks to the impor-
tant embedded computational power many functions that were tra-
ditionally hardwired can be now implemented in software. This is
for example the case for the radio communication receiving system,
where components like filters, mixers and codecs can be now im-
plemented with increased flexibility inside the programmable com-
ponents of a software defined radio system (SDR). The extra com-
puting power can also be used to decode video streams with high
definition quality.

However high computing power has drawbacks in term of energy
consumption, especially for the case of mobile devices with lim-
ited embedded energy stored in a battery. Hence a trade-off be-
tween a measure of the multimedia application quality, the avail-
able on-board energy and the desired time to battery exhaustion
must be managed, which may be translated into a control problem.
Although not formally defined up-to-now this problem might be
stated, among other formulations, as “optimization of the decoding
quality under energy consumption constraint”.

Trading performances and resources is relevant of Quality of Ser-
vices (QoS) problems, which were primarily stated and studied in
the framework of networking. More generally, and beyond the ini-
tial (network related) meaning, QoS may be viewed as the man-
agement of some complex quality measures, assumed to provide
an image of the application requirements satisfaction. Indeed QoS
problem statements have been already used for energy aware mul-
timedia applications, e.g. [1], most often focusing on networking
load and communication management rather than on computing it-
self.

However an approach stating video processing as a QoS problem
is reported in [9]. The QoS is evaluated via end-users percep-
tion criteria and enables tuning decoding parameters such as pic-
ture quality, deadline misses and quality level switches. Scalable
processing is provided using several quality levels for frames de-
coding, each one associated with a corresponding computing cost.
Video processing is known to be subject to fluctuations and content-
dependent processing times : at run-time QoS management is made
adaptive and robust against the incoming stream uncertainties by an
active closed-loop control, where measures of the system’s outputs
(e.g. actual CPU load and deadlines miss) are fed back to the de-
coder’s input to chose the next frame decoding quality level. Even



if considering a single CPU with constant processing power the
approach shows a very effective and flexible decoding adaptation
capability.

Such closed-loop control scheme is currently considered in the frame-
work of the Aravis project, and follows several steps. Control de-
sign first needs a definition of the control objectives and an analy-
sis and modeling of the process to be controlled. Basically, control
uses an error signal between the desired and the measured (or es-
timated) state or output of the system. The output signals which
are significant for control purpose must be identified and the cor-
responding sensors must be implemented. Then various control
algorithms can be used to cyclically compute commands to be ap-
plied to the process via actuators, which must be also identified and
implemented.

2. H.264/SVC CODEC OVERVIEW
H.264 (also known as MPEG-4/AVC) is an international video cod-
ing standard for Advanced Video Coding proposed by the Joint
Video Team : it was first approved in 2003 [8]. It is intended to
be used in many multimedia applications such as downloading and
streaming via Internet, software defined radio, multimedia for mo-
bile devices and high definition television. More recently the Scal-
able Video Coding extension (SVC) has been defined to provide
scalability capabilities, e.g. enabling multiple resolutions and var-
ious quality levels in compressed bitstreams. Therefore this exten-
sion is expected to provide the actuators needed by a QoS control
loop working on top of the decoder.

2.1 Features of H.264/SVC
The H.264/SVC reference software, which implement the features
of the Joint Scalable Video Model (JSVM) 1 algorithm, has been
elected for preliminary experiments. Although it is not optimized,
this software implements all the features defined for the H.264 stan-
dard and for the associated SVC extension which are detailed in [7].

Basically SVC enables to decode only some selected parts of the
incoming compressed bitstream. Figure 1 below sketches the cod-
ing/decoding process. First, the raw input video flow is encoded
to obtain a compressed bitstream. At coding time SVC allows for
encoding the input video with combinations of different temporal
rates, spatial resolutions and quantization steps. At the output of
the encoder, the bitstream which contains several quality layers is
sent to the decoder via a communication medium. Before decoding,
selected partial bitstreams are extracted from the initial bitstream.
Finally, only selected partial bitstreams are decoded, while switch-
ing between layers is possible in some cases.

Figure 1: Video Transmission

Three types of scalability are allowed by SVC:

• Spatial scalability enables to encode a video with several
resolutions (i.e. number of pixels in a picture). The orig-
inal high resolution video is down-converted to new video

1http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-
Software.htm

streams with lower resolutions. The final bitstream contains
the video with all the encoded resolutions. The decoder de-
codes first the picture with the lowest resolution, then pic-
tures with higher resolutions if needed.
• Temporal scalability enables to encode all or a part of the

frames of the original video with different rates. For exam-
ple it can be chosen to encode only half of frames to save
computing power or networking bandwidth: in that case the
displayed video only contains 15 frames per second rather 30
frames per second in the original video stream.
• Quality scalability allows to encode the frames with several

quantization steps. The quantization step selectively cancels
some information from the original video: its effect can be
compared to a low-pass filter. Indeed, the human eye is more
sensible to the low frequencies than high frequencies, so that
canceling high contrasts can be done progressively with a
moderate impact on the visual perception. High quantization
steps lead to lower quality pictures but also to lower comput-
ing costs. For a frame containing several quantization based
quality layers, the decoder must process first the lowest qual-
ity layer (with the highest quantization step), then layers of
increasing quality.

These different scalability properties can be combined to encode/decode
a video stream as depicted in Figure 2. It is stated that the decoding
process necessarily flows from lower to higher quality layers. Ob-
viously all the quality layers needed by the decoder must have been
previously encoded and transmitted over a communication channel
to the decoder.

Figure 2: Bitstream with spatial, temporal and quality layers

2.2 Video bitstream structure:
A video sequence is made of 3 types of pictures: I pictures are ref-
erences pictures which are encoded independently of any other, P
pictures are encoded using the previously encoded I picture, and B
pictures are encoded using both the I and P pictures of there pat-
terns. Hence the order in which pictures are displayed is different
from the order of the pictures encoding/decoding. For instance, if
the display order is IBBBPBBBI then the encoding/decoding order
will be IPBBBIBBB. The IPB pattern is defined at coding time and
is invariant along all the video stream. The constant interval be-
tween successive I pictures is the intra period of the pattern and the
number of P pictures between two I is also constant and known as
the group of pictures.



The bitstream is made of so-called access units (which contain
each one picture). Each access unit is divided in NAL (Network
Abstraction Layer) Units of two types: slices (or Video Coding
Layer Units) which contain pixels related information, and non-
VCL Units which contain access units structure related informa-
tion such as the slices parameters. The number, size and shape
of the slices inside access units are defined at coding time and con-
stant over all the bitstream. Slices are themselves divided in macro-
blocks.

2.3 Decoding process
The present work only focuses on the decoder which is now de-
tailed through an example. Let us decode a bitstream which con-
tains a video with two resolution levels: 352x288 pixels and 704x576
pixels. Each resolution layer of the video contains two quantization
layers (Qp) 30 and 20 (recall that higher is the quantization step,
lower is the quality). Therefore the bitstream contains 4 layers,
sorted from the worst to the best quality:

• layer 0: resolution 352x288 pixels and Qp =30
• layer 1: resolution 352x288 pixels and Qp =20
• layer 2: resolution 704x576 pixels and Qp =30
• layer 3: resolution 704x576 pixels and Qp =20

Note that this ordering fits with the ordering given sorting the Peak
Signal to Noise Ratio of the compressed frames, referenced to the
original raw frame.

The bitstream is necessarily decoded in this order, from the worst to
the best quality layers. Switching between resolution layers is only
possible when decoding I pictures, and the P and B pictures can be
decoded only with the decoded resolution and quantization layers
decoded for their I reference picture (but they can be decoded with
a quantization lower than their I reference) [7].

The decoding process for each layer and for each slice follows the
following steps, which are identical for all slices:

• initialization of the slices and decoding parameters;
• slice parsing, analysis of the bitstream and entropy decoding.

Entropy decoding consists in convert the binary information
in decimal coefficients corresponding to each macro-block.
• slice decoding: this step reconstructs the picture thanks to

the decimal coefficients computed in the entropy decoding.
• optional final processing using a loop filter. This filter is ap-

plied to improve the final quality of the picture and is exe-
cuted at the end of the total frame decoding process.

3. PARALLELIZATION STRATEGIES
Slices are processed separately and identically. As there is no inter-
action between individual slice decoding processes, slices decoding
can be performed sequentially or in parallel according to the sys-
tem at hand. In the sequel the decoder is assumed to be executed
on cluster made of P identical processors, all working at the same
(possibly variable) speed. Three possible strategies for the decod-
ing parallelization have been considered (assuming that frames are
divided in S slices):

Picture-level parallelism: due to the dependency between some
pictures the order in which they are decoded is not free. Inside a
pattern the I picture must be processed first, then the P ones, and

finally the B frames, which can be processed in parallel on some
processors while the I picture of the next pattern begins its process-
ing. The effectiveness of this method highly depends on a good
matching between the number of available processors and the bit-
stream pattern structure, and in a general case the amount of time
savings due to parallel processing is limited by the dependencies
relations between pictures.

Slice-level parallelism: each picture is divided into slices, which
are separately decoded each on one processor of the cluster. Re-
call that the slices map is defined at coding time and is constant for
all the bitstream. Ideally the number of slices matches the num-
ber of processors. After parsing the picture each slice undergoes
all decoding steps, finally the decoded parts are sewed up again
and the picture is optionally filtered and post processed. When the
number of slices does not match the number of processing nodes
variants of this strategy can be implemented: in particular if P <
S, groups of P slices can be decoded sequentially, and if P > S,
pictures can be mapped on S nodes and several frames can be de-
coded in parallel (taking into account dependencies). As the slice
map is known when decoding the first frames the mapping between
slices and nodes can be chosen in pre-defined configurations when
decoding begins.

Macro-block-level parallelism: each slice contains many macro-
blocks which decoding order must be respected due to dependency
constraints. The first macro-blocks must be decoded sequentially,
then the following independents macro-blocks can be decoded in
parallel until joining a synchronization between blocks, and the
process is repeated until the end of the slice decoding. This strategy
is independent from the bitstream configuration but the number of
steps to be sequentially executed (entropy decoding) and of mid-
way synchronizations severely limit the potential parallelism and
associated time savings. [2].

The second strategy has been chosen because it provides the best
parallelism level and potential speed-up. The libasync paralleliz-
ing tool [10] associated to the event-based programming model [6]
is currently used to develop a parallel version of the H.264/SVC
decoder in which the actual number of cores is a tunable parame-
ter ∈ {1, 2, 4, .., 2n, ..}. Reading of the first access unit gives the
structure of the slices map in frames and allows for actually map-
ping the incoming bitstream onto the hardware architecture. Note
that in this case study parallelization is only a way to speed-up the
decoding process and is not considered for on-line re-mapping un-
der feedback decisions.

4. FEEDBACK SCHEDULING SETUP
Preliminary control design is sketched in this section. Control de-
sign needs sensors to observe the controlled process and actuators
to modify its state and output. In the particular case of feedback
control of computing systems, sensors are provided by software
probes used to build on-line indicators carried out the processing
activity. Actuators are provided by function activation, parame-
ters tuning, or processing suspend and resume under control of an
operating system. As the bitstream decoding quality is the object
of control, models of the decoder quality (i.e. the controller per-
formance) as a function of various execution parameters (desired
quality levels) are estimated from experiments. These models will
be further used to formalize the control objectives, e.g. using a QoS
formulation. Besides data coming from the reported experiments
many ideas and assumptions are inspired by the work described in
[9].



4.1 Control Strategies
Ideally the goal of the controller is to maximize the quality of the
displayed video stream under constraint of energy consumption.
Hence, according to an available computing budget, the video must
be decoded with the lower possible quantization step, higher res-
olution and maximum rate. The allowed computing budget itself
depends on the available on-board energy storage and desired op-
erating life. This high level controller works with long term objec-
tives with a time scale slow compared with the time scale of frames
processing. At the lower level, decoding frames has basic deadlines
related to video display, typically 40 msecs for frames displayed at
standard television rate. However the decoding computing load is
subject to fluctuations due to the varying content-dependent com-
putation duty of the successive frames. Therefore an on-line adap-
tation of the decoding parameters (quality layers) can be associated
with the frequency scaling capabilities of the cluster to meet the
requested video rate.

These various control objectives and timing scales lead to define
a hierarchy of two control loops to manage the decoding quality
(Figure 3). At high level a QoS controller manages the application
performance according to the available resources and end-user’s re-
quirements. At a lower level the frame controller works at the pic-
tures stream time scale and tightly cooperates with the processing
speed controller integrated in the cluster.

4.2 Control hierarchy
As usual the design of control loops needs to define a control archi-
tecture together with the selection of the set of sensors and actuators
to be used. From top (application software and long terms objec-
tives) to bottom (silicon level and high control rate), the control
hierarchy is (as depicted by Figure 3):

Figure 3: Control architecture

• The Quality Controller (Q-C) software runs in a master pro-
cessor on top of the Operating System. It communicates with
the clusters via an Asynchronous Network on Chip (ANOC).
• The Frame Controller (F-C) software runs in one of the nodes

of the considered cluster as a high priority task.
• The Computing Speed Controller (S-C) is integrated in the

cluster’s silicon, together with the voltage/frequency con-
trollers.

4.3 Quality controller
This controller manages long terms and user’s defined goals. Infor-
mally the control objective consists in trading-off the decoded bit-

stream quality and the energy storage lifetime, with an average en-
ergy consumption level in mind. Quality parameters are expressed
in term of display requirements, e.g. HD or standard mode, dis-
play rate and screen resolution. The end-user’s may select different
weights between these parameters, e.g. by imposing a high defini-
tion display whatever the cost, or asking for a mandatory lifetime
before refill.

Using a rough model between the quality layer and energy costs,
this first loop aims at setting the current requested quality level to
be decoded. The on-line monitoring of the battery level and volt-
age decaying rate are fed back for on-line estimation and correction
of this quality set point. Thanks to the cluster speed controller in
[4], the relations between the cluster’s computing speed and the
electrical power needed to feed the cluster can be approximated by
monotonic functions. In other words, higher is the demanded com-
putation burden, higher is the energy consumption: it is expected
that such monotonic cost functions lead to a simple control design,
even if a formal statement for this control problem remains to be
done.

Quality layers and computing costs. After decoding the
first frames, the structures of the bitstream (number of quantiza-
tion/resolution layers, IPB structure, pictures rate and slices map)
are known and can be used to actually set the decoding parameters.
Some of the video parameters are constrained by the incoming bit-
stream and by the display mode:

• the display rate constraints the average deadline for each pic-
ture (e.g. 40 ms for standard TV rate);
• the quantization and resolution layers in the decoded bit-

stream must be encoded in the source stream;
• B and P frames cannot be decoded at a quality higher than

the one of their reference I frames.

Switching on-line the display rate should be avoided as far as pos-
sible due to the visible effect on the display. Hence the usual choice
for the variable decoding parameters, able to handle varying com-
puting capabilities, is the requested quality layer to be decoded. A
correct estimation of the quality set point needs the knowledge of
a model (cost function) to link up the quality layers and computing
loads (and at least to understand their respective variations).

Figure 4 plots average cycles number to decode the five quantiza-
tion layers of a particular bitstream. The quantization steps are here
equidistant and set to QP = 40, 34, 28, 22, and 16. From the left to
the right the plot shows the average cycles number for I, P and B
frames. (It is assumed that measures taken from a fixed frequency
CPU provide a good image of the computing load in term of state-
ments to be executed).

Figure 5 shows cycles number for a bitstream made of a mix of res-
olution and quantization layers with the parameters already given
in section 2.3.

These experiments show that the choice of the quantization or res-
olution layers has a significant impact on the computational load,
and that switching resolution has a rough influence while quantiza-
tion may provide fine control.



Figure 4: Computation load for Quantization layers

Figure 5: Computation load for combined Resolution-
Quantization layers

Therefore decoding only the lower quality layers appears to be an
effective actuator to reduce the decoding cost and the related en-
ergy consumption, and to manage the trade off between the dis-
played quality and the energy consumption constraints. Other pre-
liminary experiments, using an elementary controller to skip high
quality quantization steps in case of overload, showed that switch-
ing between quantization layers has a very moderate impact on the
viewer’s perception, while efficiently saving execution cycles and
avoiding deadlines overshoots.

Recall that the quality layers contained in the incoming bitstream
must be decoded in sequence, with the low quality layers first: ob-
serving the latter figures it appears that increasing the allocated
computation load monotonically increases the decoding quality:
once again this nice property is expected to help the design of the
quality controller.

4.4 Frame controller
This controller feeds the computing speed controller with estima-
tions of the amount of computations to be performed within an as-
sociated deadline.

Typically deadlines are associated with the video rate, e.g. 40
msecs are allocated to fully decode and display one image. How-
ever, even if the display video rate must be respected as far as possi-
ble, there are no strong synchronous constraints between the video
source capture, encoding, decoding and display: latencies equiv-

alent to several frames can be allowed, hence there is room for
scheduling flexibility at decoding time.

Recall that, due to dependencies between images of different types
I, P and B, the displayed order is different than the decoding order,
so that the displayed flow is inevitably delayed w.r.t. the incom-
ing bitstream. Following the ideas in [9], an additional buffer is
added to the frames decoding and display queue, so that decoding
is performed several frames ahead of display. This added buffer
is used to give space and accommodate for the varying computing
loads between frames. Measurements of decoding execution times
were made to evaluate the profile and amplitude of computing load
variations along a movie. Execution times measured from a 1000
frames long movie have been sorted according to the frame type
(I,P or B) on Figure 6 where the bitstream has a unique layer with
624x352 pixels resolution and quantization step 28. This video se-
quence contains a mix of quiet and action plans.

Figure 6: Decoding times for I, P and B frames

It can be observed, especially for the reference I frames, that the
decoding times are almost constants for quite long intervals, with
abrupt changes between flat areas, and isolated high values. The
observation of constant intervals enables to estimate the cycles num-
ber with sufficient accuracy. The maximum value for theses iso-
lated peaks suggests that a 3 frames deep control buffer would be
able to damp most of the computing load variations.

The main goal of the F-C is to provide the underlying S-C with
estimates of the number of cycles q̂k+1 to be processed for the next
frame fk+1 within a drk+1 requested deadline. According to [9]
and to the measures plotted in Figure 6, an estimate of q̂k+1 can be
often taken as the last qk reported by the S-C, or by filtered values
of the last executions, e.g. q̂k+1 = (1− α)qk + αqk−1.

Considering a fixed ideal schedule {..., tk−1, tk, tk+1, ...}, e.g. with
equidistant interval of 40 ms, a first basic feedback loop is aimed
to regulate the requested deadlines drk to their ideal value tk. Due
to the rough prediction of the computing load q̂k the actual (mea-
sured) deadline is dk = drk + δk. Assuming that the computing
load is almost constant, the computing overshoot can be driven to
0 according to δk+1 = (1 − β)δk with 0 < β < 1, leading to the
elementary deadline controller:

dk+1 = tk+1 + (1− β)δk

Indeed this control loop may accommodate for short term varia-
tions of the computing load for each frame. It capabilities can be
exhausted in case of several successive peak loads able to overflow
the 3 frames ahead buffer. In that case only I frames will be fully
decoded up-to the requested quality level, and the depending P and
B frames decoding can be truncated up-to recovering enough buffer
space. Thanks to the signals that are fed back by the decoder and
by the computing speed controller several control decisions can be
considered, sorted by their expected increasing impact on the dis-



played quality:

• truncation of the decoding process at a quality layer lower
than the set point can be done at any point for B and P frames;
• a comparison between a reference decoding timing pattern

and actual tags inserted in the decoder may help to antici-
pate overloads and abort useless steps rather than awaiting a
deadline miss: in particular the final filtering action can be
skipped;
• in case of accumulated overload peaks running beyond nom-

inal control actions, skipping or aborting a frame decoding
may be taken as an emergency action, allowing to reset the
decoding stack. This action must be as far as possible avoided
especially for I frames.

From a control point of view, the decoding process has a simple
dynamics (mainly due to measuring and averaging filters). There-
fore it is expected that simple control design holds (as in similar
referenced works) and that stability will not be difficult to assess.
However the adequate tuning of these control strategies, e.g. fil-
ters damping and threshold values, needs further experiments and
a more formal characterization of signals patterns and control ob-
jectives.

4.5 Computing speed controller
A computing speed controller is implemented in each cluster. Its
inputs are an image of the computing power needed by the ap-
plication software: this set point is cyclically given by the frame
controller as pairs < nb_cycles, deadline > which correspond
to computation units. It outputs voltage and frequency set points
forwarded to the lowest levels VDD hopping voltage converter and
programmable ring oscillator. This controller is designed to mini-
mize the energy needed to execute the given amount of computa-
tions: therefore it minimizes the time spent when the cluster works
at high voltage. It is fed back by the actual number of executed
statements so that it can compensate for process variability to fin-
ish the requested computations just on time, and may use clock
gating to stop the activity of idle nodes.

During a computing activity it also records information about the
cluster’s state and computation progress. In particular two signals,
which appear to be relevant for frame control anticipation, are fed
back to the frame controller: the High/Low voltage ratio observed
during the last frame processing gives an image of the safety mar-
gin before missing a deadline, and the deadlines and sub-deadlines
missing values allows for anticipating processing overloads.

This controller is generic and implemented in silicon. Details about
its design can be found in [4] for design basics and single core
control, and in [3] for the cluster version.

5. SUMMARY AND FURTHER WORK
In this work in progress paper, it is conjectured that a hierarchy
of control loops would efficiently manage the trade-off between a
multimedia application quality index and computing resources us-
age. Indeed control design usually starts with process modeling,
based (when possible) on the process internals analysis, or on in-
put/output relations analysis. Control loops basically use sensors
and actuators, which must be carefully selected, implemented and
calibrated to allow for effective feedback and control actions. The
current study focused on the identification and implementation of

the sensing and actuating devices, while control design is currently
only sketched. More detailed control design and experimentation
are expected to be available by the venue of the workshop.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge Fabien Mottet (INRIA Sardes
team) for his assistance during the decoder parallelizing design and
coding.

7. REFERENCES
[1] J.-C. Chiang, H.-F. Lo, and W.-T. Lee. Scalable video coding

of H.264/AVC video streaming with QoS-based active
dropping in 802.16e networks. In 22nd Int. Conf. on
Advanced Information Networking and Applications,
Okinawa, Japan, 2008.

[2] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and
K. Keutzer. Efficient parallelization of H.264 decoding with
macro block level scheduling. In IEEE International
Conference on Multimedia and Expo, ICME’07, Beijing,
China, July 2007.

[3] S. Durand and N. Marchand. Energy consumption reduction
with low computational needs in multicore systems with
energy-performance tradeoff. In 48th IEEE Conference on
decision and control CDC’09, Shanghai, China, Dec. 2009.

[4] S. Durand and N. Marchand. Fast predictive control of micro
controller´s energy-performance trade-off. In 3rd IEEE
Multi-conference on systems and control, St Petersburgh,
Russia, 2009.

[5] L. Fesquet and H. Zakaria. Controlling energy and process
variability in system-on-chips: needs for control theory. In
3rd IEEE Multi-conference on Systems and Control
(MSC/CCA 2009), Saint Petersburg, Russia, July 2009.

[6] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make
sense. In USENIX Annual Technical Conference, Santa
Clara, CA, USA, June 2007. USENIX Association.

[7] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the
scalable video coding extension of the H.264/AVC standard.
IEEE Trans. on circuits and systems for video technology,
17(9), 2007.

[8] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.
Overview of the H.264/AVC video coding standard. IEEE
Trans. on circuits and systems for video technology, 13(7),
2003.

[9] C. C. Wurst, L. Steffens, W. F. Verhaegh, R. J. Bril, and
C. Hentschel. Qos control strategies for high-quality video
processing. Real Time Systems, 30(1), 2005.

[10] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazières, and
M. F. Kaashoek. Multiprocessor support for event-driven
programs. In USENIX Annual Technical Conference, San
Antonio, TX, USA, June 2003. USENIX Association.


